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Dynamical modeling of neural systems and brain functions has a history of success over the
last half century. This includes, for example, the explanation and prediction of some features
of neural rhythmic behaviors. Many interesting dynamical models of learning and memory
based on physiological experiments have been suggested over the last two decades. Even
dynamical models of consciousness now exist. Usually these models and results are based on
traditional approaches and paradigms of nonlinear dynamics including dynamical chaos, and
we will discuss some of these results. Neural systems are, however, an unusual subject for
nonlinear dynamics for several reasons: (i) even the most simple neural network, with only a few
neurons and synaptic connections, has an enormous number of variables and control parameters.
These make neural systems adaptive and flexible, and are critical to their biological function;
(ii) in contrast to traditional physical systems described by well known basic principles, first
principles governing the dynamics of neural systems are unknown; (iii) many different neural
systems exhibit similar dynamics despite having different architectures and different levels of
complexity; (iv) the network architecture and connection strengths are usually not known in
detail and, therefore, the dynamical analysis must, in some sense, be probabilistic; (v) since
nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling
of these systems has to explain the transformation of temporal information into combinatorial
or combinatorial-temporal codes and vice versa for memory and recognition. In this review we
discuss these problems in the context of addressing the stimulating question: What can neuro-
science learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?

Will it ever happen that mathematicians will know
enough about the physiology of the brain, and neu-
rophysiologists enough of mathematical discovery, for
efficient cooperation to be possible?
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I. WHAT ARE THE PRINCIPLES?
A. Introduction

Building dynamical models to study the neural basis of
behavior has a long tradition (Ashby, 1960; Block, 1962;
Freeman, 1972, 2000; Rosenblatt, 1962). The underly-
ing idea governing neural control of behavior is the three
step structure of nervous systems that have evolved over
billions of years. Stated in its simplest form, specialized
neurons transform environmental stimuli into a neural
code. This encoded information travels along specific
pathways to the brain or central nervous system com-
posed of billions of nerve cells where it is combined with
other information. A decision to act on the incoming in-
formation then requires the generation of a different mo-
tor instruction set to produce the properly timed muscle
activity we recognize as behavior. Success in these steps
is the essence of survival.

Given the present state of knowledge about the brain,
it is impossible to apply a rigorous mathematical analysis
to its functions such as one may apply to other physical
systems, e.g., electronic circuits. We can, however, con-
struct mathematical models of the phenomena in which
we are interested, taking account of what is known about
the nervous system and using this information to inform
and constrain the model. Current knowledge allows us
to make many assumptions and put them into a math-
ematical form. A large part of this review will discuss
how nonlinear dynamical modeling is a particularly ap-
propriate and useful mathematical framework that can
be applied to these assumptions in order to simulate how
the different components of the nervous system function,
how the simulations compare with experimental results,
and how they can be used for predictive purposes.

Generally there are two main modeling approaches
taken in neuroscience: Bottom-up models and Top-down
models.

e Bottom-up dynamical models start from a descrip-
tion of individual neurons and their synaptic con-
nections, that is from acknowledged facts about the
details that have resulted from experimental data
that is essentially reductionistic (Fig. 1). Using this
anatomical and physiological data, the particular
pattern of connectivity in a circuit is reconstructed
taking into account the strength and polarity, i.e.,
excitatory or inhibitory, of the synaptic action. Us-
ing the “wiring diagram” thus obtained along with
the dynamical features of the neurons and synapses,
bottom-up models have been able to predict func-
tional properties of neural circuits and their role in
animal behavior.

e Top-down dynamical models start with the analy-
sis of those aspects of an animal’s behavior that
are robust, reproducible and important for survival.
The top-down approach is a more speculative “big
picture” view that has historically led to different
levels of analysis in brain research. While this hier-
archical division has put the different levels on an
equal footing, the uncertainty implicit in the top-
down approach should not be minimized. The first
step in building such large scale models is to deter-
mine the type of stimuli that elicit specific behav-
iors and use this knowledge to hypothesize about
the dynamical principles that can be responsible for
their organization. The model should predict how
the behavior evolves with a changing environment
represented by changing stimuli.

It is possible to build a sufficiently realistic neural
circuit model that expresses dynamical principles even
without knowledge of the details of the neuroanatomy
and neurophysiology of the corresponding neural system.
The success of such models depends on the universality of
the underlying dynamical principles. Fortunately there
is a surprisingly large amount of similarity in the ba-
sic dynamical mechanisms used by neural systems, from
sensory to central and motor processing.

Neural systems utilize phenomena such as synchro-
nization, competition, intermittency, and resonance in
quite nontraditional ways with regard to classical non-
linear dynamics theory. One reason is that the nonlinear
dynamics of neural modules or microcircuits is usually
not autonomous. These circuits are continuously or spo-
radically forced by different kinds of signals, e.g., sen-
sory inputs from the changing environment or signals
from other parts of the brain. This means that when we
deal with neural systems we have to consider stimulus-
dependent synchronization, stimulus-dependent compe-
tition, etc. This is a departure from the considerations
of classical nonlinear dynamics. Another very important
feature of neuronal dynamics is the coordination of neu-
ral activities with very different time scales, for example,
theta rhythms (4-8 Hz) and gamma rhythms (40-80 Hz)
in the brain.

One of our goals in this review is to understand why
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FIG. 1 (Color in online edition) Illustration of the functional
parts and electrical properties of neurons. (A) The neuron
receives inputs through synapses on its dendritic tree. These
inputs may or may not lead to the generation of a spike at the
spike generation zone of the cell body that travels down the
axon and triggers chemical transmitter release in the synapses
of the axonal tree. If there is a spike, it leads to transmitter re-
lease and activates the synapses of a postsynaptic neuron and
the process is repeated. (B) Simplified electrical circuit for
a membrane patch of a neuron. The nonlinear ionic conduc-
tances are voltage dependent and correspond to different ion
channels. This type of electrical circuit can be used to model
isopotential single neurons. Detailed models that describe
the morphology of the cells use several isopotential compart-
ments implemented by these circuits coupled by a longitudi-
nal resistance; these are called compartmental models. (C)
A typical spike event is of the order of 100 mV in amplitude
and 1-2 msec in duration, and is followed by a longer after-
hyperpolarization during which the neuron is less likely to
generate another spike; this is called a refractory period.

neural systems are really specific from the nonlinear dy-
namics point of view and to discuss how such specificities
are important for the functionality of neural circuits. We
will talk about the relationship between neuroscience and
nonlinear dynamics using specific subjects as examples.
We do not intend to review here the methods or the non-
linear dynamical tools that are important for the anal-
ysis of the neural systems as they have been discussed
extensively in many reviews and books, e.g., (Abarbanel,
1997; Abarbanel et al., 1993; Arnold et al., 1999; Craw-
ford, 1991; Guckenheimer and Holmes, 1986; Izhikevich,
2006; Kaplan and Glass, 1995; Kuznetsov, 1998; Ott,
1993; Strogatz, 2001).

B. Classical Nonlinear Dynamics approach for neural
systems

Let us say a few words about the role of classical dy-
namical theory. It might seem at first sight that the
apparently infinite diversity of neural activity makes its
dynamical description a hopeless, even meaningless task.
However, here one can exploit the knowledge accumu-
lated in classical dynamical theory, in particular the ideas
put forth by Andronov in 1931 concerning the struc-
tural stability of dynamical models and the investigation
of their bifurcations (Andronov, 1933; Andronov et al.,
1949; Andronov and Pontryagin, 1937). The essential
points of these ideas can be traced back to Poincare (Go-
roff, 1992; Poincaré, 1892). In his book La Valeur de
la Science, Poincare (Poincaré, 1905) wrote that “The
main thing for us to do with the equations of mathe-
matical physics is to investigate what may and should be
changed in them”. Andronov’s remarkable approach to-
ward understanding dynamical systems contained three
key points:

e Only models exhibiting activity which does not vary
with small changes of parameters can be regarded as
really suitable to describe experiments. He referred
to them as models or dynamical systems that are
structurally stable.

e To obtain insight into the dynamics of a system
means to characterize all of the principal types of its
behavior under all possible initial conditions. This
led to Andronov’s fondness of the methods of phase
space (state space) analysis.

e Considering the behavior of the system as a whole
allows the introduction of the concept of topologi-
cal equivalence of dynamical systems and requires
an understanding of local and global changes of the
dynamics, e.g., bifurcations, as control parameters
are varied.

Conserving the topology of a phase portrait for a dy-
namical system corresponds to a stable motion of the
system with small variation of the governing parameters.
Partitioning parameter space for the dynamical system
into regions with different phase space behavior, i.e., find-
ing the bifurcation boundaries, then furnishes a complete
picture of the potential behaviors of a dynamical model.
Is it possible to apply such a beautiful approach to bi-
ological neural network analysis? The answer is “Yes,”
at least, for small, autonomous neural systems. How-
ever, even in these simple cases we face some important
restrictions.

Neural dynamics is strongly dissipative. Energy de-
rived from biochemical sources is used to drive neural
activity with substantial energy loss in action potential
generation and propagation. Nearly all trajectories in
the phase space of a dissipative system are attracted by
some trajectories or sets of trajectories called attractors.



These can be fixed points (corresponding to steady state
activity), limit cycles (periodic activity), or strange at-
tractors (chaotic dynamics). The behavior of dynami-
cal systems with attractors is usually structurally stable.
Strictly speaking a strange attractor is structurally un-
stable itself, but its existence in the system state space is
a structurally stable phenomenon. This is a very impor-
tant point for the implementation of Andronov’s ideas.

The study of bifurcations in neural models and in
in wvitro experiments is a keystone for the understand-
ing of the dynamical origin of many single neuron and
circuit phenomena involved in neural information pro-
cessing and the organization of behavior. Figure 2 il-
lustrates some typical local bifurcations (their support
consists of an equilibrium point or a periodic trajectory
-see a detailed definition in (Arnold et al., 1999)) and
some global bifurcations (their support contains an infi-
nite set of orbits) of periodic regimes observed in neural
systems. Many of these bifurcations are observed both in
experiments and in models, in particular in the conduc-
tance based Hodgkin-Huxley type equations (Hodgkin
and Huxley, 1952), considered the traditional framework
for modeling neurons, and in the analysis of network sta-
bility and plasticity.

The most striking results in neuroscience based on
classical dynamical systems theory have come from
bottom-up models. These results include the descrip-
tion of the diversity of dynamics in single neurons and
synapses (Koch, 1999; Vogels et al., 2005); the spatio-
temporal cooperative dynamics of small groups of neu-
rons with different types of connections (Selverston, 2005;
Selverston et al., 2000); and the principles of synchroniza-
tion in networks with dynamical synapses (Elhilali et al.,
2004; Loebel and Tsodyks, 2002; Persi et al., 2004).

Some top-down models also have attempted a classical
nonlinear dynamics approach. Many of these models are
related to the understanding and description of cognitive
functions. Nearly half a century ago, Ross Ashby hypoth-
esized that cognition could be modeled as a dynamical
process (Ashby, 1960). Neuroscientists have spent con-
siderable effort implementing the dynamical approach in
a practical way. The most widely studied examples of
cognitive-type dynamical models are multi-attractor net-
works: models of associative memory that are based on
the concept of an energy function or Lyapunov function
for a dynamical system with many attractors (Hopfield,
1982), see also (Cohen and Grossberg, 1983; Doboli et al.,
2000; Waugh et al., 1990). The dynamical process in such
networks is often called “computation with attractors”.
The idea is to design during the ‘learning’ stage, in a
memory network phase space, a set of attractors, each
of which corresponds to a specific output. Neural com-
putation with attractors involves the transformation of a
given input stimulus which defines an initial state inside
of the basin of attraction of one attractor leading to a
fixed desired output.

The idea that computation or information processing
in neural systems is a dynamical process is broadly ac-

cepted today. Many dynamical models of both Bottom-
up and Top-down models that address the encoding and
decoding of neural information as the input-dependent
dynamics of a nonautonomous network have been pub-
lished in the last few years. However there are still huge
gaps in our knowledge of the actual biological processes
underlying learning and memory making accurate mod-
eling of these mechanisms a distant goal. For review see
(Arbib et al., 1997; Wilson, 1999).

Classical Nonlinear Dynamics has provided some basis
for the analysis of neural ensembles even with large num-
bers of neurons in networks organized as layers of nearly
identical neurons. One of the elements of this formula-
tion is the discovery of stable low dimensional manifolds
in a very high dimensional phase space. These mani-
folds are mathematical images of cooperative modes of
activity, for example, propagating waves in nonequilib-
rium media (Rinzel et al., 1998). Models of this sort are
also interesting for the analysis of spiral waves in cor-
tical activity as experimentally observed in vivo and in
vitro (Huang et al., 2004). Many interesting questions
have been approached by using the phase portrait and
bifurcation analysis of the models and by considering at-
tractors and other asymptotic solutions. Nevertheless,
new directions may be required to address the important
complexity of nervous system functions.

C. Contradictory issues need new paradigms

The human brain contains approximately 10'! neurons
and a typical neuron connects with ~ 10* other neurons.
Neurons show a wide diversity in terms of their morphol-
ogy and physiology (see Fig. 3). A wide variety of intra-
cellular and network mechanisms influence the activity of
living neural circuits. If we take into account that even
a single neuron often behaves chaotically, we could argue
that such a complex system most likely behaves as if it
were a turbulent hydrodynamic flow. However, this is
not what is observed! Brain dynamics are more or less
regular and stable despite the presence of intrinsic and
external noise. What principles does nature use to orga-
nize such behavior, and what mathematical approaches
can be utilized for their description? These are the very
difficult questions we need to address.

Several important features differentiate the nervous
system from traditional dynamical systems:

e Usually the architecture of the system, the indi-
vidual neural units, the details of the dynamics of
specific neurons, as well as the connections among
neurons are not known in detail, so we can only
describe them in a probabilistic manner;

e Despite the fact that many units within a complex
neural system are working in parallel, many of them
have different time scales and react differently to
the same nonstationary events from outside. How-
ever, for the whole system, time is unified and co-



Type of bifurcation

Notes

Examples and
references

Period—doubling

Mk

Below the period doubling bifurcation,
a stable periodic orbit exists. As the
control parameter | is increased, the
original periodic orbit becomes

Cerebellar Purkinje cells
(Mandelblat et al. 2001)

Pacemaker neurons

<M, > H,

2 unstable, and the orbit with double (Maeda et al. 1998)
o > period appears.
o] Saddle_node A pair of pc_srlodlc orbits is created _
o out of nothing. One of the of the orbits AB neuron from the crustacean
Pl R, 5 is unstable (the saddle L"), while the other .
-] / is stable (the node LY. The saddle-node pyrloric CPG
— A bifurcation is fundamental to the study )
O 'L of neural systems since it is one of the (Guckenheimer et al. 1993)
—_ < n>p most basic processes by which periodic
1] HSHa “ rhythms are created.
(&)
(@] . . Burst flexibility in coupled
— PenOd_addlng cascade This bifurcation consists of chaotic neurons
several saddle-node bifurcations (Huerta etal., 1997)
; : . " Neural relaxation oscillators
in which a (n+1)-spike bursting (Coombes and Osbaldestin, 2000)
behavior is born and the n—spike Chay neuron model
TRT M>u, bursting behavior dissapears. (Chay 1985, Gu et al. 2003)
Bursting electronic neuron
(Maeda and Makino, 2000)
This diagram shows not one, but
rather an infinite number of period Thermosensitive neurons
doubling bifurcations. As pis increased (Feudel et al. 2000)
a period two orbit becomes a period Aplysia R15 neuron
0 four orbit, etc. This process converges (Canavier et al. 1990)
c at a finite value of W, beyond which Salamander visual system
o a chaotic motion and an infinite number (Crevier and Meister 1998)
"(-_5' u i of unstable periodic orbits appear to exist.
2
.. This bifurcation is characterized
S Saddle—node homoclinic -
Y— by the transition from the
= - ) Periodic modulation of tonic
o) synchromzzitlon regime (stable spiking activity
o] 6 limit cycle L™ on an invariant torus) VLS neuron model
o] - to the quasiperiodic regime (Bond ko et al. 2003)
_ ondarenko et al.
9 (ﬁ (beating). The stable and unstable L
(D limit cycles collide and disappear.

Blue-sky catastrophe

At control parameter values smaller

than the critical one, the system has

two periodic orbits: a stable orbit Lt

and a saddle orbit L. The orbits,

which do not lie in the stable manifold of L™
tend to LT as time increases. This is one of the
basic processes by which periodic bursts

are created.

Leach heart interneuron model
(Shilnikov and Cymbalyuk 2005)
(Gavrilov and Shilnikov 2000)

Pacemaker neuron model
(Soto-Trevino et al. 2005)

FIG. 2 Six examples of limit cycle bifurcations observed in living and model neural systems.
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FIG. 3 Examples of the anatomical diversity of neurons,
Panel 1, and of the single neuron membrane voltage activity
associated with them, Panel 2. A, Lobster pyloric neuron; B,
Neuron in rat midbrain; C, Cat thalamocortical relay neuron;
D, Guinea pig inferior olivary neuron; E, Aplysia R15 neu-
ron; F, Cat thalamic reticular neuron; G, Sepia giant axon;
H, Rat thalamic reticular neuron; I, Mouse neocortical pyra-
midal neuron; J, Rat pituitary gonadotropin-releasing cell. In
many cases, the behavior depends on the level of current in-
jected into the cell as shown in panel D. Modified from (Wang
and Rinzel, 1995).

herent. This means that the neural system is or-
ganized hierarchically, not only in space (architec-
ture) but also in time: each behavioral event is the
initial condition for the next window of time. The
most interesting phenomenon for a neural system is

not the presence of attractor dynamics, but of non-
stationary behavior. Attractor dynamics assumes
long-time evolution from initial conditions, we must
face transient responses instead; and

e The structure of neural circuits is — in principle —
genetically determined, however, it is nevertheless
not fized and can change with experience (learning)
and through neuromodulation.

We could expand this list, but the facts mentioned al-
ready make our point that the nervous system is a very
special field for the application of classical nonlinear dy-
namics, and we think it is clear now why neurodynamics
needs new approaches and a fresh view.

We can use the following arguments to support an op-
timistic view for finding dynamical principles in neuro-
science:

e Complex neural systems are the result of evolution,
and thus their complexity is not arbitrary but fol-
lows some universal rules. One such rule is that the
organization of the central nervous system (CNS)
is hierarchical and based on neural modules.

e It is important to note that many modules are orga-
nized in a very similar way across different species.
Such units can be small, like central pattern gen-
erators (CPGs), or much more complex, like sen-
sory systems. In particular, the structure of one of
the oldest sensory systems, the olfactory system, is
more or less the same in invertebrates and verte-
brates and can be described by similar dynamical
models.

e The possibility of considering the nervous system
as an ensemble of interconnected units is a result of
the high level of autonomy of its subsystems. The
level of autonomy depends on the degree of self-
regulation. Self-requlation of neural units on each
level of the nervous system, including individual
neurons, is a key principle determining hierarchical
neural network dynamics.

e The following conjecture seems reasonable: each
specific dynamical behavior of the network (e.g.
traveling waves) is controlled by only a few of the
many parameters of a system (like neuromodula-
tors, for example) and these relevant parameters
influence the specific cell or network dynamics inde-
pendently - at least in a first approximation. This
idea can be useful for the mathematical analysis of
network dynamics and can help to build an approx-
imate bifurcation theory. The goal of this theory is
to predict the transformation of specific dynamics
based on bifurcation analysis in a low dimensional
control subspace of parameters.

e For the understanding of the main principles of
neurodynamics, phenomenological top-down mod-
els are very useful because even different neural sys-



tems with different architectures and different lev-
els of complexity demonstrate similar dynamics if
they execute similar functions.

In the main part of this review we discuss two critical
functional properties of neural systems that at first glance
appear incompatible: robustness and sensitivity. Find-
ing solutions to such apparent contradictions will help us
formulate some general dynamical principles of biological
neural network organization. We note two examples.

Many neural systems, especially sensory systems, must
be robust against noise and at the same time must be
very sensitive to incoming inputs. A new paradigm that
can deal with the existence of this fundamental contra-
diction is the winnerless competition (WLC) principle
(Rabinovich et al., 2001). According to this principle,
a neural network with nonsymmetric inhibitory connec-
tions is able to exhibit structurally stable dynamics if the
stimulus is fixed, and qualitatively change its dynamics
if the stimulus is changed. This ability is based on differ-
ent features of the signal and the noise, and the different
ways they influence the dynamics of the system.

Another example is the remarkable reproducibility of
transient behavior. Because transient behavior, in con-
trast to the long-term stable stationary activity of at-
tractors, depends on initial conditions, it is difficult to
imagine how such behavior can be reproducible from ex-
periment to experiment. The solution to this paradox is
related to the special role of global and local inhibition,
which sets up the initial conditions.

The logic of this review is related to the specificity
of neural systems from the dynamical point of view. In
Section II we consider the possible dynamical origin of
robustness and sensitivity in neural microcircuits. The
dynamics of information processing in neural systems is
considered in Section III. In Section IV, together with
other dynamical concepts, we focus on a new paradigm
of neurodynamics: the winnerless competition principle
in the context of sequence generation, sensory coding and
learning.

1. DYNAMICAL FEATURES OF MICROCIRCUITS:
ADAPTABILITY AND ROBUSTNESS

A. Dynamical properties of individual neurons and synapses
1. Neuron models

Neurons receive patterned synaptic input and compute
and communicate by transforming these synaptic input
patterns into output sequence of spikes. Why spikes?
As spike waveforms are similar, information encoded in
spike trains mainly relies on interspike intervals. Relying
on timing rather than on the details of action potential
waveforms increases reliability and reproducibility in in-
terneural communication. Dispersion and attenuation in
transmission of neural signals from one neuron to others
changes the waveform of action potentials but preserves

their timing information; again allowing for reliability
when depending on interspike intervals.

The nature of spike train generation and transforma-
tion depends crucially on the properties of many voltage-
gated ionic channels in neuron cell membranes. The cell
body (or soma) of the neuron gives rise to two kinds of
processes: short dendrites and one or more long, tubu-
lar axons. Dendrites branch out like a tree and receive
incoming signals from other neurons. In some cases the
synaptic input sites are on dendritic spines thousands of
which can cover the dendritic arbor. The output pro-
cess, the axon, transmits the signals generated by the
neuron to other neurons in the network or to an effec-
tor organ. The spikes are rapid, transient, all-or-none
(binary) impulses, with a duration of about 1 ms (see
Fig. 1). In most cases, they are initiated at a special-
ized region at the origin of the axon and propagate along
the axon without distortion. Near its end, the tubular
axon divides into branches that connect to other neurons
through synapses.

When the spike emitted by a presynaptic neuron
reaches the terminal of its axon, it triggers the emission
of chemical transmitters in the synaptic cleft (the small
gap, of order a few 10’s of nm, separating the two neu-
rons at a synapse). These transmitters bind to receptors
in the postsynaptic neuron, causing a depolarization or
hyperpolarization in its membrane: exciting or inhibit-
ing the postsynaptic neuron respectively. These changes
in the polarization of the membrane relative to the ex-
tracellular space spread passively from the synapses on
the dendrites across the cell body. Their effects are inte-
grated, and when there is a large enough depolarization,
a new action potential is generated (Kandel et al., 2000).
Other types of synapses called gap-junctions function as
ohmic electrical connections between the membranes of
two cells. A spike is typically followed by a brief refrac-
tory period, during which no further spikes can be fired
by the same neuron.

Neurons are quite complex biophysical and biochem-
ical entities. In order to understand the dynamics of
neurons and neural networks, phenomenological models
have to be developed. The Hodgkin-Huxley model is fore-
most among such phenomenological descriptions of neu-
ral activity. There are several classes of neural models
possessing various degrees of sophistication. We summa-
rize the neural models most often considered in biological
network development in Table I. For a more detailed de-
scription of these models see, for example, (Gerstner and
Kistler, 2002; Izhikevich, 2004; Koch, 1999).

Detailed conductance based neuron models take into
account the ionic currents flowing across the mem-
brane (Koch, 1999). The neural membrane may contain
several types of voltage-dependent sodium, potassium
and calcium channels. The dynamics of some of these
channels can also depend on the concentration of specific
ions. In addition, there is a leakage current of chloride
ions. The flow of these currents results in changes in
the voltage across the membrane. The probability that a
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Rate ai(t) > 0 is the spiking rate|This is a generalization |(Fukai and
models of the ith neuron or cluster,|of the Lotka-Volterra|Tanaka,
di(t) = Fi(ai(t)) [Gi(ai(t)) -2 Piij(aj(t))} pi; is the connection matrix,|model (see eq. 9). 1997,
and F,G,Q are polynomial Lotka,
functions. 1925;
Volterra,
1931)
McCulloch 0 is the firing threshold; z;(n) | The first computational |(McCulloch
and Pitts are synaptic inputs at the dis-|model for an artificial|and Pitts,
zi(n+1) = O(3; giz;(n) —0) crete ‘time’ n; x;(n+ 1) is the |neuron; it is also known |1943)
Ok) = 1, 2>0 output. Inputs and outputs|as a linear threshold de-
0. 2<0 are binary (ones or zero); the |vice model. This model
U= synaptic connections g;; are 1, |neglects the relative tim-
—1, or 0. ing of neural spikes.
Hodgkin- v(t) is the membrane poten-|These ODEs represent |(Hodgkin
Huxley . tial, m(t), h(t) and n(t) rep-|point neurons.  There|and
(H-H) Co(t) = gr(ve —v(t)) resent empirical variables de-|is a large list of mod-|Huxley,
+ gNam(t)3 h(t)(vna — v(t)) scribing the activation and in- |els derived from this one, | 1952)
+ gk n(t)4(UK) —wo(t) + 1, activation of the ionic conduc-|and it has become the
tances; [ is an external cur-|principal tool in com-
m(t) — Mo (v(t)) —m(t) rent. The steady state values|putational neuroscience.
Tm (0(¢)) of the conductance variables|Other ionic currents can
hit) = hoo(v(t)) — h(¢) Moo, Noo, Moo have a nonlin-|be added to the right
Th(v(t)) ear voltage dependence, typi-|hand side of the voltage
. Too (0(1)) — n(t) cally through sigmoidal or ex- |equation to better repro-
n(t) = ; ponential functions. duce the dynamics and
7n(v(t)) bifurcations observed in
the experiments.
Fitz- z(t)is the membrane poten-|A reduced model de-|(FitzHugh,
Hugh- 3 tial, and y(¢) describes the dy- |scribing oscillatory spik-|1961;
Nagumo = z—ca” —y+I namics of fast currents; [ is an |ing neural dynamics in-|Nagumo
= x+by—a external current. The param- |cluding bistability. et al.,
eter values a, b and c are con- 1962)
stants chosen to allow spiking.
Wilson- {E(z,t),I(z,t)} are the|The first ‘mean field’|(Wilson
Cowan OB (=, 1) number density of active|model. It is an at-|and
" = —F(x,t) + excitatory and inhibitory [tempt to describe a clus-|Cowan,
ot neurons at location x of|ter of neurons to avoid|1973)

TABLE I A summary of many frequently used neuronal models.




Model Equations Variables Remarks Ref.
Morris- v(t) is the membrane poten-|Simplified model that re- | (Morris and
Lecar . tial; n(t) describes the recov-|duces the number of dy- |Lecar,

v(t) = gr(ve —v(t)) + n(t)gn(va — v(t)) ery activity of a calcium cur-|namical variables of the|1981)
+ gm Moo (V(t)) (Vm —v(t)) + I, rent; I is an external current. |[H-H model. It displays
p action potential gener-
n(t) = Aw(t))(nes (v(t)) — n(t)) ation when changing 1
1 V— Un leads to a saddle node bi-
= = |1+ tanh
mos (1) 2 < +tan v, ) furcation to a limit cycle.
1 — Un
Neo(V) = 5 <1 + tanh 2 1;9;) )
v — Up,
A = ¢ncosh
(v) ¢Pncos 500
Hindmarshr z(t) is the membrane|Simplified model that|(Hindmarsh
Rose . 9 3 potential;y(t) describes|uses a polynomial ap-|and Rose,
z(t) = y(t) +az(t)” —bx(t)” —2(t) + I, |fast currents; z(t) describes|proximation to the right|1984)
y(t) = O — dx(t)2 —y(t), slow currents; and I is an|hand side of a Hodgkir}—
: external current Huxley model. This
z(t) = rls(z(t) —zo) — 2(t)] model fails to describe
the hyperpolarized peri-
ods after spiking of bio-
logical neurons.
Phase 0(t) is the phase of the i¢th|First introduced for|(Cohen
oscillator df;(t) — w4t ZHi'(ei (t) — 0,(t) neuron with approximately |chemical oscillators; | et al., 1982;
models dt ; ! ! periodic behavior, and H;; is|good  for  describing|Ermentrout
the connectivity function de-|strongly dissipative|and Kopell,
termining how neuron ¢ and j |oscillating systems in|1984;
interact. which the neurons | Kuramoto,
are intrinsic periodic|1984)
oscillators
Map x¢ represents the spiking ac-|One of a class of simple|(Cazelles
models ' a tivity and y; represents a slow | phenomenological mod-|et al., 2001;
Tey1(i) = 1+ 2:(1)2 + ye(3) variable. A discrete time|els for spiking, burst-|Rulkov,
c map. ing neurons This kind|2002)
+N Zj z+(7) of model can be com-
N N N putationally very fast,
yer1 (i) = (i) —ozu(i) - B but has little biophysical
foundation.

TABLE I Continuation: summary of many frequently used neuronal models.

type of ionic channel is open depends nonlinearly on the
membrane voltage and the current state of the channel.
All of these dependencies result in a set of several cou-
pled nonlinear differential equations describing the elec-
trical activity of the cell. The intrinsic membrane con-
ductances can enable neurons to generate different spike
patterns including high-frequency bursts of different du-
rations that are commonly observed in a variety of motor
neural circuits and brain regions (see panel 2 in Fig 3).
The biophysical mechanisms of spike generation enables
individual neurons to encode different stimulus features
into distinct spike patterns. Spikes, and bursts of spikes
of different durations, code for different stimulus features,
which can be quantified without a priori assumptions
about those features (Kepecs and Lisman, 2003).

How detailed does the description of neurons or
synapses have to be to make a model of neural dy-
namics biologically realistic yet remain computationally
tractable? It is reasonable to separate neuron models into
two classes depending on the general goal of the model-
ing. If we wish to understand, for example, how the ratio
of inhibitory to excitatory synapses in a neural ensemble
with random connections influences the activity of the
whole network, it is reasonable to use a simple model
that keeps only the main features of neuron behavior.
The existence of a spike threshold and the increase of the
output spike rate with an increase in the input may be
sufficient. On the other hand, if our goal is to explain the
flexibility and adaptability of a small network like a CPG
to a changing environment, the details of the ionic chan-




nel dynamics can be of critical importance (Prinz et al.,
2004b). In many cases neural models built on simpli-
fied paradigms lead to more detailed conductance-based
models based on the same dynamical principles but im-
plemented with more biophysically realistic mechanisms.
A good indication that the level of the description was
chosen wisely comes if the model can reproduce with the
same parameters the main bifurcations observed in the
experiments.

2. Neuron adaptability and multistability

Multistability in a dynamical system means the coex-
istence of multiple attractors separated in phase space
at the same value of the system’s parameters. In such a
system qualitative changes in dynamics can result from
changes in the initial conditions. A well studied case is
the bistability associated with a subcritical Andronov-
Hopf bifurcation (Kuznetsov, 1998). Multistable modes
of oscillation can arise in delayed feedback systems when
the delay is larger than the response time of the system.
In neural systems multistability could be a mechanism
for memory storage and temporal pattern recognition in
both artificial (Sompolinsky and Kanter, 1986) and liv-
ing (Canavier et al., 1993) neural circuits. In a biological
nervous system recurrent loops involving two or more
neurons are found quite often and are particularly preva-
lent in cortical regions important for memory (Traub and
Miles, 1991). Multistability emerges easily in these loops.
For example, the conditions under which time-delayed
recurrent loops of spiking neurons exhibit multistabil-
ity were derived in (Foss et al., 1996). The study used
both a simple integrate-and-fire neuron and a H-H neu-
ron whose recurrent inputs are delayed versions of their
output spike trains. The authors showed that two kinds
of multistability with respect to initial spiking functions
exist, depending on whether the neuron is excitable or
repetitively firing in the absence of feedback.

Following Hebb’s ideas (Hebb, 1949) most studies of
the mechanisms underlying learning and memory fo-
cus on changing synaptic efficacy. Learning is associ-
ated with changing connectivity in a network. How-
ever, network dynamics also depends on the complex in-
teractions among intrinsic membrane properties, synap-
tic strengths, and membrane voltage time variation.
Furthermore, neuronal activity itself modifies not only
synaptic efficacy but also the intrinsic membrane prop-
erties of neurons. The papers (Marder et al., 1996;
Turrigiano et al., 1996) present examples showing that
bistable neurons can provide short-term memory mecha-
nisms that rely solely on intrinsic neuronal properties.
While not replacing synaptic plasticity as a powerful
learning mechanism, these examples suggest that mem-
ory in networks could result from an ongoing interplay
between changes in synaptic efficacy and intrinsic neu-
ron properties.

To understand the biological basis for such computa-
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tional properties we must examine both the dynamics of
the ionic currents and the geometry of neuronal morphol-

ogy.

3. Synaptic plasticity

Synapses, as well as neurons are dynamical nonlinear
devices. Although synapses throughout the CNS share
many features, they also have distinct properties. They
operate with the following sequences of events: a spike is
initiated in the axon near the cell body, it propagates
down the axon, and arrives at the presynaptic termi-
nal, where voltage gated calcium channels admit cal-
cium, which triggers vesicle fusion and neurotransmit-
ter release. The released neurotransmitter then binds to
receptors on the postsynaptic neuron and changes their
conductance (Kandel et al., 2000; Nicholls et al., 1992).
This series of events is regulated in many ways making
synapses adaptive and plastic.

In particular the strengths of synaptic conductivity
changes in real time depending on their activity, as
Bernard Katz observed fifty years ago (Fatt and Katz,
1952; Katz, 1969). A description of such plasticity
was made in 1949 by the Canadian physiologist Donald
Hebb (Hebb, 1949). He proposed that "When an azon
of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth pro-
cess or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is in-
creased”. This “neurophysiological postulate” has since
become a central concept in neuroscience through a se-
ries of classic experiments demonstrating “Hebbian-like”
synaptic plasticity. These experiments show that the ef-
ficacy of synaptic transmission in the nervous system is
activity dependent and continuously modified. Exam-
ples of such modification are long-term potentiation and
depression (LTP and LTD) which involve increased or
decreased conductivity, respectively, of synaptic connec-
tions between two neurons leading to increased or de-
creased activity over time. LTP and LTD are presumed
to produce learning by differentially facilitating the as-
sociation between stimulus and response. The role of
LTP/LTD, if any, in producing more complex behaviors
is less closely tied to specific stimuli and more indicative
of cognition and is not well-understood.

Long-term potentiation was first reported in the hip-
pocampal formation (Bliss and Lomo, 1973). LTP in-
duced changes can last for many days. LTP has long
been regarded, along with its counterpart LTD, as a po-
tential mechanism for short term memory formation and
learning. In fact, the hypothesis that activity-dependent
synaptic plasticity is induced at appropriate synapses
during memory formation, and is both necessary and suf-
ficient for the information storage underlying the type of
memory mediated by the brain area in which that plas-
ticity is observed is widely accepted in learning and mem-
ory research (see for review (Martin et al., 2000)). Hebb



did not anticipate LTD in 1949, but along with LTP it
is thought to play a critical role in ‘rewiring’ biological
networks.
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FIG. 4 Spike-timing-dependent synaptic plasticity observed
in hippocampal neurons. Each data point represents the rel-
ative change in the amplitude of evoked postsynaptic current
after repetitive application of presynaptic and postsynaptic
spiking pairs (1 Hz for 60 s) with fixed spike timing At,
which is defined as the time interval between postsynaptic
and presynaptic spiking within each pair. Long-term potenti-
ation (LTP) and depression (LTD) windows are each fit with
an exponential function. Modified from (Bi, 2002).

The notion of a coincidence requirement for Hebbian
plasticity has been supported by classic studies of LTP
and LTD using presynaptic stimulation coupled with
prolonged postsynaptic depolarization (see, for example,
(Malenka and Nicoll, 1999)). However, coincidence there
was loosely defined with a temporal resolution of hun-
dreds of milliseconds to tens of seconds, much larger than
the timescale of typical neuronal activity characterized by
spikes that last for a couple of milliseconds. In a natural
setting, presynaptic and postsynaptic neurons fire spikes
as their functional outputs. How precisely must such
spiking activities coincide in order to induce synaptic
modifications? Experiments addressing this critical issue
led to the discovery of spike timing-dependent synaptic
plasticity (STDP). Spikes initiate a sequence of complex
biochemical processes in the postsynaptic neuron dur-
ing the short time window following synaptic activation.
Identifying the detailed molecular processes underlying
LTP and LTD remains a complex and challenging prob-
lem. There is good evidence that it consists of a compe-
tition between processes removing (LTD) and processes
placing (LTP) phosphate groups on postsynaptic recep-
tors or increasing (LTP) or decreasing (LTD) the number
of such receptors in a dendritic spine. It is also widely
accepted that N-methyl-D aspartate (NMDA) receptors
are crucial for the development of LTP or LTD and that
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it is calcium influx onto the postsynaptic cell which is
critical for both LTP and LTD.

Experiments on synaptic modifications of excitatory
synapses between hippocampal glutamatergic neurons in
culture (Bi and Poo, 1998, 2001) (See Fig. 4) indicate
that if a presynaptic spike arrives at time ¢,,. and a post-
synaptic spike is observed or induced at t,,s, then when
T = tpost — tpre 1S positive the incremental percentage
increase in synaptic strength behaves as

A
29 ~ aPe—BPT7 (1)

with Op = m. When 7 < 0, the percentage decrease

in synaptic strength behaves as

A
29 ~ —aDeBDT, (2)

with Bp =~ ﬁ ap and ap are constants. This is
illustrated in Fig.(4).

Many biochemical factors contribute to LTP/LTD dif-
ferently in different synapses. Here we discuss a phe-
nomenological dynamical model of synaptic plasticity
(Abarbanel et al., 2002) which is very useful for the mod-
eling of neural plasticity, and its predictions agree with
several experimental results. The model introduces two
dynamical variables P(t) and D(t) that do not have a di-
rect relationship with the concentration of any biochem-
ical components. Nonlinear competition between these
variables imitates the known competition in the postsy-
naptic cell. These variables satisfy the following simple
first-order kinetic equations:

%ﬁt) = f(Vpre(t))(1 = P(t)) — BpP(t)
%it) = g(Vpost(t))(1 — D(t)) — BpD(t),  (3)

where the functions f(V') and g(V') are typical logistic
or sigmoidal functions which rise from zero to the or-
der of unity when their argument exceeds some thresh-
old. These driving or input functions are a simplification
of the detailed way in which each dynamical process is
forced. The P(t) process is associated with a particu-
lar time constant BLP while the D(t) process is associated

with a different time constant ,8% Experiments show

that 8p # [p, and this is the primary embodiment of
the two different time scales seen in many observations.
The two time constants are a coarse grained representa-
tion of the diffusion and leakage processes which dampen
and terminate the activities. Presynaptic voltage activ-
ity serves to release neurotransmitter in the usual manner
and this in turn induces the postsynaptic action of P(t)
which has a time course determined by the time con-
stant ﬁ;l. Similarly, the postsynaptic voltage, constant
or time varying, can be associated with the induction of
the D(t) process.



P(t) and D(t) compete to produce the change in synap-
tic strength Ag(t) as

dAg(t)
dt

_ v{P@)D"(t) - D(t)P"os)}, )

where n > 1. and v > 0. This dynamical model repro-
duces some of the key STDP experimental results as, for
example, those shown in Fig. 4. It also accounts for the
case where the postsynaptic cell is depolarized while a
presynaptic spike train is presented to it.

4. Examples of the cooperative dynamics of individual neurons
and synapses

To illustrate the dynamical significance of plastic
synapses we consider the synchronization of two neurons:
a living neuron and an electronic model neuron coupled
through a STDP or inverse STDP electronic synapse.
The use of hybrid circuits of model electronic neurons and
biological neurons is a powerful method to analyze neu-
ral dynamics (LeMasson et al., 2002; Pinto et al., 2000;
Prinz et al., 2004a; Szucs et al., 2000). The representa-
tion of synaptic input to a cell using a computer to calcu-
late the response of the synapse to specified presynaptic
input goes under the name ‘dynamic clamp’ (Robinson
and Kawai, 1993; Sharp et al., 1993). It has been shown
in modeling and in experiments (Nowotny et al., 2003b;
Zhigulin et al., 2003) that coupling through plastic elec-
tronic synapses leads to neural synchronization or, more
correctly, entrainment that is more rapid, more flexible,
and much more robust against noise than synchroniza-
tion mediated by connections of constant strength. In
these experiments the neural circuit consists of a specified
presynaptic signal, a simulated synapse (via the ‘dynamic
clamp’), and a postsynaptic biological neuron from the
Aplysia abdominal ganglion. The presynaptic ‘neuron’ is
a spike generator producing spikes of predetermined form
at predetermined times. The synapse and its plastic-
ity are simulated by dynamic clamp software (Nowotny,
2003). In each update cycle of ~ 100us the presynap-
tic voltage is acquired, the spike generator voltage is up-
dated, the synaptic strength determined according to the
learning rule, the resulting synaptic current calculated
and injected into the living neuron through a current in-
jection electrode. As one presents the presynaptic signal
many times, the synaptic conductance changes from one
fixed value to another depending on the properties of the
presynaptic signal.

The calculated synaptic current is a function of the
presynaptic and postsynaptic potentials of the spike gen-
erator, Vpr.(t), and the biological neuron, Vpee(t), re-
spectively. It is calculated according to the following
model. The synaptic current depends linearly on the
difference between the postsynaptic potential Vs and
its reversal potential V., on an activation variable S(t),
and its maximal conductance g(¢):

ISyn(t) = g(t)S(t) (Vpost(t) - ‘/rcv)~ (5)
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The activation variable S(t) is a nonlinear function of the
presynaptic membrane potential V.. and represents the
percentage of neurotransmitter docked on the postsynap-
tic cell relative to the maximum which can dock. It has
two time scales: a docking time and an undocking time.
We take it to satisfy the dynamical equation: Tgyn:

dS(t) _ Soo (‘/;)TE (t)) - S(t) (6)
dt 7—syn(Sl - SOO(Vl (t)) .

Soo(V) is a sigmoid function which we take to be

I (V) . tanh((V — Vch)/Vslope) for V. > Vi
o 10 otherwise

(7)
The timescale for neurotransmitter docking is 7gyn(S1 —
1), and is TgynS1 for undocking. For AMPA excitatory
receptors, the docking time is about 0.5 ms, and the un-
docking time about 1.5 ms. The maximal conductance
g(t) is determined by the learning rule discussed below.
In the experiments, the synaptic current is updated at
~ 10kHz.

To determine the maximal synaptic conductance g(t)
of the simulated STDP synapse, an additive STDP learn-
ing rule was used. This is accurate if the time between
presented spike pairs is long compared the time between
spikes in the pair. To avoid runaway behavior, the addi-
tive rule was applied to an intermediate g4, that then
was filtered through a sigmoid function. In particular the
change Ag,aw in synaptic strength is given by:

A=ty o= (At=T0) /T for At > T
Agraw(At) = { A A;.ri—To e(At—To)/T, for At < 7o (8)
T—
where At = tpost — tpre is the difference in postsynaptic
and presynaptic spike times. The parameters 7, and 7_
determine the width of the learning windows for poten-
tiation and depression respectively and the amplitudes
A4 and A_ determine the magnitude of synaptic change
per spike pair. The shift 7y reflects the finite time of
information transport through the synapse.

As one can see in Fig. 5 the postsynaptic neuron
quickly synchronizes to the presynaptic spike genera-
tor which presents spikes with an IST = 255 ms (top
panel). The synaptic strength continuously adapts to
the state of the postsynaptic neuron, effectively counter-
acting adaptation and other modulations of the system
(bottom panel). This leads to a very precise and robust
synchronization at a nonzero phase lag. The precision
of the synchronization manifests itself in the very small
fluctuations of the postsynaptic ISIs in the synchronized
state. Robustness and phase lag cannot be seen directly
in the Fig. 5. Spike-timing dependent plasticity is a
mechanism that enables synchronization of neurons with
significantly different intrinsic frequencies as one can see
in Fig. 6. The significant increase in the regime of syn-
chronization associated with synaptic plasticity is a wel-
come, perhaps surprising, result and addresses the issue
raised above about robustness of synchronization in neu-
ral circuits.
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FIG. 5 Example of a synchronization experiment. The top
panel shows the interspike intervals (ISIs) of the postsynap-
tic biological neuron and the bottom panel shows the synaptic
strength g(t). Presynaptic spikes with ISI = 255 ms were pre-
sented to a postsynaptic neuron with periodic oscillations at
an ISI = 330 ms. Before coupling with the presynaptic spike
generator, the biological neuron spikes tonically at its intrinsic
IST of 330 ms. Coupling was switched on with g(t = 0) = 15
nS at time 6100 sec. As one can see the postsynaptic neu-
ron quickly synchronizes to the presynaptic spike generator
(top panel, dashed line). The synaptic strength continuously
adapts to the state of the postsynaptic neuron, effectively
counteracting adaptation and other modulations of the sys-
tem. This leads to a very precise and robust synchroniza-
tion at a nonzero phase lag. The precision of the synchro-
nization manifests itself in the very small fluctuations of the
postsynaptic ISIs in the synchronized state. Robustness and
phase lag cannot be seen directly in this figure.Modified from
(Nowotny et al., 2003b).

B. Robustness and adaptability in small microcircuits

The precise relationship between the dynamics of in-
dividual neurons and the mammalian brain as a whole
remains extremely complex and obscure. An important
reason for this is a lack of knowledge of the detailed cell to
cell connectivity patterns as well as a lack of knowledge
of the properties of the individual cells. Although large
scale modeling of this situation is attempted frequently,
all parameters such as the number and kind of synaptic
connections can only be estimated. By using less com-
plex microcircuits (MCs) of invertebrates, a much more
detailed understanding of neural circuit dynamics is pos-
sible.

Central pattern generators (CPGs) are small MCs that
can produce stereotyped cyclic outputs without rhythmic
sensory or central input (Marder and Calabrese, 1996;
Stein et al., 1997). Thus CPGs are oscillators, and the
image of their activity in the corresponding system state
space is a limit cycle when the oscillations are periodic
and a strange attractor in more complex cases. CPGs un-
derlie the production of most motor commands for the
muscles that execute rhythmic animal activity such as
locomotion, breathing, heart beat, etc. The CPG out-
put is a spatio-temporal pattern with specific phase lags
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FIG. 6 The presynaptic signal generator presents a periodic
spike train with ISI = T3 to a postsynaptic neuron with ISI =
T, before coupling. When the neurons are coupled, TS — Ts.
We plot the ratio of these periods after coupling as a function
of the ratio before coupling for a synapse with constant g
(Panel A), and for a synaptic connection g(t) following the
rule in the text (Panel B). The enlarged domain of one-to-one
synchronization in the latter case is quite clear and, as shown
by the change in the size of the error bars, the synchronization
is much better. This result persists when noise is added to
the presynaptic signal and to the synaptic action (not shown).
Modified from (Nowotny et al., 2003b).

between the temporal sequences corresponding to the dif-
ferent motor units (see below).

The network architecture and the main features of
CPG neurons and synapses are known much better than
any other brain circuits. Examples of typical invertebrate
CPG networks are shown in Fig. 7. Common to many
CPG circuits are electrical and inhibitory connections
and the spiking-bursting activity of their neurons. The
characteristics of the spatio-temporal patterns generated
by the CPG, such as burst frequency, phase, length etc.,
are determined by the intrinsic properties of each indi-
vidual neuron, the properties of the synapses and the
architecture of the circuit.

The motor patterns produced by CPGs fall into two
categories: those which operate continuously such as res-
piration (Ramirez et al., 2004) or heartbeat (Cymbalyuk
et al., 2002), and those which are produced intermittently
such as locomotion (Getting, 1989) or chewing (Selver-
ston, 2005). Although CPGs autonomously establish cor-
rect rhythmic firing patterns, they are under constant su-
pervision by descending fibers from higher centers and by
local reflex pathways. These inputs allow the animal to
constantly adapt its behavior to the immediate environ-
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FIG. 7 Examples of invertebrate CPG microcircuits from
arthropod, mollusk and annelid preparations. All produce
rhythmic spatio-temporal motor patterns when activated by
non-patterned input. The black dots represent chemical in-
hibitory synapses. The resistors represent electrical connec-
tions. Triangles are chemical excitatory synapses, and diodes
are rectifying synapses (electrical synapses in which the cur-
rent flows only in one direction). Individual neurons are iden-
tifiable from one preparation to another.

ment which suggests that there is considerable flexibil-
ity in the dynamics of motor systems. In addition there
is now a considerable body of information which shows
that anatomically defined small neural circuits can be
reconfigured in a more general way by neuromodulatory
substances in the blood or released synaptically so that
they are functionally altered to produce different stable
spatio-temporal patterns which must also be flexible in
response to sensory inputs on a cycle-by-cycle basis, e.g.,
see (Simmers and Moulins, 1988).

CPGs have substantial similarity with neural MCs in
the brain (Silberberg et al., 2005; Solis and Perkel, 2005;
Yuste et al., 2005) and are often studied as models of
neural network function. In particular, there are im-
portant similarities between vertebrate spinal cord CPGs
and neocortical microcircuits that have been emphasized
in (Yuste et al., 2005): (i) CPG interactions, which are
fundamentally inhibitory, dynamically regulate the os-
cillations. Furthermore, subthreshold-activated voltage-
dependent cellular conductances that promote bistability
and oscillations also promote synchronization with spe-
cific phase lags. The same cellular properties are also
present in neocortical neurons, and underlie the observed
oscillatory synchronization in the cortex. (ii) Neurons in
the spinal cord CPGs show bistable membrane dynam-
ics, which are commonly referred to as plateau poten-
tials. A correlate of bistable membrane behavior, in this
case termed ’up’ and ’down’ states, has also been de-
scribed in the striatum and neocortex both in vive and
in vitro (Cossart et al., 2003; Sanchez-Vives and Mc-
Cormick, 2000). It is still unclear whether this bista-
bility arises from intrinsic or circuit mechanisms or a
combination of the two (Egorov et al., 2002; Shu et al.,
2003). (iii) Both CPGs and cortical microcircuits demon-
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strate attractor dynamics and transient dynamics (see,
for example (Abeles et al., 1993; Tkegaya et al., 2004)).
(iv) Modulation by sensory inputs and neuromodulators
are also a common characteristic that is shared between
CPGs and cortical circuits. Examples in CPGs include
the modulation of oscillatory frequency, of temporal co-
ordination among different populations of neurons, of
the amplitude of network activity and of the gating of
CPG input/output (Grillner, 2003). (v) Switching be-
tween different states of CPG operation (for example,
switching coordinated motor patterns for different modes
of locomotion) is under sensory afferent and neurochem-
ical modulatory control. This makes CPGs multifunc-
tional and dynamically plastic. Switching between cor-
tical activity states is also under modulatory control, as
shown, for example, by the role of the neurotransmit-
ter dopamine on working memory in monkeys (Goldman-
Rakic, 1995). Thus modulation reconfigures microcircuit
dynamics and transforms activity states to modify be-
havior.

The CPG concept was built around the idea that be-
haviorally relevant spatio-temporal cyclic patterns are
generated by groups of nerve cells without the need for
rhythmic inputs from higher centers or feedback from the
structures that are moving. If activated, isolated inverte-
brate preparations can generate such rhythms for many
hours and as a result have been extremely important in
trying to understand how the simultaneous cooperative
interactions between many cellular and synaptic param-
eters can produce robust and stable spatio-temporal pat-
terns (see Fig. 8D). An example of a three neuron CPG
phase portrait is shown in Fig. 8(A-C). The effect of a
hyperpolarizing current leads to changes in the pattern
as reflected by the phase portrait in Fig 8B,C.

Neural oscillations arise either through interactions
among neurons (network-based mechanism) or through
interactions among currents in individual neurons (pace-
maker mechanism). Some CPGs use both mechanisms.
In the simplest case, one or more neurons with intrin-
sic bursting activity acts as the pacemaker for the entire
CPG circuit. The intrinsic currents may be constitu-
tively active or they may require activation by neuro-
modulators, so called conditional bursters. The synaptic
connections act to determine the pattern by exciting or
inhibiting other neurons at the appropriate time. Such
networks are extremely robust and have generally been
thought to be present in systems in which the rhythmic
activity is active all or most of the time. In the second
case, it is the synaptic interactions between non-bursty
neurons that generates the rhythmic activity and many
schemes for the types of connections necessary to do this
have been proposed. Usually reciprocal inhibition serves
as the basis for generating bursts in antagonistic neu-
rons and there are many examples of cells in pattern-
generating microcircuits connected this way (see Fig. 7).
Circuits of this type are usually found for behaviors which
are intermittent in nature and which require a greater de-
gree of flexibility that those based on pacemaker cells.
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FIG. 8 (Color) Phase portrait of typical CPG output. The
data was recorded in the pyloric CPG of the lobster stomato-
gastric ganglion. Each axis represents the firing rate of one
of three pyloric neurons: LP, VD and PD. (See Fig. 7) (A)
The orbit of the oscillating pyloric system is shown in blue
and the average orbit is shown in red; (B) same but with a
hyperpolarizing DC current injected into the PD; (C) the dif-
ference between the averaged orbits; (D) time series of the
membrane potentials of the three neurons. Figure provided
by T. Nowotny, R. Levi and A. Szucs

Physiologists know that reciprocal inhibitory connec-
tions between oscillatory neurons can produce, as a re-
sult of the competition, sequential activity of neurons and
rhythmic spatio-temporal patterns (Rubin and Terman,
2004; Stent and Friesen, 1977; Szekely, 1965). However,
even for a rather simple MC, consisting of just three neu-
rons, a quantitative description is absent. If the connec-
tions are symmetric, it can reach an attractor. It is rea-
sonable to hypothesize that asymmetric inhibitory con-
nections are necessary to preserve the order of patterns
with more than two phases per cycle. The contradiction,
noted earlier, between robustness and flexibility can then
be resolved because external signals can modify the effec-
tive topology of connections so one can have functionally
different networks for different stimuli.

The theoretical analysis and computer experiments
with MCs based on the winnerless competition princi-
ple (WLC) (discussed in detail in section IV.C) shows
that sufficient conditions for the generation of sequential
activity do exist and the range of allowed non-symmetric
inhibitory connections is quite wide (Afraimovich et al.,
2004b; Rabinovich et al., 2001; Varona et al., 2002b). We
can illustrate this using a Lotka-Volterra rate description
of neuron activity:

da;(t)
dt

N
=ai(t)(1 - Zpij(si) aj(t)) +S;, i=1,..N(9)

where the rate of each of the N neurons is a;(t), the
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FIG. 9 (Color in online edition) Competition without win-
ner in a model of the pyloric CPG. A. Schematic diagram
of the three neuron network used for rate modeling. Black
dots represent chemical inhibitory synapses with strengths
given in nS. (X > 160) B. Phase portrait of the model: the
limit cycle corresponding to the rhythmic activity is in the
2D simplex (Zeeman and Zeeman, 2002). C. Robustness in
the presence of noise: noise introduced into the model shows
no effect on the order of activation for each type of neuron.
Figure provided by R. Huerta.

connection matrix is p;;, and the stimuli S; are constants
here. This model can be justified as a rate neural model
as follows (Fukai and Tanaka, 1997). The firing rate a;(t)
and membrane potential v;(¢) of the i-th neuron can be
described by:

d”;it) = —Avi(t) + (1) (11)

where G(v; — 0) is a gain function, # and A are constants
and the input current I;(¢) to neuron 4 is generated by
the rates a;(t) of the other neurons:

Ii(t) = Si — Zpijaj<t) (12)

Here S; is the specific input and p;; is the strength of
the inhibitory synapse from neuron j to neuron i. We
suppose that G(z) is a sigmoidal function:

G(x) = Go/[1 + exp(—pz)] (13)

Let us then make two assumptions: (1) the firing rate
is always much smaller than its maximum value G,; and



(2) the system is strongly dissipative (it is reasonable be-
cause we are considering inhibitory networks). Based on
these assumption after combining and rescaling (10-13)
we obtain the Lotka-Volterra rate description (9) with an
additional positive term in right side that can be replaced
by a constant (see original paper for details).

The tests of whether WLC is operating in a reduced
pyloric CPG circuit are shown in Figure 9. This study
used estimates of the synaptic strengths shown in Figure
9A. Some of the key questions here are these: (i) What is
the minimal strength for the inhibitory synapse from the
PD/AB group to the VD neuron such that WLC exists?
(ii) Does the connectivity obtained from the competition
without winner condition produce the order of activation
observed in the pyloric CPG? (iii) Is this dynamics robust
against noise, in the sense that strong perturbations of
the system do not alter the sequence? If the strengths of
pij are taken as

1 1.25 0
X/80 0.625 1

the WLC formulas imply that the sufficient conditions
for a reliable and robust cyclic sequence are fulfilled if
X > 160. The sequence of activation of the rate model
with noise shown in Figure 9C is similar to that observed
experimentally in the pyloric CPG. When additive Gaus-
sian noise is introduced into the rate equations, the order
of activation of the neurons is not broken, but the period
of the limit cycle depends on the level of perturbation.
Therefore, the cyclic competitive sequence is robust and
can be related to the synaptic connectivity seen in real
MCs. If the individual neurons in a MC are not oscil-
lating, one can consider small subgroups of neurons that
may form oscillatory units and apply the WLC principle
to these units.

An important question about modeling the rhythmic
activity of small inhibitory circuits is how the specific
dynamics of individual neurons influences the network
rhythm generation. Figure 10 represents the 3D projec-
tion of the many-dimensional phase portrait of a circuit
with the same architecture as the one shown in Fig. 9A
but using Hodgkin-Huxley spiking-bursting neuron mod-
els. The switching dynamics seen in the rate model is
shown in Fig. 9C, and this circuit is robust when noise is
added to it.

Pairs of neurons can interact via inhibitory, excitatory
or electrical (gap junction) synapses to produce basic
forms of neural activity which can serve as the foun-
dation for MC dynamics. Perhaps the most common
(and well studied) CPG interaction consists of recipro-
cal inhibition, an arrangement that generates a rhyth-
mic bursting pattern in which each neuron fires approxi-
mately out of phase with one another (Wang and Rinzel,
1995). This is called a half-center oscillator. It occurs
when there is some form of excitation to the two neu-
rons sufficient to cause their firing and some form of
decay mechanism to slow high firing frequencies. The
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dynamical range of the bursting activity varies with the
strengths of the synapses and in some instances can ac-
tually produce in-phase bursting. Usually reciprocal ex-
citatory connections (unstable if too large) or recipro-
cal excitatory-inhibitory connections are able to reduce
the intrinsic irregularity of the neurons (Varona et al.,
2001a).

-20 V1i(t)

-10
v2() .

FIG. 10 (Color in online edition) 3D projection of the many-
dimensional phase portrait of a circuit with the same architec-
ture as the one shown in Fig. 9 using Hodgkin-Huxley spiking-
bursting neuron models.

Modeling studies with electrically coupled neurons
have also produced occasional nonintuitive results (Abar-
banel et al., 1996). While electrical coupling is generally
thought to provide synchrony between neurons, under
certain conditions the two neurons can burst out of phase
with one another (Elson et al., 2002, 1998; Sherman and
Rinzel, 1992), see Fig. 11 and also (Chow and Kopell,
2000; Lewis and Rinzel, 2003). An interesting model-
ing study of three neurons (Soto-Trevino et al., 2001)
with synapses that are activity dependent, found that the
synaptic strengths would self-adjust in different combi-
nations to produce the same three phase rhythm. There
are many examples of vertebrate MCs in which a collec-
tion of neurons can be conceptually isolated to perform
a particular function or considered to be the canonical or
modular circuit for a particular brain region (see (Shep-
herd, 1998)).

C. Intercircuit Coordination

It is often the case that more or less independent MCs
must synchronize in order to perform some coordinated
function. In the brain there is a growing literature sug-
gesting that large groups of neurons synchronize oscilla-
tory activity in order to achieve coherence. This may be
a mechanism for binding disparate aspects of cognitive
function into a whole (Singer, 2001), as we will discuss
in section III.D. However, it is much more persuasive to
examine intercircuit coordination in motor circuits where
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FIG. 11 Artificial electrical coupling between two living
chaotic PD cells of the stomatogastric ganglion of crustacean
can demonstrate both synchronous and asynchronous regimes
of activity. In this case the artificial electrical synapse was
built on top of the existing natural coupling between the two
PD cells. The figure shows different synchronization levels
(a—d) as a function of the artificial coupling g, and a DC cur-
rent injected I in one of the cells: (a) With their natural cou-
pling go = 0 the two cells are synchronized and display irreg-
ular spiking-bursting activity. (b) With an artificial electrical
coupling that changes the sign of the current g, = —200n.5,
and thus compensates the natural coupling, the two neurons
behave independently. (c) Increasing the negative conduc-
tance leads to a regularized anti-phase spiking activity (by
mimicking mutual inhibitory synapses). (d) With no artifi-
cial coupling but adding a DC current the two neurons are
synchronized displaying tonic spiking activity. Modified from
(Elson et al., 1998).

the phases of different segments or limbs actually control
movements. For example, the pyloric and gastric circuits
can be coordinated in the crustacean stomatogastric sys-
tem by a higher level modulatory neuron that channels
the faster pyloric rhythm to a key cell in the gastric mill
rhythm (Bartos and Nusbaum, 1997) (Fig. 12). In the
crab stomatogastric MCs, the gastric mill cycle has a
period of approximately 10 sec while the pyloric period
is approximately 1 sec. When an identified modulatory
projection neuron (MCN1) (Fig 12A) is activated, the
gastric mill pattern is largely controlled by interactions
between MCN1 and the gastric neurons LG and Int 1
(Bartos and Nusbaum, 1997). When Int 1 is stimulated,
the AB to LG synapse (see Fig.12B) plays a major role
in determining the gastric cycle period and the coordi-
nation between the two rhythms. The two rhythms be-
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come coordinated because LG burst onset occurs with a
constant latency after the onset of the triggering pyloric
input. These results suggest that intercircuit synapses
can enable an oscillatory circuit to control the speed of
a slower oscillatory circuit as well as provide a mecha-
nism for intercircuit coordination (Bartos and Nusbaum,

1997).
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FIG. 12 A. Schematic circuit diagram underlying MCN1 ac-
tivation of the gastric mill rhythm of crustacean. The circuit
represents two phases of the rhythm, retraction (left) and pro-
traction (right). Lighter lines represent inactive connections.
LG, Int1 and DG are members of the gastric CPG and AB and
PD are members of the pyloric CPG. Arrows represent func-
tional transmission pathways from the MCN1 neuron. Bars
are excitatory and dots are inhibitory. B. The gastric mill
cycle period and the timing of each cycle is a function of the
frequency of the pyloric rhythm. With the pyloric rhythm
turned off, the gastric rhythm cycles slowly (LG). Replacing
the AB inhibition of Intl with current into LG using a dy-
namic clamp reduces the gastric mill cycle period. Modified
from (Bartos and Nusbaum, 1997).

Another type of intercircuit coupling occurs among
segmental CPGs. In the crayfish, abdominal appendages



called swimmerets beat in a metachronal rhythm from
posterior to anterior with a frequency independent phase
lag of about 90 degrees. Like most rhythms of this kind,
the phase lag must remain constant over different fre-
quencies. In theoretical and experimental studies by
(Jones et al., 2003), it was shown that such phase con-
stancy could be achieved by ascending and descending
excitatory and inhibitory synapses, if the right connec-
tions were made. It appears realistic to look at rhythmic
MCs as recurrent networks with many intrinsic feedback
connections so that the information about a complete
spatio-temporal pattern is contained in the long term ac-
tivity of just a few neurons in the circuit. The number of
intercircuit connections necessary for coordination of the
rhythms is therefore much smaller than the total number
of neurons in the MC.

To investigate the coordination of two elements of a
population of neurons, one may investigate how various
couplings, implemented in a dynamical clamp, might op-
erate in the cooperative behavior of two pyloric CPGs.
This is a hybrid and simplified model of the more complex
interplay between brain areas whose coordinated activity
might be used to achieve various functions. We describe
such a set of experiments now.

Artificially connecting neurons from the pyloric CPG
of two different animals using a dynamic clamp could
lead to different kinds of coordination depending on
which neurons are connected and what kind of synapses
are used (Szucs et al. Unpublished). Connecting the
pacemaker group with electrical synapses could achieve
same phase synchrony, connecting them with inhibitory
synapses provided much better coordination but out of
phase. The two pyloric circuits (Fig.13) are representa-
tive of circuits driven by coupled pacemaker neurons that
communicate with each other via both graded and con-
ventional chemical interactions. But while the unit CPG
pattern is formed this way, coordinating fibers must use
spike mediated postsynaptic potentials only. It there-
fore becomes important to know where in the circuit to
input these connections in order to achieve maximum ef-
fectiveness in terms of coordinating the entire circuit and
insuring phase constancy at different frequencies. Sim-
ply coupling the PDs together electrically is rather inef-
fective even though the bursts (not spikes) do synchro-
nize completely even at high coupling strengths, The fact
that the two PDs are usually running at slightly differ-
ent frequencies leads to bouts of chaos in the two neu-
rons, i.e., a reduction in regularity. Much more effec-
tive synchronization occurs when the pacemaker groups
are linked together with moderately strong reciprocal in-
hibitory synapses in the classic half center configuration.
The bursts in the two CPGs are of course 180 degrees
out of phase, but the frequencies are virtually identical.
The best in phase synchronization is obtained when the
LPs are coupled to the contralateral PDs with inhibitory
synapses (Fig.13)
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Anti-phase synchronization

FIG. 13 Coupling of two biological pyloric CPGs , Pyl # 1
and Pyl # 2, by means of dynamic clamp artificial inhibitory
synapses. The dynamic clamp is indicated by DCL. Recipro-
cal inhibitory coupling between the pacemaker groups AB/PD
leads to antiphase synchronization while nonreciprocal cou-
pling from the LPs produces in phase synchronization. Figure
provided by A. Szucs .

D. Chaos and Adaptability

Over the past decades there have been many reports of
the observation of chaos in the analysis of various time-
courses of data from a variety of neural systems ranging
from the simple to the complex (Glass, 1995; Korn and
Faure, 2003). Perhaps the outstanding feature of these
observations is not the presence of chaos itself but the
appearance of low dimensional dynamical systems as the
origin of the spectrally broadband, non-periodic signals
observed in many instances (Rabinovich and Abarbanel,
1998). All chaotic oscillations occur in a bounded region
of the state space of the system. This state space is cap-
tured by the multivariate time-course of the vector of dy-
namical degrees of freedom associated with neural spike
generation. These degrees of freedom are comprised by
membrane voltage and the characteristics of the various
ion currents in the cell. Using nonlinear dynamical tools
one can reconstruct a mathematically faithful proxy state
space for the neuron by using the membrane voltage and
its time delayed values as coordinates for the state space
(see Fig. 14).

Chaos seems to be almost unavoidable in natural sys-
tems comprised of numerous simple or slightly complex
subsystems. As long as there are three or more dimen-
sions, chaotic motions are generic in the broad math-
ematical sense. This translates to unavoidable in the
practical sense. So neurons are dealt a chaotic hand by
nature and may have little choice but to work with it.
Accepting that chaos is more or less the only choice, we
can ask what benefits are accrued by this to the robust-
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FIG. 14 Top panel: chaotic membrane potential time series
of a synaptically isolated LP neuron from the pyloric CPG.
Bottom panel: state-space attractor reconstructed from the
voltage measurements of the LP neuron shown in the top
panel using delayed coordinates [x(t),y(t),z(t)]=[V (¢), V(¢ —
T),V (¢t — 2T)]. This attractor is characterized by two pos-
itive Lyapunov exponents. Modified from (Rabinovich and
Abarbanel, 1998).

ness and adaptability of neural activity.

Chaos itself may not be essential for living systems.
However, the multitude of regular regimes of operation
that can be accomplished in dynamical systems com-
posed of elements which themselves can be chaotic gives
rise to a basic principle that nature may use for the or-
ganization of neural assemblies. In other words, chaos
itself is not responsible for the work of various neural
structures, but rather for the fact that those structures
function at the edge of instability, and often beyond it.
Recognizing chaotic motions in a system state space as
unstable, but bounded, this geometric notion gives a
sense to the otherwise unappealing idea of system in-
stability. The instability inherent in chaotic motions, or
more precisely in the nonlinear dynamics of systems with
chaos, facilitates the extraordinary ability of neural sys-
tems to adapt, make transitions from one pattern of be-
havior to another when the environment is altered and
consequently to create a rich variety of patterns. Thus,
chaos gives a means to explore the opportunities avail-
able to the system when the environment changes, and
thus acts as a precursor to adaptive, reliable, and robust
behavior for living systems.

Throughout evolution neural systems have developed
different methods of self-control or self-organization. On
the one hand such methods preserve all the advantages of
complex behavior of individual neurons, such as allowing
regulation of the time period of transitions between oper-
ating regimes, as well as the regulation of the frequency
of operation in any given regime. They also preserve the
possibility of a rich variety of periodic and nonperiodic
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regimes of behavior, see Fig. 11 and (Elson et al., 1998;
Varona et al., 2001b). On the other hand these control or
organizational techniques provide the needed predictabil-
ity of behavioral patterns in neural assemblies.

Organizing chaotic neurons through appropriate
‘wiring’ associated with electrical, inhibitory, and exci-
tatory connections appears to allow for essentially regu-
lar operation of such an assembly (Huerta et al., 2001).
As an example we can mention the dynamics of an
artificial microcircuit that mimics the leech heartbeat
CPG (Calabrese et al., 1995). This CPG model consists
of six chaotic neurons implemented with Hindmarsh-Rose
equations reciprocally coupled to their neighbors through
inhibitory synapses. The modeling showed that in spite
of the chaotic oscillations of individual neurons the co-
operative dynamics is regular and, what is most impor-
tant, the period of bursting of the cooperative dynamics
sensitively depends on the value of the inhibitory connec-
tions (Malkov et al., 1996) (see Fig. 15). This example
shows the high level of adaptability of a network consist-
ing of chaotic elements.
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FIG. 15 Average bursting period of the model heartbeat CPG
activity as a function of the inhibitory coupling e. Modified
from (Malkov et al., 1996).

Chaotic signals have many of the traditional charac-
teristics attributed to noise. In the present context we
recognize that both chaos and noise are able to organize
the irregular behavior of individual neurons or neural as-
semblies, but the principal difference is that dynamical
chaos is a controllable irregularity for it possesses struc-
ture in state space, while noise is an uncontrollable ac-
tion of dynamical systems. This distinction is extremely
important for information processing as we will discuss
below (see section III.B.2 and its final remarks).

There are several possible functions for noise (Lindner
et al., 2004), seen even as high dimensional essentially
unpredictable chaotic motion, in neural network studies.
In high dimensional systems composed here of many cou-
pled nonlinear oscillators, there may be small basins of
attraction where, in principle, the system could become
trapped. Noise will blur the basin boundaries and remove
the possibility that the main attractors could accidentally
be missed and the highly functional synchronized states
lost to neuronal activity. Some noise may persist in the
dynamics of neurons to smooth out the actions of the



chaotic dynamics active in creating the robust, adapt-
able networks.

The chaos itself should not be mistaken for noise, as the
former has phase space structure which can be utilized for
synchronization, transmission of information, and regu-
larization of the network for performance of critical func-
tions. In the next section we will discuss the role of chaos
in information processing and information creation.

1. INFORMATIONAL NEURODYNAMICS

The flow of information in the brain goes from sensory
systems, where it is captured and encoded, to central ner-
vous systems, where it is further processed to generate
response signals. In the central nervous system command
signals are generated and transported to the muscles to
produce motor behavior. At all these stages learning and
memory processes that need specific representations take
place. Thus, it is not surprising that the nervous system
has to use different coding strategies at different levels
of the transport, storage and use of information. Dif-
ferent transformations of codes have been proposed for
the analysis of spiking activity in the brain. The details
depend on the particular system under study but some
generalization is possible in the framework of the anal-
ysis of the spatial, temporal and spatio-temporal codes.
There are many unknown factors related to the coopera-
tion between these different forms of information coding.
Some key questions are these: 1) How can neural signals
be transformed from one coding space to another one
without loss of information? 2) What dynamical mech-
anisms are responsible for storing time in memory? 3)
Can neural systems generate new information based on
their sensory inputs? In this section, we discuss some
important experimental results and new paradigms that
can help to address these questions.

A. Time and neural codes

Information from sensory systems arrives at sensory
neurons as analog changes in light intensity or tempera-
ture or chemical concentration of an odorant or a change
in skin pressure, etc. This analog data is represented
in internal neural circuit dynamics and computations by
action potential sequences are passed from the sensory
receivers to higher order brain processes. Neural codes
guarantee the efficiency, the reliability, and the robust-
ness of required neural computations (Machens et al.,
2005a).

1. Temporal codes

Two of the central questions in understanding the dy-
namics of information processing in the nervous system
are how information is encoded and how does the coding
space depend on time-dependent stimuli?
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A code in the biophysical context of the nervous system
is a specific representation of the information operated on
or created by neurons. A code requires a unit of informa-
tion. However, this is already a controversial issue since,
as we have previously discussed, information is conveyed
through chemical and electrical synapses, neuromodula-
tors, hormones, etc., which makes it difficult to point out
a single universal unit of information. A classical assump-
tion at the cellular level, valid for many neural systems,
is that a spike is an all-or-nothing event and thus a good
candidate for a unit of information, at least in a compu-
tational sense. This is not the only simplification needed
to analyze neural codes for a first approach. A coding
scheme needs to determine a coding space and take into
account time.

A common hypothesis is to consider a universal time
for all neural elements. Although this is the approach we
will discuss here, we want to remind the reader that this
is also an arguable issue, since neurons can sense time in
many different ways: by their intrinsic activity (subcel-
lular dynamics) or by external input (synaptic and net-
work dynamics). Internal and external (network) clocks
are not necessarily synchronized and can have different
degrees of precision, time scales and absolute references.
Some dynamical mechanisms can contribute to make neu-
ral time unified and coherent. We discuss this shortly in
section IV.F.

On the one hand when we consider just a single neu-
ron, a spike as the unit of information, and a univer-
sal time, we can talk about two different types of en-
coding: the frequency of firing can encode information
about the stimulus in a rate code On the other hand, the
exact temporal occurrence of the spikes can encode the
stimulus and its response in a precise timing code. The
two coding alternatives are schematically represented in
Fig. 16. In this context, a precise timing or temporal
code is a code in which relative spike timings (rather
than spike counts) are essential for the information pro-
cessing. Several experimental recordings have shown the
presence of both types of single cell coding in the nervous
system (Abeles, 1991; Adrian and Zotterman, 1926; Bar-
low, 1972; McClurkin et al., 1991; Shadlen and Newsome,
1998; Softky, 1995). In particular, fine temporal preci-
sion and reliability of spike dynamics is reported in many
cell types (deCharms and Merzenich, 1996; Mainen and
Sejnowski, 1995; Mehta et al., 2002; Reinagel and Reid,
2002; Segundo and Perkel, 1969; Segundo et al., 1998;
de Ryter van Steveninck et al., 1997). Single neurons
can display these two codes in different situations.

2. Spatio-temporal codes

A population of coupled neurons can have a different
coding scheme than the sum of the individual coding
mechanisms. Interactions among neurons through their
synaptic connections, i.e., their cooperative dynamics, al-
low for more complex coding paradigms. There is much
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FIG. 16 (Color in online edition) Two possible codes for the
activity of a single neuron. In a rate code, different inputs
(A-D) are transformed into different output spiking rates. In
a timing code, different inputs are transformed into different
spiking sequences with precise timing.

experimental evidence which shows the existence of so-
called population codes that collectively express a com-
plex stimulus better than the individual neurons (e.g.
see (Fitzpatrick et al., 1997; Georgopoulus et al., 1986;
Pouget et al., 2000; Wilson and McNaughton, 1993)).
The efficacy of population coding has been assessed using
measures of mutual information mainly in modeling ef-
forts (Panzeri et al., 1999; Seung and Sompolinsky, 1993;
Sompolinsky et al., 2001).

Two elements can be used to build population codes:
neuronal identity, i.e., neuronal space, and the time oc-
currence of neural events (i.e., the spikes). Accordingly,
information about the physical world can be encoded in
temporal or spatial (combinatorial) codes, or combina~
tions of these two: spike time can represent real time
(a pure temporal code), spike time can represent physi-
cal space, neuronal space can represent physical time (a
pure spatial code) and neuronal space can represent real
space (Nadasdy, 2002). When we consider a population
of neurons, information codes can be spatial, temporal
or spatio-temporal.

Population coding can also be characterized as inde-
pendent or correlated (deCharms and Christopher, 1998).
In an independent code, each neuron represents a sepa-
rate signal: all the information that is obtainable from
a single neuron can be obtained from that neuron alone,
without reference to the activities of other neurons. For
a correlated or coordinated coding the messages are de-
rived at least in part by the relative timing of the signals
from a population of neurons.

The presence of network coding, i.e., a spatio-temporal
dynamical representation of incoming messages, has been
confirmed in several experiments. As an example, let
us discuss here the spatio-temporal representation of
episodic experiences in the hippocampus (Lin et al.,
2005). Individual hippocampal neurons respond to a
wide variety of external stimuli (Dragoi et al., 2003; Wil-
son and McNaughton, 1994). The response variability
at the level of individual neurons poses an obstacle to
the understanding of how the brain achieves its robust
real-time neural coding of the stimulus (Lestienne, 2001).
Reliable encoding of sensory or other network inputs by
spatio-temporal patterns resulting from the dynamical
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FIG. 17 (Color in online edition) Temporal dynamics of in-
dividual CA1 neurons of the hyppocampus in response to
‘startling’ events. Spike raster plots (A-D Upper, seven rep-
etitions each) and corresponding peri-event histogram (A-D
Lower, bin width 500 ms) for units exhibiting the four ma-
jor types of firing changes observed: transient increase (A),
prolonged increase (B), transient decrease (C), and prolonged
decrease (D). From (Lin et al., 2005).

interaction of many neurons under the action of the stim-
ulus can solve this problem (Hamilton and Kauer, 1985;
Laurent, 1996; Vaadia et al., 1995).

Lin, et al (Lin et al., 2005) showed that mnemonic
short time episodes (a form of one trial learning) can
trigger firing changes in a set of CA1 hippocampal neu-
rons with specific spatio-temporal relationships. To find
such representations in the central nervous system of an
animal is an extremely difficult experimental and compu-
tational problem. Because the individual neurons that
participate in the representation of a specific stimulus
and form a temporal neural cluster in different trials can
be different, it is necessary to measure simultaneously
the activity of a large number of neurons. In addition,
because of the variability in the individual neuron re-
sponses, the spatio-temporal patterns of different trials
may also look different. Thus, to show the functional
importance of the spatio-temporal representation of the
stimulus, the 'reader’ has to use sophisticated methods
of data analysis. (Lin et al., 2005) have developed a 96-
channel array to simultaneously record the activity pat-
terns of as many as 260 individual neurons in the mouse
hippocampus during various startling episodes (air blow,
elevator drop, and earthquake shake). They have used
multiple discriminant analysis (Duda et al., 2001) and
have shown that even though individual neurons ex-
press different temporal patterns in different trials (see
Fig. 17), it is possible to identify the functional encoding
units in the CA1 neuron assembly (see Fig. 18).

The representation of nonstationary sensory informa-
tion, say, a visual stimulus, can use the transformation of
a temporal to a spatial code. The recognition of a specific
neural feature can be implemented through the transfor-
mation of a spatial code into a temporal one through
coincidence detection of spikes. A spatial representation
can be transformed into a spatio-temporal one to pro-
vide the system with higher capacity and robustness and
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FIG. 18 (Color in online edition) Classification, visualization,
and dynamical decoding of CA1l ensemble representations
of startle episodes by multiple discriminant analysis (MDA)
methods. (A) Firing patterns during rest (dots, yellow el-
lipsoid), air blow (circles, green ellipsoid), drop (triangles,
blue ellipsoid), and shake (stars, magenta ellipsoid) epochs
are shown after being projected to a three-dimensional space
obtained by using MDA for mouse A; MDA1-3 denote the dis-
criminant axes. Both training (dark symbols) and test (red
symbols) data are shown. After the identification of startle
types, a subsequent MDA is further used to resolve contexts
(full vs. empty symbols) in which the startle occurred for air-
blow context (B) and for elevator drop (C). (D) Dynamical
monitoring of ensemble activity and the spontaneous reacti-
vation of startle representations. Three-dimensional subspace
trajectories of the population activity in the two minutes af-
ter an air-blow startle in mouse A are shown. The initial
response to an air blow (black line) is followed by two large
spontaneous excursions (blue and red lines), characterized by
coplanar, geometrically similar lower amplitude trajectories
(directionality indicated by arrows). (E) The same trajecto-
ries of A from a different 3D angle. (F) The timing (t1 = 31.6
s and t2 = 54.8 s) of the two reactivations (marked in blue
and red, respectively) after the actual startle (in black) (t =
0 s). The vertical axis indicates the air-blow classification
probability. From (Lin et al., 2005).

sensitivity at the same time. Finally a spatio-temporal
code can be transformed into a spatial code in processes
related to learning and memory. These possibilities are
summarized in Fig. (19)

The morphological constraints of neural connections
in some cases impose a particular spatial/temporal code.
For example, projection neurons transfer information be-
tween areas of the brain along parallel pathways by pre-
serving the input topography as neuronal specificity at
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Transformation of codes What for Dynamical mechanism
Representation of
nonstationary sensory Context-sensitivity
. )
information synaptic plasticity
Temporal to Spatial Learning and memory
Labelling for Coincidence
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Spatial to Temporal
AL )
Capacity Winnerless
AL robustness competition
AL sensitivity principle (WLC)
Spatial to  Spatio-temporal
Spike-time
Learning and dependent
memory synaptic
Spatio-temporal  to Spatial plasticity

FIG. 19 (Color in online edition) Summary of possible sce-
narios for the transformation of codes, their functional impli-
cations, and the dynamical mechanism involved.

the output. In many cases the input topography is
transformed to a different topography that is preserved,
for example, the retinotopic map of the primary visual
areas and the somatotopic maps of the somatosensory
and motor areas. Other transformations do not preserve
topology. This includes place cells in the hippocampus,
and the tonotopic representation in the auditory cortex.
There is a high degree of convergence and divergence of
projections in some of these transformations that can be
a computationally optimal design (Garcia-Sanchez and
Huerta, 2003). In most of these transformations, the
temporal dimension of the stimulus is encoded by spike
timing or by the onset of firing rate transients.

An example of a transformation of a spatio-temporal
code to a pure spatial code was found in the olfactory sys-
tem of locust, and it has been modeled in (Nowotny et al.,
2005, 2003a). Fig. 20 gives a graphical explanation of the
connections involved. The complex spatio-temporal code
of sequences of transiently synchronized groups of projec-
tion neurons in the antennal lobe (Laurent et al., 2001) is
sliced into temporal snapshots of activity by feed-forward
inhibition and coincidence detection in the next process-
ing layer, the mushroom body (Perez-Orive et al., 2002).
This snapshot code is presumably integrated over time
in the next stages of the mushroom lobes completing the
transformation of the spatio-temporal code in the anten-
nal lobe to a purely spatial code. It was shown in simu-
lations that the temporal information of the sequence of
activity in the antennal lobe that could be lost in down-
stream temporal integration can be restored through slow
lateral excitation in the mushroom body (Nowotny et al.,
2003a). This has been reported experimentally (Leitch
and Laurent, 1996). With this extra feature the trans-
formation from a spatio-temporal code to a pure spatial
code becomes free of information -loss.



intrinsic Kenyon cells of the mushroom body

antennal
lobe

Activation of the local
Coincidence detection  neighborhood
while PN group A is

firing

Coincidence detection
in the activated neigh— of the neighborhood

borhood is likely specific to the new
but strongly depends on  coincidence detection
the current PN activity

Further Activation

AL activity switches %
to PN group C

FIG. 20 (Color) Illustration of the transformation of tempo-
ral into spatial information. If a coincidence detection occurs,
the local excitatory connections activate the neighbors of the
active neuron (yellow neurons). Coincidence detection of in-
put is now more probable in these activated neighborhoods
than in other Kenyon cells (KCs). Which of the neighbors
might fire a spike, however, depends on the activity of the
projection neurons (PNs) in the next cycle. It might be a
different neuron for an active group B of PNs (upper branch)
than for active group C (lower branch). In this way local se-
quences of active KC form. These depend on the identity of
active PNs (coincidence detection) as well as on the temporal
order of their activity (activated neighborhoods). Modified
from (Nowotny et al., 2003a).

3. Coexistence of codes

The different stages of neural information processing
are difficult to study in isolation. In many cases it is
hard to distinguish between what is an encoding of an
input and what is a static or dynamic, perhaps nonlinear,
response to that input. This is a crucial observation that
is often missed. Encoding and decoding can or cannot
be part of a dynamical process. However, the creation
of information (discussed in the next section) and the
transformation of spatial codes to temporal or spatio-
temporal codes are always dynamical processes.

Another, but less frequently addressed, issue about
coding is the presence of multiple encodings in single cell
signals. This may occur since multifunctional networks
may need multiple coexisting codes. An example is the
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discovery of neural signatures in the interspike intervals
of CPG neurons (Sziics et al., 2003). Individual finger-
prints characteristic of the activity of each neuron co-
exist with the encoding of information in the frequency
and phase of the spiking bursting rhythms. This is an
example that shows that codes can be non-exclusive. In
bursting activity, coding can exist in the slow waves, but
also, and simultaneously, in the spiking activity.

In the brain, specific neural populations often send
messages through projections to several information
“users.” It is difficult to imagine that all of them decode
the incoming signals in the same way. In neuroscience
the relationship between the encoder and decoder is not
a one-to-one map but can be many simultaneous maps
from the senders to different receivers based on different
dynamics. This departs from Shannon classical formula-
tion of information theory (Fano, 1961; Gallager, 1968).
For example, cochlear afferents in birds bifurcate to two
different areas of the brain with different decoding prop-
erties. One area extracts information about relative tim-
ing from a spike train, whereas the other extracts the
average firing rate (Konishi, 1990).

4. Temporal to temporal information transformation: working
memory

There is another important code transformation of in-
terest here: the transformation of a finite amount of
temporal information to a slow temporal code lasting
for seconds, minutes or hours. We are able to remem-
ber a phone number from someone who just called us.
Persistent dynamics is one of the mechanisms for this
phenomena that is usually named as short term memory
(STM) or working memory, and it is a basic function of
the brain. Working memory, in contrasts with long-term
memory that most likely requires molecular (membrane)
or structural (connection) changes in neural circuits, is
a dynamical process. The dynamical origins of working
memory, can be different.

One plausible idea is that STMs are the result of
active reverberation in interconnected neural clusters
that fire persistently. Since its conceptualization (Hebb,
1949; de NG, 1938), reverberating activity in microcir-
cuits has been explored in many modeling papers (Amit
and Brunel, 1997a; Durstewitz et al., 2000; Grossberg,
1973; Seung et al., 2000; Wang, 2001). Experiments with
cultured neuronal networks show that reverberatory ac-
tivity can be evoked in circuits that have no preexisting
anatomical specialization (Lau and Bi, 2005). The rever-
beration is primarily driven by recurrent synaptic exci-
tation rather than complex individual neuron dynamics
such as bistability. The circuitry necessary for reverber-
ating activity can be a result of network self-organization.
Persistent reverberatory activity can exist even in the
simplest circuit, i.e., an excitatory neuron with inhibitory
self-feedback (Connors, 2002; Egorov et al., 2002). In this
case, reverberation depends on asynchronous transmitter
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FIG. 21 (Color in online edition) (a) Most neurons respond
to excitatory stimuli (upward steps in the line below ¢) by
spiking only as long as each stimulus lasts. (b) Very rare neu-
rons are bistable: brief excitation leads to persistent spiking,
always at the same rate; brief inhibition (downward steps in
the line below ¢) can turn it off. (¢) Multistable neurons per-
sistently increase or decrease their spiking across a range of
rates in response to repeated brief stimuli. (d) In a reverber-
atory network model of short-term memory discussed in the
text, an excitatory stimulus (left arrow) leads to recursive ac-
tivity in interconnected neurons. Inhibitory stimuli (bar on
the right) can halt the activity. (e) (Egorov et al., 2002) sug-
gest that graded persistent activity in single neurons (as in c)
might be triggered by a pulse of internal Ca?t ions that en-
ter through voltage-gated channels; Ca®" then activates CAN
channels, through which an inward current (largely compris-
ing Na® ions) enters, persistently exciting the neuron. The
positive feedback loop (broken arrows) may include the activ-
ity of many ionic channels. Modified from (Connors, 2002).

release and intracellular calcium stores as shown in Fig.
21.

Nature seems to use different dynamical mechanisms
for persistent microcircuit activity: cooperation of many
interconnected neurons, persistent dynamics of individ-
ual neurons, or both. These mechanisms have distinct
advantages. For example, network mechanisms can be
turned on and off quickly (McCormick et al., 2003); see
also (Brunel and Wang, 2001). Most dynamical models
of persistent activity are related to the analysis of mi-
crocircuits with local feedback excitation between princi-
pal neurons controlled by disynaptic feedback inhibition.
Such basic circuits spontaneously generate two different
modes: relative quiescence and persistent activity. The
triggering between modes is controlled by incoming sig-
nals. A review (Brunel, 2003) considers several basic
models of persistent dynamics, including bistable net-
works with excitation only and multistable models for
working memory of a discrete set of pictures with struc-
tured excitation and global inhibition.

Working memory is used for tasks such as planning, or-
ganizing, rehearsing, and movement preparation. Experi-
ments with functional magnetic resonance imaging reveal
some aspects of the dynamics of working memory (see, for
example, (Diwadkar et al., 2000; Nystrom et al., 2000)).
It is important to note that working memory has a lim-
ited capacity of around 4-7 items (Cowan, 2001; Vogel
and Machizawa, 2004). An essential feature attributed
to working memory is the labile and transient nature
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FIG. 22 Temporal responses of self-recurrent units: Near-
saddle-node bifurcation with @ = 11.1111, b = —7.9 (center
panels). Increased bias, b = —3.0 (left panels). Decreased
bias b = —9.0 (right panels). Modified from (Nakahara and
Doya, 1998).

of its representations. Because such representation in-
volve many coupled neurons from cortical areas (Curts
and D’Esposito, 2003), it is natural to model working
memory as the spatio-temporal dynamics of large neural
networks.

A popular idea is to model working memory with at-
tractors. The representation of items in working memory
by attractors may guarantee its robustness. Although ro-
bustness is an important requisite for a working memory
system, its transient properties are also important. Con-
sider a foraging task in which an animal uses visual input
to catch prey (Nakahara and Doya, 1998). It is helpful
to store the location of the prey in its working memory if
the prey goes behind a bush and the sensory cue becomes
temporarily unavailable. However, the memory should
not be retained forever because the prey may have actu-
ally gone away or may have been eaten by other animal.
Furthermore, if more prey appears near the animal, the
animal should quickly load the location of the new prey
into its working memory without being disturbed by the
old memory.

This example illustrates that there are more require-
ments for a working memory system than solely robust
maintenance. First, the activity should be maintained
but not for too long. Second, the activity should be re-
set quickly when there is a novel sensory cue that needs
to be stored. In other words, the neural dynamics in-
volved in working memory for goal-directed behaviors
should have the properties of long-term maintenance and
quick switching. A corresponding model based on "near-
saddle-node” bifurcation dynamics has been suggested in
(Nakahara and Doya, 1998). The authors have analyzed
the dynamics of a network of model neural units that are
described by the following map (see Fig 22):

Yiltnt1) = Flagi(tn) + b+ Y pijys(tn) + vii(tn)] (14)
J#i



where y;(t,) is the firing rate of the -th unit at time
tn, F[z] = 1/[1 + exp(—2)] is a sigmoid function, a is
the self-connection weight, p;; are the lateral connection
weights, I;(¢) are external inputs, b is the bias, and the ~;
are constants used to scale the inputs I;(t). As the bias b
is increased, the number of fixed points changes sequen-
tially from one, two, three, two, and then back to one.
A saddle-node bifurcation occurs when the stable tran-
sition curve y(t,11) = F[z] is tangent to the fixed point
Y(tns1) = y(tn) (see Fig 22). Just near the saddle-node
bifurcation the system shows persistent activity. This
means that it spends a long time in the narrow channel
between the bisectrix and the sigmoid activation curve
and then goes to the fixed point quickly. Such dynami-
cal behavior reminds one of a well known intermittency
phenomenon in physics (Landau and Lifshitz, 1987). Be-
cause the effect of the sum of the lateral and external
inputs in (14) is equivalent to the change in the bias, the
mechanism may satisfy the requirements of the dynamics
of working memory for goal-directed behavior: long-term
maintenance and quick switching.

Another reasonable model for working memory con-
sists of competitive networks with stimulus dependent
inhibitory connections (like in equation (9)). One of
the privileges of such model is the ability to have both
working memory and stimulus discrimination. Such idea
has been proposed in (Machens et al., 2005b) in rela-
tion to the frontal lobe neural architecture. The network
first perceives the stimulus, then holds it in the working
memory, and finally makes a decision by comparing that
stimulus with another one. The model integrates both
working memory and decision making since the num-
ber of stable fixed points and the size of the basins of
the attractors are controlled by the connection matrix
pi; (S) that depends on the stimuli S. The working mem-
ory phase corresponds to the bifurcation boundary, i.e.,
pij = pji = pu- In the state space of the dynamical
model, this phase is represented by a stable manifold
named ”continuous attractor”. This is an attractor that
consists of continuous sets of fixed points, see (Amari,
1977; Seung, 1998). Thus, the stimulus creates a specific
fixed point and, on the next stage, the working memory
(a continuous attractor) maintains it. During the com-
parison/decision phase, the second stimulus is mapped
onto the same state space as another attractor. The cri-
terion of the decision maker is reflected in the position of
the separatrices that separate the basins of attraction of
different ”stimuli”, i.e., fixed points.

We think that the intersection of the mechanisms re-
sponsible for persistent activity of single neurons with the
activity of a network with local or nonlocal recurrence
provides robustness against noise and perturbations, and
at the same time makes working memory more flexible.
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B. Information production and chaos

Information processing in the nervous system involves
more than the encoding, transduction and transforma-
tion of incoming information to generate a corresponding
response. In many cases, neural information is created
by the joint action of the stimulus and the individual
neuron and network dynamics. The generation of a cre-
ative activity like improvisation on the piano or writing
a new poem results in part from the production of new
information. This information is generated by neural cir-
cuits in the brain and does not directly depend on the
environment.

Time dependent visual hallucinations are one example
of information produced by neural systems, in this case
the visual cortex, themselves. Such hallucinations con-
sist in seeing something that is not in the visual field.
There are very interesting models, beginning from the
pioneering paper (Ermentrout and Cowan, 1979), that
explain how the intrinsic circuitry of the visual cortex
of the brain can generate patterns of activity that un-
derlie hallucinations. These hallucination patterns usu-
ally take the form of checkerboards, honeycombs, tun-
nels, spirals and cobwebs (see two examples in Fig. 23).
Because the visual cortex is an excitable media it is pos-
sible to use spatio-temporal amplitude equations for the
description of the dynamics of these patterns (see next
section). These models are based on advances in brain
anatomy and physiology that have revealed strong short-
range connections and weaker long-range connections be-
tween neurons in the visual cortex. The hallucination
patterns can be quasistatic, periodically repeatable and
chaotically repeatable as in low-dimensional convective
turbulence, see for review (Rabinovich et al., 2000). Un-
predictability of the specific pattern in the hallucination
sequences (movie) means the generation of information
that in principle can be characterized by the value of the
Kolmogorov-Sinai entropy (Scott, 2004).

The creation or production of new information is a
theme that has been neglected in theoretical neuro-
science, but it is a provocative and challenging point that
we would like to discuss in this section. As we men-
tioned before, information production or creation must
be a dynamical process. Below we discuss an example
that emphasizes the ability of neural systems to produce
information rich output from information poor input.

1. Stimulus-dependent motor dynamics

A simple network with which we can discuss the cre-
ation of new information is the gravity sensing neural
network of the marine mollusc Clione limacina. Clione
is a blind planktonic animal, negatively buoyant, that
has to maintain continuous motor activity in order to
keep its preferred head-up orientation. Its motor activity
is controlled by the wing CPGs and the tail motorneu-
rons that use signals from its gravity sensing organs, the
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FIG. 23 Funnel (a) and spiral (b) hallucinations generated by
LSD, are an example of a dynamical representation of the in-
ternal activity of the visual cortex without an input stimulus.
Modified from (Bressloff et al., 2001).

statocysts (Panchin et al., 1995). A six receptor neural
network model with synaptic inhibition has been built
to describe a single statocyst (Varona et al., 2002b) (see
Fig. 24). This is a small sphere in which the statolith, a
stone-like structure, moves according to the gravitational
field. The statolith excites the neuroreceptors by pressing
down on them. When excited, the receptors send signals
to the neural systems responsible for wing beating and
tail orientation.

The statocysts have a dual role (Levi et al., 2004).
During normal swimming only the neurons that are ex-
cited by the statolith are active, and this leads to a
winner-take-all dynamical mode as a result of inhibitory
connections in the network. (Winner-take-all dynamics
is essentially the same as the attractor based computa-
tional ideas we discussed earlier.) However, when Clione
is searching for its food, a cerebral hunting neuron excites
each neuron of the statocyst (see Fig. 24). This triggers
a competition between all statocyst neurons whose sig-
nals participate in the generation of a complex motion
that the animal uses to scan the immediate space until
it finds its prey (Levi et al., 2004, 2005) (see Fig. 25).
The following Lotka-Volterra type dynamics can be use
to describe the activity of this network:

N
) ai)(o(H,8) ~ 3 prjas(

+ Hi(t)) + Si(t), (15)

where a;(t) > 0 represents the instantaneous spiking rate
of the statocyst neurons, H;(t) represents the excitatory
stimulus from the cerebral hunting interneuron to neu-
ron ¢, S;(t) represents the action of the statolith on the
receptor that is pressing, and p;; is the nonsymmetric
statocyst connection matrix. When there is no stimulus
from the hunting neuron, H; = 0, or the statolith, S; = 0,
then o(H,S) = —1 and all neurons are silent. When the
hunting neuron is active H; # 0 and/or the statolith is
pressing one of the receptors, S; # 0, o(H,S) = +1
During hunting H; # 0, and we assume that the ac-
tion of the hunting neuron overrides the effect of the sta-
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FIG. 24 (Color in online edition) Top panel: schematic repre-
sentation of the dual role of a single statocyst, the gravity sen-
sory organ of the mollusk Clione. During normal swimming,
a stone-like structure, the statolith, hits the mechanorecep-
tor neurons that react to this excitation. In Clione’s hunting
behavior, the statocyst receptors receive additional excita-
tion from the cerebral hunting neuron (H) that generates a
winnerless competition among them. Bottom panel: Chaotic
sequential switching displayed by the activity of the statocyst
during hunting mode in a model of a six receptor network.
This panel displays the time intervals in which each neuron
is active (a; > 0.03). Each neuron is represented by a dif-
ferent color. The dotted rectangles point out the activation
sequence locks among the units that are active at a given time
interval within each network for time windows in which all six
neurons are active.

tolith and thus S; ~ 0. As a result of the competition,
the receptors display a highly irregular, in fact, chaotic
switching activity. The phase space image of the chaotic
dynamics of the statocyst model in this behavioral mode
is a strange attractor (the heteroclinic loops in the phase
space of 15 become unstable, see section IV.C). For six
receptors we have shown (Varona et al., 2002b) that the
observed dynamical chaos is characterized by two posi-
tive Lyapunov exponents.

The bottom panel in Fig. 24 shows an illustration of
the non-steady switching activity of the receptors. An
interesting phenomenon can be seen in this figure and is
also pointed out in Fig. 26. Although the timing of each
activity is irregular, the sequence of activations of the
switching among the statocyst receptor activity, when it
is present, is the same at all times. Dotted rectangles in
Fig. 24 point out this fact. The activation sequence lock
among the statocyst receptor neurons emerges in spite
of the highly irregular timing of the switching dynamics
and is a feature that can be used for motor coordination.

In this example the winnerless competition is triggered
by a constant excitation to all the statocyst receptors
(H; = ¢, see details in (Varona et al., 2002b)). Thus
the stimulus has low information content. Nonetheless,
the network of statocyst receptors can use this activ-
ity to generate an information rich signal with positive



FIG. 25 (Color in online edition) Clione swimming trajec-
tories in different situations. A: 3-dimensional trajectory of
routine swimming. Here and in the following figures, differ-
ent colors/gray tones are used to emphasize the 3-dimensional
perception of the trajectories and change according to the x
axis. The indicated time ¢ is the duration of the trajectory. B:
swimming trajectory of Clione with the statocysts surgically
removed. C: trajectory of swimming during hunting behavior
evoked by the contact with the prey. D: trajectory of swim-
ming after immersion of Clione in a solution that pharmaco-
logically evokes hunting. Modified from (Levi et al., 2004).

Kolmogorov-Sinai entropy. This entropy is equal to the
value of the new information encoded in the dynamical
motion. The statocyst sensory network is thus multi-
functional and can generate a complex spatio-temporal
pattern useful for motor coordination even when its dy-
namics are not evoked by gravity, as during hunting.

2. Chaos and information transmission

To illustrate the role of chaos in information transmis-
sion, let us use as an example the inferior olive (I0) which
is an input system to the cerebellum. IO neurons may
chaotically recode the high-frequency information carried
by its inputs into chaotic, low-rate output (Schweighofer
et al., 2004). The IO has been proposed as a system
that controls and coordinates different rhythms through
the intrinsic oscillatory properties of its neurons and the
nature of their electrical inter-connections (Llinds and
Welsh, 1993; de Zeeuw et al., 1998). It has also been im-
plicated in motor learning (Ito, 1982) and in comparing
tasks of intended and achieved movements as a generator
of error signals (Oscarsson, 1980).

Experimental recordings show that IO cells are electri-
cally coupled and display subthreshold oscillations and
spiking activity. Subthreshold oscillations have a rele-
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FIG. 26 (Color in online edition) A: Irregular switching in
a network of six statocyst receptors. Traces represent the
instantaneous spiking rate of each neuron a; (neurons 1,2,3
are shown in panel A, neurons 4,5,6 are shown in B). Note
that after a neuron is silent for a while, its activity reappears
with the same sequence relative to the others (see arrows, and
Fig. 24). Panel C shows a projection of the phase portrait of
the strange attractor in 3D space, see model (15).

vant role for information processing in the context of a
system with extensive electrical coupling. In such sys-
tems the spiking activity can be propagated through the
network, and, in addition, small differences in hyperpo-
larized membrane potentials propagate among neighbor-
ing cells.

A modeling study suggests that electrical coupling in
IO neurons may induce chaos, which would allow infor-
mation rich, but low firing-rate, error signals to reach
individual Purkinje cells in the cerebellar cortex. This
would provide the cerebellar cortex with essential infor-
mation for efficient learning without disturbing ongoing
motor control. The chaotic firing leads to the genera-
tion of IO spikes with different timing. Because the 10
has a low firing rate, an accurate error signal can only
be available for individual Purkinje cells after repeated
trials. Electrical coupling can provide the source of dis-
order that induces a chaotic resonance in the 10 net-
work (Schweighofer et al., 2004). This resonance leads to
an increase in information transmission by distributing
the high-frequency components of the error inputs over
the sporadic, irregular and non-phase-locked spikes.

The IO single neuron model consists of two com-



partments that include a low-threshold calcium current
(Ica,), an anomalous inward rectifier current (I), a
Hodgkin-Huxley type sodium current (In,), and a de-
layed rectifier potassium current (Ixq) in the somatic
compartment (see table 1). The dendritic compartment
contains a calcium-activated potassium current (Ixca)
and a high-threshold calcium current (Ic,,). This com-
partment also receives electrical connections from neigh-
boring neurons. Fast ionic channels are located in the
soma, and slow channels are located in the dendritic com-
partment. Some of the channel conductances depend on
the calcium concentration. The equations for each com-
partment of a single neuron can be summarized as:

dv(t
CM% = _(IiOH + Il + Iz’nj + Icomp) (16)

where C')y is the membrane capacitance, I is a leak cur-
rent, I;,; is the injected stimulus current, Icomp con-
nects the compartments, and I;,, is the sum of the cur-
rents above for each compartment. In addition the den-
dritic compartment has the electrical coupling current
Icc = gc Y ,(V(t) = Vi(t)), where he index i runs over the
neighbors of each neuron, and g, is the electrical coupling
conductance.

Each IO neuron is represented by a system of ODEs,
and the network is a set of these systems coupled through
the electrical coupling currents I... The networks exam-
ined consisted of 2x2, 3x3 and 9x3 neurons, where the
cells are connected to their two, three, or four neighbors
depending on their positions in the grid.

This is a complex network, even when it is only 2x2,
and one must select an important feature of the dynamics
to characterize its behavior. The largest Lyapunov expo-
nent of the network is a good choice as it is independent
of initial conditions and tells us about information flow
in the network. Fig. 27 displays the largest Lyapunov ex-
ponent for each network as a function of the electric cou-
pling conductance g.. We also see in Fig.(27) that the
gc producing the largest Lyapunov exponent yields the
largest information transfer through the network, evalu-
ated as the average mutual information per spike.

In a more general framework than the 10, it is remark-
able that the chaotic activity of individual neurons un-
expectedly underlies higher flexibility and, at the same
time, greater accuracy and precision in their neural dy-
namics. The origin of this phenomenon is the potential
ability of coupled neurons with chaotic behavior to syn-
chronize their activities and generate rhythms whose pe-
riod depends on the strength of the coupling or other
network parameters (for a review see (Aihara, 2002; Ra-
binovich and Abarbanel, 1998)). Networks with many
chaotic neurons can generate interesting transient dy-
namics, i.e., chaotic itinerancy (CI) (Rowe, 2002; Tsuda,
1991). CI results from weak instabilities in the attrac-
tors, i.e., attractor sets in whose neighborhood there are
trajectories that do not go to the attractors (Milnor type
attractors). A developed CI motion both needs many
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FIG. 27 (Color in online edition) Top panel: Largest Lya-
punov exponent as a function of the electrical coupling
strength g. for different IO networks of nonidentical cells.
Bottom panel: Network average mutual information per spike
as a function of g.. Modified from (Schweighofer et al., 2004).

neurons and a very high level of interconnections. This
is in contrast to the traditional concept of computation
with attractors (Hopfield, 1982), CI yields computations
with transient trajectories, in particular, there can be
motion along separatrices as in winnerless competition
dynamics (section IV.C). Although CT is an interesting
phenomena, its application to the explanation and pre-
diction of the activity of sensory systems(Kay, 2003), and
to any nonautonomous neural circuit dynamics, poses a
question that has not been answered yet: How CI can be
reproducible and robust against noise and at the same
time sensitive to a stimulus?

To conclude this section it is necessary to emphasize
that the answer to the question of the functional role of
chaos in real neural systems is still unclear. In spite of the
attractiveness of ideas like (1) chaos makes neural circuits
more flexible and adaptive, (2) chaotic dynamics create
information and can help to storage it (see above), (3) the
non-linear dynamical analyses of physiological data (e.g.,
electroencephalogram time series) can be important for
the prediction or control of pathological neural states, it
is extremely difficult to confirm these ideas directly in in
vivo and even in vitro experiments. In particular, there
are three obstacles that can fundamentally hinder the
power of data analyses: (i) finite statistical fluctuations,
(ii) external noise, and (iii) non-stationarity of the neural
circuits activity (see, for example, (Lai et al., 2003)).



C. Synaptic dynamics and information processing

Synaptic transmission in many networks of the ner-
vous system is dynamical meaning that the magnitude of
postsynaptic responses depends on the history of presy-
naptic activity (Fuhrmann et al., 2002; Thompson and
Deuchars, 1994). This phenomena is independent of (or
in addition to) the plasticity mechanisms of the synapses
(discussed in section II.A.3). The role of synapses is of-
ten considered to be the simple notification to the post-
synaptic neuron of presynaptic cell activity. However,
electrophysiological recordings show that synaptic trans-
mission can imply activity-dependent changes in response
to presynaptic spike trains. The magnitude of the post-
synaptic potentials can change rapidly from one spike
to another, depending on the particular temporal dis-
tribution of the presynaptic signals. Thus, each single
postsynaptic response can encode information about the
temporal properties of the presynaptic signals.

The magnitude of the postsynaptic response is deter-
mined by the interspike intervals of the presynaptic ac-
tivity and by the probabilistic nature of neurotransmitter
release. In depressing synapses a short interval between
presynaptic spikes is followed by small postsynaptic re-
sponses, while long presynaptic interspike intervals are
followed by a large postsynaptic response. Facilitating
synapses tend to generate responses that grow with suc-
cessive presynaptic spikes. In this context, several theo-
retical efforts have tried to explore the capacity of single
responses of dynamical synapses to encode temporal in-
formation about the timing of presynaptic events.

Theoretical models for dynamical synapses are based
on the time variation of the fraction of neurotransmit-
ter released from the presynaptic terminal R(t), 0 <
R(t) < 1. When a presynaptic spike occurs at time t,
the fraction U of available neurotransmitters and the re-
covery time constant 7,... determines the rate of return
of resourcesR(t) to the available presynaptic pool. In a
depressing synapse, U and 7,.. are constant. A simple
model describes the fraction of synaptic resources avail-
able for transmission (Fuhrmann et al., 2002) as

dR(t) 1—R(t)
At Tree

—UR()3(t — top), (17)

and the amplitude of the postsynaptic response at time
tsp is proportional to R(tsp).

For a facilitating synapse, U becomes a function of time
U (t) increasing at each presynaptic spike and decaying to
the baseline level when there is no presynaptic activity:

o) _ U0 | ga—v@yst—t,)  (18)
dt Tfacil

where U; is a constant determining the step increase in
U(t) and Tyqcqr is the relaxation time constant of the fa-
cilitation.
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FIG. 28 Dynamical synapses imply that synaptic transmis-
sion depends on previous presynaptic activity. This figure
shows the average postsynaptic activity generated in response
to a presynaptic spike train (bottom trace) in a pyramidal
neuron (top trace) and in a model of a depressing synapse
(middle trace). Postsynaptic potential is the model is com-
puted using a passive membrane mechanism 7., (dV/dt) =
—V 4 Rilsyn(t) where R; is the input resistance. Modified
from (Tsodyks and Markram, 1997).

Other approaches to model dynamical synapses include
probabilistic models to account for fluctuations in presy-
naptic release of neurotransmitter. At a synaptic con-
nection with N release sites we can assume that at each
site there can be, at most, one vesicle available for re-
lease, and that the release at each site is an independent
event. When a presynaptic spike is produced at time ¢y,
each site containing a vesicle will release it with the same
probability U(t). Once a release occurs, the site can be
refilled during a time interval dt with probability dt/7,ec.
The probabilistic release and recovery can be described
by the probability, P,(t) for a vesicle to be available for
release at any time t:

dpP,(t) _ (1—Py(t))

@ - . UORMIt-ty).  (19)

Fig. 28 shows how this formulation permits an accurate
description of a depressing synapse in response to a spec-
ified presynaptic spike train.

The transmission of sensory information from the en-
vironment to decision centers through neural communi-
cation channels requires a high degree of reliability and
sensitivity from networks of heterogeneous, inaccurate,
and sometimes unreliable components. The properties of
the channel itself, assuming the sensor is accurate, must
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FIG. 29 Example of recovery of hidden information in neu-
ral channels. A presynaptic cells receives specified input and
connects to a postsynaptic cell through a dynamical synapse.
Top panel: the time series of synaptic input to the presynaptic
cell J1(t); Middle panel: the membrane potential of the first
bursting neuron X1(¢); Bottom Panel: the membrane poten-
tial of the second bursting neuron X2(t). Note that features
of the input, hidden in the response X;(t) are recovered in
the response following a dynamical synapse X(¢) (note hy-
perpolarization regions for X2). Modified from (Eguia et al.,
2000).

be richer than the conventional channels studied in en-
gineering applications. Those channels are passive and,
when of high quality, can relay inputs accurately to a
receiver. Neural communication channels are composed
of dynamically active elements capable of complex au-
tonomous oscillations. Individually, chaotic neurons can
create information in a way that is familiar in the study
of the behavior of nonlinear systems with unstable tra-
jectories: two states of the system, indistinguishable be-
cause only finite resolution observations can occur, may
through the action of the instabilities of the nonlinear dy-
namics find themselves in the future widely separated in
state space, and thus distinguishable. Information about
different states that was unavailable at one time may be-
come available at a later time.

Biological neural communication pathways are able to
recover information from a hidden coding space and to
transfer information from one time scale to another be-
cause of the intrinsic nonlinear dynamics of synapses. As
an example, we discuss a very simple neural informa-
tion channel composed of sensory input in the form of a
spike train that arrives at a model neuron, then moves
through a realistic dynamical synapse to a second neu-
ron where the information in the initial sensory signal is
read (Eguia et al., 2000). The model neurons are four-
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dimensional generalizations of the Hindmarsh-Rose neu-
ron, and a model of chemical synapse derived from first-
order kinetics is used. The four-dimensional model neu-
ron has a rich variety of dynamical behaviors, including
periodic bursting, chaotic bursting, continuous spiking,
and multistability. For many of these regimes, the pa-
rameters of the chemical synapse can be tuned so that
the information about the stimulus, which is unreadable
to the first neuron in the path, can be recovered by the
dynamical activity of the synapse, and the second neuron
can read it (see Fig. 29).

The quantitative description of this unexpected phe-
nomena was done by calculating the average mutual in-
formation I(S, N1) between the stimulus S and the re-
sponse of the first neuron Ny, and I(S, N2) between the
stimulus and the response of the second neuron Ny. The
result in the example shown in Fig. 29 is I(S, N2) >
I(S,Ny). This result indicates how nonlinear synapses
and neurons acting as input/output systems along a com-
munication channel can recover information apparently
hidden in earlier synaptic connections in the pathway.
Here the measure of information transmission used is the
average mutual information between elements, and be-
cause the channel is active and nonlinear, the average
mutual information between the sensory source and the
final neuron may be greater than the average mutual in-
formation found in an earlier neuron in the channel (but
not greater than the original information).

Another form of synaptic dynamics involved in infor-
mation processing and especially in learning is STDP
(already discussed in section II.A.3). STDP influences
information transduction (Chechik, 2003; Hopfield and
Brody, 2004) and is also important for binding and syn-
chronization.

D. Binding and synchronization

We have previously discussed the diversity of neuron
types and the variability of neural activity. Neural pro-
cessing requires the fast interaction of many neurons in
different neural subsystems. There are several dynamical
mechanisms that contribute to the complex integration of
information that neural systems perform. Among them,
the synchronization of neural activity is the one that has
captured the most attention. Synchronization of neural
activity is also one of the proposed solutions to a widely
discussed question in neuroscience: the binding problem,
a problem that we are going to describe briefly in this
section.

The binding problem was originally formulated as a
theoretical problem by Von der Malsburg in 1981 (see a
review in (von der Malsburg, 1999) and (Roskies, 1999;
Singer, 1999)). However, examples of binding had al-
ready been proposed by Rosenblatt (Rosenblatt, 1962)
for the visual system (for a review of the binding problem
in vision see (Singer, 1999; Wolfe and Cave, 1999)). The
binding problem is formulated as the need for a coherent



representation of an object provided by the association
of all its features (shape, color, location, speed, etc.).
The association of all the features or binding allows the
unified perception of the object. The binding problem
is a generalized task of the nervous system as it seeks
to reconstruct any total perception from its components.
There are also cognitive binding problems related to cog-
nitive identification and memory. The binding problem
has probably, as many other problems in biology, multiple
solutions. These solutions are most likely implemented
through the use of dynamical mechanisms for the control
of neural activity.

The most widely studied mechanism proposed to solve
the binding problem is temporal synchrony (or temporal
correlation) (Singer and Gray, 1995). It has been sug-
gested in (von der Malsburg and Schneider, 1986) that
synchronization is the basis for perceptual binding. How-
ever, there is still criticism about the temporal binding
hypothesis (Ghose and Maunsell, 1999; Riesenhuber and
Poggio, 1999). Obviously, neural oscillations and syn-
chronous signals are ubiquitous in the brain, and neural
systems can make use of these phenomena to encode,
learn and create effective outputs. There are several
lines of experimental evidence that reveal the use of syn-
chronization and activity correlation for binding tasks.
Fig. 30 shows an example of how neural synchronization
correlates with the perceptual segmentation of a com-
plex visual pattern into distinct, spatially overlapping
surfaces (Castelo-Branco et al., 2000) (see figure cap-
tion for a detailed explanation). Indeed, modeling stud-
ies show that involving time in these processes can lead
to the binding of different features. The idea is to use
the coincidence of certain events in the dynamics of dif-
ferent neural units for binding. Usually such dynamical
binding is represented by synchronous neurons or neu-
rons that are in phase with an external field. However,
dynamical events such as phase or frequency variations
usually are not very reproducible and robust. As we will
discuss in the next section, it is reasonable to hypoth-
esize that brain circuits displaying sequential switching
of neural activity use the coincidence of this switching
to implement dynamical binding of different WLC net-
works.

Any spatio-temporal coding needs the temporal coor-
dination of neural activity among different population of
neurons to provide: (i) better recognition of specific fea-
tures, (ii) faster processing, (iii) higher information ca-
pacity, and (iv) feature binding. Neural synchronization
has been observed throughout the nervous system, par-
ticularly in sensory systems, for example, in the olfactory
system (Laurent and Davidowitz, 1994), and the visual
system (Gray et al., 1989). From the point of view of
dynamical system theory, transient synchronization is an
ideal mechanism for binding neurons into assemblies for
several reasons: (i) the synchronized neurons do not nec-
essarily have to be neighbors, (ii) a synchronization event
depends on the state of the neuron and the stimulus and
can be very selective, i.e., neurons from the same network
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FIG. 30 An example of binding showing dependence of syn-
chrony on transparency conditions and receptive field (RF)
configuration in the cat visual cortex. a, Stimulus configura-
tion. b, Synchronization between neurons with nonoverlap-
ping RFs and similar directional preferences recorded from
areas A18 and PMLS of the cat visual cortex. Left, RF
constellation and tuning curves; right, cross-correlograms for
responses to a nontransparent (left) and transparent plaid
(right) moving in the cells’ preferred direction. Grating lumi-
nance was asymmetric to enhance perceptual transparency.
Small dark correlograms are shift predictors. ¢, Synchro-
nization between neurons with different direction preferences
recorded from A18 (polar and RF plots, left). Top, correlo-
grams of responses evoked by a non-transparent (left) and a
transparent (right) plaid moving in a direction intermediate
to the cells’ preferences. Bottom, correlograms of responses
evoked by a non-transparent plaid with reversed contrast con-
ditions (left), and by a surface defined by coherent motion of
intersections (right). Scale on polar plots: discharge rate in
spikes per second. Scale on correlograms: abscissa, shift in-
terval in ms, bin width 1 ms; ordinate, number of coincidences
per trial, normalized. Modified from (Castelo-Branco et al.,
2000).

can be temporal members of different cell assemblies at
different instants of time, (iii) basic brain rhythms are
able to synchronize neurons responsible for the process-
ing of information from different sensory inputs, and (iv)
the synchronization is possible even between neural os-
cillators with strongly different frequencies (Rabinovich
et al., 2006)..

In early visual processing neurons that encode fea-



tures of a complex visual percept are associated in func-
tional assemblies through gamma-frequency synchroniza-
tion (Engel et al., 2001). When sensory stimuli are per-
ceptually or attentionally selected, and the respective
neurons are bound together to raise their saliency, then
gamma-frequency synchronization among these neurons
is also enhanced. Gamma-mediated coupling, and its
modulation by attention, is not limited to the visual sys-
tem: it is also found in the auditory (Tiitinen et al., 1993)
and somato-sensory domains (Desmedt and Tomberg,
1994). Gamma oscillations allow visio-motor binding
between posterior and central brain regions (Rodriguez
et al., 1999) and are involved in short-term memory. As
a means for dynamically binding neurons into assem-
blies, gamma-frequency synchronization appears to be
the prime candidate mechanism for stabilizing cortical
connections among members of a neural assembly over
time. On the other hand, neurons can increase or de-
crease the strength of their synaptic connections depend-
ing on the precise coincidence of their activation (STDP),
and gamma frequency synchronization provides exactly
the required temporal precision.

Jackson et al. (Jackson et al., 2003) and Hatsopou-
los et al. (Hatsopoulos et al., 2003) revealed the func-
tional significance of neural synchronization and correla-
tions within the motor system. Preeminent among brain
actions must be the aggregation of disparate spiking pat-
terns to form spatially and temporally coherent neural
codes that then drive alpha-motor neurons and their as-
sociated muscles. Essentially, motor binding seems ex-
actly what motor structures of the mammalian brain do:
provide high-level coordination of simple and complex
voluntary movements. Neurons with similar functional
output have an increased likelihood of exhibiting neural
synchronization.

In contrast to classical synchronization (Pikovsky
et al., 2001), synchronization in the CNS is always tran-
sient. The phase space image of transient synchroniza-
tion can be a saddle limit cycle in the vicinity of which the
system spends finite time. Alternatively, it can be a limit
cycle whose basin of attraction decreases in time. In both
cases the system is able to leave the “synchronization”
region after a specific stage of processing is completed
and proceed with the next task. This is a broad area
where the issues and the approaches are not settled, and
thus this provides an opportunity for innovative ideas to
explain the phenomena.

To conclude this section, we note that the functional
role of synchronization in the CNS and the importance
of spike-timing coding in general are still a subject of de-
bate. On the one hand, it is possible to build models
that use dynamical patterns of spikes for neural com-
putations e.g. representation, recognition and decision
making. Examples of such spike-timing based computa-
tional models are discussed in papers by Hopfield and
Brody (Brody and Hopfield, 2003; Hopfield and Brody,
2001). In this work the authors showed, in particular,
that spike synchronization across many neurons can be
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achieved in the absence of direct synaptic interactions
between neurons through phase locking to a common un-
derlying oscillatory potential (like gamma oscillation, see
above). On the other hand, the real connections of such
theoretical models with experiments in vivo are not es-
tablished, see also (Fell et al., 2003; O’Reilly et al., 2003).

IV. TRANSIENT DYNAMICS: GENERATION AND
PROCESSING OF SEQUENCES

A. Why sequences?

The generation and control of sequences is of crucial
importance in many aspects of animal life. Working
memory, bird songs, finding food in a labyrinth, jump-
ing from one stone to another on the shore —all these are
the results of the sequential activity generated by the ner-
vous system. Lashley called the problem of coordination
of constituent actions into organized sequential spatio-
temporal patterns the “action syntaz problem” (Lashley,
1960). The generation of sequences is also important for
intermediate information processing as we will discuss
below.

The sequences can be cyclic like many brain rhythms
and spatio-temporal patterns generated by CPGs. They
can also be irregular like neocortical “theta” oscilla-
tions (4-10 Hz) generated spontaneously in cortical net-
works (Bao and Wu, 2003) (see Fig. 31). The sequences
can be finite in time like those generated by a neural cir-
cuit under the action of external input as in sensory sys-
tems. From a physicist’s point of view, any reproducible
finite sequence that is functionally meaningful is the re-
sult of the cooperative transient dynamics of the corre-
sponding neural ensemble or individual neurons. Even
brain rhythms demonstrate transient dynamics because
the circuit’s periodic activity is modulated by nonsta-
tionary sensory inputs or signals from the periphery. It
is important to emphasize the fundamental role of inhi-
bition in the generation and control of sequences in the
nervous system.

In this Section we concentrate our attention on the
origin of sequence generation and the mechanisms of re-
producibility, sensitivity and functional reorganization of
MCs. In the standard study of nonlinear dynamical sys-
tems, attention is focused on the long time behavior of a
system. This is typically not the relevant question in neu-
roscience. Here we must address the transient responses
to a stimulus external to the neural system and must con-
sider the short-term binding of a collection of responses,
perhaps from different sensory inputs, to facilitate action
commands directed to the motor system. If you attempt
to swat a fly, it cannot ask you to perform this action
many times so it is possible for the fly to average over
your actions allowing it to perform some standard ‘op-
timal’ response. Few flies wishing this repetition would
survive.
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FIG. 31 (Color in online edition) Spontaneous spatio-
temporal patterns observed in the neocortex in wvitro under
the action of carbachol. Images composed of optical signals
recorded by eight detectors arranged horizontally. The optical
signal from each detector was normalized to the maximum on
that detector during that period and normalized values were
assigned colors according to a linear color scale (at the top
right, 256 colors). The red and blue traces on top of the
images 2 and 5 are optical signals from 2 optical detectors la-
beled red and blue. The x direction of the images represents
time (12 s) and the y direction of each image represents 2.6
mm of space in cortical tissue. Note also that the first spike
had a high amplitude but propagated slower in the tissue.
Modified from (Bao and Wu, 2003).

B. Spatially ordered networks
1. Stimulus-dependent modes

Many neural ensembles are anatomically organized as
slightly inhomogeneous excitable media. Examples of
such media are retina (Tohya et al., 2003), IO networks
(Leznik and Llinas, 2002), cortex (Ichinohe et al., 2003),
and thalamo-cortical layers (Contreras et al., 1996). All
these are neuronal lattices with chemical or electrical con-
nections occurring primarily between neighbors. There
are some general dynamical mechanisms of sequence gen-
eration in such spatially ordered networks. These mecha-
nisms are usually related to the existence of wave modes
such as those shown in Fig. 31 that are modulated by
external inputs or stimuli.

Many significant observational and modeling results
for this subject are found in the visual system. Visual
systems are organized differently for different classes of
animals. For example, the mammalian visual cortex has
several topographically organized representations of the
visual field and neurons at adjacent points in the cortex
are excited by stimuli presented at adjacent regions of the
visual field. This indicates there is a continuous mapping
of the coordinates of the visual field to the coordinates of
the cortex (van Essen, 1979). In contrast to such a map-
ping the connections from the visual field to the visual
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FIG. 32 (Color in online edition) Sequential changing of cor-
tical modes in the turtle visual cortex. Comparison between
the spatial organization of the cortical activity in the turtle
visual system with the normal modes of a rectangular mem-
brane (drum). From (Senseman and Robbins, 1999).

cortex in the turtle, for example, is more complex: a lo-
cal spot in the visual field activates many neurons in the
cortex but in an ordered way. As a result the excitation
of the turtle visual cortex is distributed and not localized,
and this suggests the temporal dynamics of several inter-
acting membrane modes (see Fig. 32). In the mammalian
cortex a moving stimulus evokes a localized wave or wave
front while in the turtle visual cortex a differentially mov-
ing stimulus modulates the temporal interactions of the
cortical modes differently and is represented by different
sequential switchings between them.

To understand the dynamics of the wave modes, i.e.,
stability, sensitivity to stimuli, dependence on neuromod-
ulators, etc., one has to build a model that is based on the
experimental information about the possibility of these
modes maintaining the topological space structure ob-
served in experiments. In many similar situations one can
introduce cooperative or population variables that can
be interpreted as the amplitude of such modes depend-
ing on time. The corresponding amplitude equations are
essentially the widely studied evolution equations of the
dynamical theory of pattern formation (Cross and Ho-
henberg, 1993; Rabinovich et al., 2000).

For the analysis of the wave mode dynamics of the
turtle visual cortex Senseman and Robbins (Senseman
and Robbins, 1999) used the Karhunen-Loeve decompo-
sition and a snapshot of a spatio-temporal pattern at time
t =t could be represented as a weighted sum of basic
modes, M;(z,y), with coordinates (x,y) on the image:

Z a; (1% M (x,y) (20)

where u(z,y,t) represents the cooperative dynamics of
these modes. The presentation of different visual stimuli,
such as spots of light at different points in the visual field,
produced spatio-temporal patterns represented by differ-
ent trajectories in the phase space aq(t),as(t), ..., an(t).
Du et al. showed that it is possible to make a remarkable
reduction of the dimensionality of the wave modes by a
second Karhunen-Loeve decomposition (Du et al., 2005),
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FIG. 33 (Color) Space representation of cortical responses
in the turtle visual cortex to left, center and right stimulus.
From (Du et al., 2005).

which maps in some time window the trajectory in (a;)
space into a point in a low-dimensional space (see Fig.33).
The observed transient dynamics is similar to the results
of experiments on the representation of different odors in
the invertebrate olfactory system (see Fig. 46 and (Galan
et al., 2004)). In (Nenadic et al., 2002) a large-scale com-
puter model of turtle visual cortex reproduces qualita-
tively the features of the cortical mode dynamics seen in
these experiments.

It is remarkable that not only spatio-temporal patterns
evoked by a direct stimulus look like wave modes, but
even spontaneous activity in the sensory cortex is well
organized and very different from ‘turbulent’ flow (Arieli
et al., 1996). This means that the common assumption
about the stochastic and uncorrelated spontaneous ac-
tivity of neighboring neurons in neural networks (see, for
example, (Amit and Brunel, 1997b; van Vreeswijk and
Sompolinsky, 1996) is not always correct. Local field po-
tentials and recordings from single neurons indicate the
presence of highly synchronous ongoing activity patterns
or wave modes (see Fig. 34). The spontaneous activity of
a single neuron connected with others, in principle, can
be reconstructed by using the evoked patterns of network
activity (Tsodyks et al., 1999).

There are some illustrative models of wave modes we
note here. In 1977 Amari (Amari, 1977) found spatially
localized regions of high neural activity (“bumps”) in
network models consisting of a single layer of coupled
excitatory and inhibitory rate neurons. In (Laing et al.,
2002) Amari’s results were extended to a nonmonotonic
connection function (‘Mexican hat’ with oscillating tails)
(shown in Fig. 35) and a neural layer in two spatial di-
mensions:
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FIG. 34 (Color in online edition) Relation between the spik-
ing activity of a single neuron and the population state of
cortical networks. (A) Black trace: stimulus time course.
Red trace: correlation coefficient of the instantaneous snap-
shot of population activity with the spatial pattern obtained
by averaging over all patterns observed at the times corre-
sponding to spikes evoked by the optimal orientation of the
stimulus called the neuron’s preferred cortical state -PCS-
pattern. Green trace: observed spike train of evoked activ-
ity with the optimal orientation for that neuron. Blue trace:
reconstructed spike train. The similarity between the recon-
structed and observed spike trains is evident. Also, strong
upswings in the value of correlation coefficients are evident
each time the neuron emits bursts of action potentials. Every
strong burst is followed by a marked downswing in the values
of the correlation coefficients. (B) The same as (A), but for
a spontaneous activity recording session from the same neu-
ron (eyes closed). (C) The neuron’s PCS, calculated during
evoked activity and used to obtain both (A) and (B). (D)
The cortical state corresponding to spontaneous action po-
tentials. The two patterns are nearly identical (correlation
coefficient 0.81). (E and F) Another example of the sim-
ilarity between the neuron’s PCS (E) and the cortical state
corresponding to spontaneous activity (F) from a different cat
obtained with the high-resolution imaging system (correlation
coefficient 0.74). Modified from (Tsodyks et al., 1999).
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FIG. 35 Connection function w(z,y), centered at the center
of the domain. Modified from (Laing et al., 2002).
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FIG. 36 Six-bump stable solution of the model (22-23): b =
0.45, 7 = 0.1, th = 1.5. Modified from (Laing et al., 2002).

du(x,y,1)

5 = —u(z,y,t) (21)

+ /Q/w(a; - ¢,y —p)f(u(g,p,t))dqdp

flu) = 26_7/(“_th)2®(u —th) (22)

w(z,y) = e V7T (bsin(y/22 + y2)
+ cos(v/ 2%+ y?)) (23)

An example of a typical localized mode in such neural
media with local excitation and long range inhibition is
represented in Fig. 36. Different modes (with different
number of “bumps”) can switch from one to another by
transient external stimuli. Multiple items can be stored
in this model because of the oscillating tails of the effec-
tive connection strength. This is the result of the com-
mon activity of the excitatory and inhibitory connections
between neurons. Inhibition plays a crucial role for the
stability of the localized modes (Laing et al., 2002).

Localized modes with a different number of “bumps”
remind one of the complex localized patterns in a dis-
sipative nonequilibrium media (Rabinovich et al., 2000).
Based on this analogy, it is reasonable to hypothesize that
different modes may coexist in a neural layer and their
interaction and annihilation can explain the sequential
effectiveness of the different events. This suggests they
could be a model of sequential working memory (see be-
low).

Many rhythms of the brain can take the form of waves:
spindle waves (7-14 Hz) seen at the onset of sleep (Kim
et al., 1995), slower delta rhythms of deeper sleep, the
synchronous discharge during an epileptic seizure (Con-
nors and Amitai, 1997), waves of excitation associated
with sensory processing, 40 Hz oscillations and others.
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In thalamo-cortical networks the same clusters of neurons
are responsible for different modes of rhythmic activity.
What is the dynamical origin of such multi-functionality?
There is no unique answer to this question, and there are
several different mechanisms that can be responsible for
it (we have already discussed this for small invertebrate
networks, see section II1.B). In the paper (Terman et al.,
1996) the transition between spindling and delta sleep
rhythms was studied. The authors showed that these two
rhythms make different uses of the fast inhibition and
slow inhibition generated by thalamic reticularis cells.
These two types of inhibition are mediated in the cortex
by GABA(A) and GABA(B) receptors correspondingly
(Schutter, 2002; Tams et al., 2003).

The wave mode equation discussed above is familiar
to physicists and can be written both when the interac-
tions between neuron populations are homogeneous and
isotropic (Ermentrout, 1998), and when the neural layer
is partitioned into domains or hypercolumns like the pri-
mary visual cortex (V1) of cats and primates, which
has a crystalline-like structure at the millimeter length
scale (Bressloff, 2002; Bressloff and Cowan, 2002).

In the next section we will discuss the propagation of
patterns of synchronous activity along spatially ordered
neural networks.

2. Localized synfire waves

Auditory and visual sensory systems have a very high
temporal resolution. For example, the retina is able to
resolve sequential temporal patterns with a precision in
the millisecond range. Does the transmission of sensory
information from the periphery to the cortex maintain
such high resolution? If the answer is yes, what are the
dynamical mechanisms responsible for this? These ques-
tions are still open.

There are several neurophysiological experiments that
show the ability of neural systems to transmit tem-
porarily modulated responses of sensory networks with
high precision over several processing levels. For exam-
ple, cross-correlation between simultaneously recorded
responses of retinal cells, relay neurons within the thala-
mus and cortical neurons show that the oscillatory pat-
terning is reliably transmitted to the cortex with a res-
olution in the millisecond range (see for review (Nase
et al., 2003; Singer, 1999)). A similar phenomenon was
observed in (Kimpo et al., 2003) who show evidence for
the preserved timing of spiking activity through multi-
ple steps of a neural control loop in the bird brain. The
dynamical origin of such precise message propagation, in-
dependent of the rate fluctuation, is often attributed to
synchronization of the many neurons in the overall cir-
cuit (Abeles, 1991; Diesmann et al., 1999).

Let us discuss briefly the dynamics of waves of syn-
chronous neural firing, i.e., synfire waves. One modeling
study (Diesmann et al., 1999) has shown that the stable
propagation of localized synfire waves, short-lasting syn-



FIG. 37 Sequence of pools of excitatory neurons, connected
in a feed-forward way by so-called divergent/convergent con-
nections. The network is called a synfire chain if it sup-
ports the propagation of synchronous spike patterns. Modi-
fied from (Gewaltig et al., 2001).
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FIG. 38 Stable (A) and unstable (B) propagation of syn-
chronous spiking in a model of cortical networks. Raster dis-
plays of propagating spike volley along fully connected synfire
chain. Panels show the spikes in 10 successive groups of 100
neurons each (synaptic delays arbitrarily set to 5 ms). Initial
spike volley (not shown) was fully synchronized, containing a
50 (A) or a 48 (B) spikes. Modified from (Diesmann et al.,
1999).

chronous spiking activity, is possible along a sequence of
layers or pools of neurons in a feed-forward cortical net-
work such as the one shown in Fig. 37, a synfire chain
(Abeles, 1991). The degree of temporal accuracy of spike
times among the pools’ members determines whether
subsequent pools can reproduce (or even improve) this
accuracy (Fig. 38A), or whether synchronous excitation
disperses and eventually dies out like in Fig. 38B for a
smaller number of spikes in the volley. Thus, in the con-
text of synfire network function the quality of timing is
judged on whether synchronous spiking is sustained or
whether it dies out.

In (Diesmann et al., 1999) and in (Cateau and Fukai,
2001; Kistler and de Zeeuw, 2002; Nowotny and Huerta,
2003) it has been shown that if the pool size is more
than a critical value determined by the connectivity be-
tween layers, the wave activity initiated at the first pool
propagates from one pool to the next, forming a synfire
wave. In (Nowotny and Huerta, 2003) it was theoretically
proved that no other states exists beyond synchronized
or unsynchronized volleys as shown in the experiments
by (Reyes, 2003).
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The synfire feed-forward chain (Fig. 37) is an oversim-
plified model for the analysis of synfire waves because
in reality any network with synfire chains is embedded
in a larger cortical network that also has inhibitory neu-
rons and many recurrent connections. This problem is
discussed in detail in (Aviel et al., 2003).

C. Winnerless competition principle
1. Stimulus-dependent competition

Here we consider a paradigm of sequence generation
that does not depend on the geometrical structure of the
neural ensemble in physical space. It can, for example, be
a two dimensional layer with connections between neigh-
bors or a three dimensional network with sparse random
connections. This paradigm can be helpful for the ex-
planation and prediction of many dynamical phenomena
in neural networks with excitatory and inhibitory synap-
tic connections. The paradigm is called the Winnerless
Competition (WLC) principle. We have touched on as-
pects of WLC networks earlier, and here we expand on
their properties and their possible use in neuroscience.

“Survival of the fittest” is a cliché that is often asso-
ciated with the term competition. However, competition
is not only a means of determining the winner, as in a
winner take all network. It is also a multifunctional in-
strument that Nature uses at all levels of the neuronal
hierarchy. Competition is also a mechanism that main-
tains the highest level of variability and stability of neural
dynamics, even if it is a transient behavior.

Over two hundred years ago the mathematicians J.
C. Borda and Marquis de Condorcet were interested in
the process of plurality elections at the French Royal
Academy of Sciences. They considered voting dynamics
in a case of three candidates A, B, and C. If A beats B and
B beats C in a head-to-head competition, we might rea-
sonably expect A to beat C. Thus predicting the results of
the election is easy. However, this is not always the case.
It may happen, that C beats A, resulting in a so-called
Condorcet triangle, and there is no real winner in such
a competitive process (Borda, 1781; Saari, 1995). This
example is also called a 'voting paradox’. The dynamical
image of this phenomenon is a robust heteroclinic cycle
(see Fig. 39). In some specific cases the heteroclinic cy-
cle is even structurally stable (Ashwin et al., 2003; Guck-
enheimer and Holmes, 1988; Krupa, 1997; Postlethwaite
and Dawes, 2005; Stone and Armbruster, 1999).

The competition without winner is also known in hy-
drodynamics: Busse and Heikes discovered that convec-
tive roll patterns in a rotating plane layer exhibit se-
quential changes of the roll’s direction as a result of the
competition between patterns with different roll orien-
tations. No pattern becomes a winner and the system
exhibits periodic or chaotic switching dynamics (Busse
and Heikes, 1980). For review see (Rabinovich et al.,
2000). The same phenomenon has been discovered in



FIG. 39 (Color in online edition) Top panel: phase por-
trait corresponding to the autonomous WLC dynamics of
a three-dimensional case. Bottom panel: projection of a
nine-dimensional heteroclinic orbit of three inhibitory cou-
pled FitzHugh-Nagumo spiking neurons in a three dimen-
sional space (the variables &1, &3, £3 are linear combinations of
the actual phase variables of the system) (Rabinovich et al.,
2001).

a genetic system, i.e., in experiments with a synthetic
network of three transcriptional regulators (Elowitz and
Leibler, 2000). Specifically, they described three repres-
sor genes A, B, and C organized in a closed chain with
unidirectional inhibitory connections such that A, B, and
C beat ’each’ other. This network behaves like a clock:
it periodically induces synthesis of green fluorescent pro-
teins as an indicator of the state of individual cells on a
time scale of hours.

In neural systems such ‘clock’ competitive dynamics
can result from the inhibitory connections among neu-
rons. For example, in (Jefferys et al., 1996) the authors
showed that hippocampal and neocortical networks of
mutually inhibitory interneurons generate collective 40
Hz rhythms (gamma oscillations) when excited tonically.
Another example of neural competition without winner
was discussed in (Ermentrout, 1992). The author studied
the dynamics of a single inhibitory neuron connected to
a small cluster of loosely coupled excitatory cells and he
observed the emergence of a limit cycle through hetero-
clinic cycle. For autonomous dynamical systems compe-
tition without a winner is a well known phenomenon.

We use the term WLC principle for the nonau-
tonomous transient dynamics of neural systems receiv-
ing external stimuli and exhibiting sequential switching
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among temporal “winners”. The main point of the WLC
principle is the transformation of incoming inputs into
spatio-temporal outputs based on the intrinsic switching
dynamics of the neuronal ensemble (see Fig. 40). In the
phase space of the network such switching dynamics are
represented by a heteroclinic sequence whose architec-
ture depends on the stimulus. Such a sequence consists
of many saddle equilibria or saddle cycles and many het-
eroclinic orbits connecting them, i.e., many separatrices.
The sequence can serve as an attracting set if every semi-
stable set has only one unstable direction (see also (Ash-
win and Timme, 2005)).

input
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FIG. 40 Transformation of the identity spatial input into
spatio-temporal output based on the intrinsic sequential dy-
namics of a neural ensemble with WLC.

The key points on which WLC networks are based are
these: (i) the stimulus-dependent heteroclinic sequence
corresponding to a specific order of switching has a large
basin of attraction, i.e., the sequence is robust; and (ii)
the topology of the heteroclinic sequence sensitively de-
pends on the incoming signals, i.e., WLC dynamics have
a high resolution.

In this manner stimulus dependent sequential switch-
ing of neurons or groups of neurons (clusters) are able
to resolve the fundamental contradiction between sensi-
tivity and robustness in sensory recognition. Any kind
of sequential activity can be programmed, in principle,
by a network with stimulus dependent nonsymmetric in-
hibitory connections. It can be the creation of spatio-
temporal patterns of motor activity, the transformation
of the spatial information into spatio-temporal informa-
tion for successful recognition (see Fig. 40) and many
other computations.

We have already discussed the generation of the se-
quences in inhibitory networks when we analyzed the
dynamics of CPGs (see section II.B) where we focused
on rhythmic activity. The mathematical image in phase
space of the rhythmic sequential switching shown in
Fig. 8 and 9 is a limit cycle in the vicinity of the het-
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FIG. 41 Spatio-temporal patterns generated by a network of
nine FitzHugh-Nagumo neurons with inhibitory connections.
The left and the right panel correspond to two different stimuli
(Rabinovich et al., 2001).

eroclinic contour (cf. Fig. 39a).

WLC dynamics can be described in the framework of
neural models at different levels. These could be rate
models, Hodgkin-Huxley type models, or even simple
map models (see Table I). For spiking neurons or groups
of synchronized spiking neurons in a network with non-
symmetrical lateral inhibition WLC may lead to switch-
ing between active and inactive states. The mathemati-
cal image of such switching activity is also a heteroclinic
loop, but in this case the separatrices do not connect sad-
dle equilibrium points (Fig. 39a) but saddle limit cycles
as shown in Fig. 39b. The WLC dynamics in a model
network of nine spiking neurons with inhibitory connec-
tions is shown in Fig. 41. Similar results based on a map
model of neurons have been reported in (Casado, 2003).

An important advantage of WLC networks is that
they can produce different spatio-temporal patterns in re-
sponse to different stimuli, and, remarkably, the neurons
spontaneously form synchronized clusters despite the ab-
sence of excitatory synaptic connections. For a discussion
of synchronization with inhibition see also (Elson et al.,
2002; van Vreeswijk et al., 1994)).

Finally WLC networks also possess a strikingly differ-
ent ‘capacity’ or ability to represent in a distinguishable
manner a number of different patterns. In an ‘attractor
computation network’ of the Hopfield variety, a network
with N attractors has been shown to have a capacity of
approximately N/7. In a simple WLC network with N
nodes, thiscapacity has been shown (Rabinovich et al.,
2001) to be of order e(NN — 1)! which is a remarkable gain
in capacity.

2. Self-organized WLC networks

It is generally accepted that there is insufficient genetic
information available to account for all the synaptic con-
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nectivity in the brain. How then can the functional ar-
chitecture of WLC circuits be generated in the process
of development?

One possible answer has been found by Huerta and Ra-
binovich. Starting with a model circuit consisting of 100
‘rate’ model neurons connected randomly with weak in-
hibitory synapses, new synaptic strengths are computed
for the connections using Hebb learning rules in the pres-
ence of weak noise. The rates a;(t) of the neurons satisfy
a Lotka-Volterra model familiar from our earlier discus-
sion. In this case the matrix p;;(t) is a dynamical vari-
able:

da;ft) — ai(t) [U(S) — Z Pij (t)aj (t)] 4 gl(t) (24)

o(S) is function dependent on the stimulus S, the p;;(t)
are the strengths of the inhibitory connections deter-
mined by some learning rules, and &;(¢) is Gaussian noise
with (&;(¢)€;(t')) = n0;;0(t—t’). The learning is described
by the equations:

dpij(t)
dt

= pij(H)g(ai(t), a;(t), ) = (pi;(t) =), (25)

where g(a;,a;,S) represents the strengthening of the in-
teractions from neuron ¢ to neuron j as a function of
the external stimulus S. The parameter v represents the
lower bound of the coupling strengths among neurons.
Fig. 42 shows the activity of representative neurons in a
network built with this model. After the self-organization
phase, this network displays WLC switching dynamics.

WLC dynamics can also be the result of local self-
organization in networks of H-H model neurons that dis-
play STDP with inhibitory synaptic connections as is
shown in Fig. 43. Such mechanisms of self-organization,
as shown by Nowotny and Rabinovich, can be appropri-
ate for networks that generate not only rhythmic activity
but also transient heteroclinic sequences.

3. Stable heteroclinic sequence

The phase space image of nonrhythmic WLC dynam-
ics is a trajectory in the vicinity of a stable heteroclinic
sequence (SHS) in the state space of the system. Such
a sequence (see Fig. 44) is an open chain of saddle fixed
points connected by one-dimensional separatrices which
retain nearby trajectories in its vicinity. The flexibility
of WLC dynamics is provided by their dependence on
the identity of participating neural clusters of the stim-
uli. Sequence generation in the chain- or layer-like net-
works of neurons may result from a feedforward wave-
like propagation of spikes like the waves in synfire chains
(see above). In contrast, WLC dynamics does not need
a specific spatial organization of the network. However,
the image of a wave is a useful one, because in the case of
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FIG. 42 (Color) Result of simulating a network of 100 neurons
subject to the learning rule g(a;,a;) = a;a;(10tanh((a; —
a;)) + 1). The system starts from random initial conditions
for the connections. The noise level is n = 0.01. For simplicity,
the switching activity of only four of the 100 neurons is shown.
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FIG. 43 (Color in online edition) Example of WLC dynamics
entrained in a network by a local learning rule. In isolation,
the four H-H neurons in the network are rebound bursters,
i.e., they fire a brief burst of spikes after being strongly in-
hibited. The all-to-all inhibitory synapses in the small net-
work are governed by a STDP learning rule which strength-
ens the synapse for positive time delays between post- and
presynaptic activity and weakens it otherwise. Such STDP of
inhibitory synapses has been observed in the entorhinal cor-
tex of rats (Haas and et al., 2006). Before entrainment the
neurons just follow the input signal of periodic current pulses
(a). The resulting bursts strengthen the forward synapses
corresponding to the input sequence making them eventually
strong enough to cause rebound bursts (b). After entrain-
ment activating any one of the neurons leads to an infinite
repetition of the trained sequence carried by the successive
rebound bursts of the neurons (c).
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FIG. 44 A stable open heteroclinic sequence in a neural cir-
cuit with WLC. Wy, is a stable manifold of the i-th saddle
fixed point (heavy dots). The trajectories in the vicinity of
the SHS represent sequences with different timings. The time
intervals between switches is proportional to T ~ |Inn|/Ay,
where A, is a positive Lyapunov exponent that character-
izes the one dimensional unstable separatrices of the saddle
points (Stone and Holmes, 1990). Modified from (Afraimovich
et al., 2004a).

WLC a wave of neural activity propagates in state space
along the SHS. Such a wave is initiated by a stimulus.
The speed of the sequential switching depends on the
noise level n. The noise controls the distance between
the trajectories realized by the system and the SHS. For
trajectories that get closer to the SHS the time that the
system spends near semi-stable states (saddles), i.e., the
interval between switching, becomes longer (see Fig. 44).

The mechanism of reproducibility of transient sequen-
tial neural activity has been analyzed in (Afraimovich
et al., 2004a) (see Fig. 44). It is quite general and does
not depend on the details of the neuronal model. The
saddle points in the phase space of the neural network
can be replaced by saddle limit cycles or even chaotic
sets that would describe neural activity in more detail,
as in typical spiking or spiking-bursting models. This
feature is very important for neural modeling because it
may help to build a bridge between the concepts of neural
competition and synchronization of spikes.

We can formulate the necessary conditions for the con-
nectivity of a WLC network that must be satisfied in
order for the network to exhibit reproducible sequential
dynamics along the heteroclinic chain. As before, we base
our discussion on the rate model:

ald(tt) = ai(t) [O’i(gl) — Zpij (gl)aj (t)} + gz(t) (26)

where &;(t) is an external Gaussian noise. In this model
it is assumed that the stimulus S' influences the matrix
pi; and increments o; only in the subnetwork IV !, BEach
increment o; controls the time constant of an initial ex-
ponential growth from the resting state a;(t) = 0. As



shown in (Afraimovich et al., 2004a) to assure the SHS
is in the phase space of the system (26) the following
inequalities must be satisfied:
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0i,, is the increment of the m-th saddle whose unstable
manifold is one-dimensional, p;, s, is the strength of the
inhibitory connection between neighboring saddles in the
heteroclinic chain. The result of computer modeling of a
network with parameters that satisfy (27-29) is shown in

Fig. 45.
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FIG. 45 (Color in online edition) Time series of the activity of
a WLC network during ten trials (only 20 neurons are shown):
simulations of each trial were started from a different random
initial condition. In this plot each neuron is represented by
a different color and its level of activity by the saturation of
the color. From (Afraimovich et al., 2004a).

In the next section we discuss some experiments that
support the SHS paradigm.

4. Relation to experiments

The olfactory system may serve as one example of a
neural system that generates transient, but trial-to-trial
reproducible, sequences of neuronal activity which can
be explained by the WLC principle. The complex intrin-
sic dynamics in the antennal lobe (AL) of insects trans-
form static sensory stimuli into spatio-temporal patterns
of neural activity (Laurent et al., 2001). Several ex-
perimental results about the reproducibility of the tran-
sient spatio-temporal AL dynamics have been published
recently (Galan et al., 2004; Mazor and Laurent, 2005;
Stopfer et al., 2003) (see Fig. 46). In experiments de-
scribed in (Galan et al., 2004) bees were presented with
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different odors and neural activity in the AL was recorded
using calcium imaging. The authors analyzed the tran-
sient trajectories in the projection neuron activity space
and found that the trajectories representing different tri-
als of stimulation with the same odor were very similar.
It was shown that after a time interval of about 800 ms
different odors are represented in phase space by differ-
ent static attractors, i.e., the transient spatio-temporal
patterns converge to different spatial patterns of activ-
ity. However, the authors emphasize that due to the re-
producibility of the transient dynamics some odors were
recognized in the early transient stage as soon as 300 ms
after the onset of the odor presentation. It is highly likely
that the transient trajectories observed in these experi-
ments represent realizations of a SHS.

The generation of reproducible sequences is also a key
role of the high vocal center (HVC) of the songbird sys-
tem (Hahnloser et al., 2002). Like a CPG, this neural sys-
tem is able to generate sparse spatio-temporal patterns
without any rhythmic stimuli in vitro (Solis and Perkel,
2005). In its projections to the pre-motor nucleus RA,
HVC in an awake singing bird sends sparse bursts of high
frequency signals once each syllable of the song. These
bursts have an interspike interval about 2 ms and last
about 8 ms within a syllable time scale of 100-200 ms.
The bursts are shown for several HVC—RA projection
neurons in Fig. 47). HVC also contains many inhibitory
interneurons (Mooney and Prather, 2005) and their ac-
tivity is also shown in this figure. The interneurons burst
densely throughout the vocalizations, in contrast to the
bursting of the RA-projecting HVC neurons at single
precise timings. A plausible hypothesis is that HVC’s
synaptic connections are non-symmetric and WLC can
be a mechanism of the neural spatio-temporal pattern
generation of the song. This would provide a basis for
the reproducible patterned output from HVC when it re-
ceives a song command stimulus.

D. Sequence learning

Sequence learning and memory as sequence generation
requires temporal asymmetry in the system. Such asym-
metry can be the result of specific properties of the net-
work connections, in particular, asymmetry of the con-
nections, or it can be the result of temporal asymme-
try in the dynamical features of individual neurons and
synapses, or both. The specific dynamical mechanisms
of sequence learning depend on the time scale of the se-
quence that this neural system needs to learn. Learning
of fast sequences, 20-30 ms and faster, needs precise syn-
chronization of the spikes or phases of neural waves. One
possible mechanism for this can be the learning of syn-
fire waves. For slow sequences, like autonomous repeti-
tive behavior, it would be preferable to learn the relevant
behavioral events that typically occur on the time scale
of hundreds of milliseconds or slower and the switching
(transitions) between them. Networks whose dynamics
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FIG. 46 (Color) Top panel: trajectories of the antennal lobe
activity during post-stimulus relaxation in one bee. Modified
from (Galan et al., 2004). Bottom panel: visualization of tra-
jectories representing the response of a PN population in a
locust AL over time. Time slice points were calculated from
110 PN responses to four concentrations (0.01, 0.05, 0.1, 1) of
three odors, projected onto three dimensions using locally lin-
ear embedding, an algorithm that computes low-dimensional,
neighborhood-preserving embeddings of high-dimensional in-
puts (Roweis and Saul, 2000). Modified from (Stopfer et al.,
2003).

are based on WLC are able to do such a job. We con-
sider here slow sequence learning and spatial sequential
memory (SSM).

The essence of the idea is that the sequential memory
is encoded in a multidimensional dynamical system with
a SHS. Each of the saddle points represent an event in a
sequence to be remembered. Once the state of the system
approaches one fixed point representing a certain event,
it is drawn along an unstable separatrix toward the next
fixed point, and the mechanism repeats itself. The nec-
essary connections are formed in the learning phases by
different sensory inputs originated by sequential events.

In (Seliger et al., 2003) a model of the SSM in the
hippocampus is discussed. It is well accepted that the
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FIG. 47 (Color in online edition) HVC Songbird patterns.
Spike raster plot of ten HVC(RA) neurons recorded in one
bird during singing. Each row of tick marks shows spikes gen-
erated during one rendition of the song or call; roughly ten
renditions are shown for each neuron. Modified from (Hahn-
loser et al., 2002).

hippocampus plays the central role in acquisition and
processing information related to the representation of
movement in physical space. The most spectacular man-
ifestation of this role is the existence of so called “place
cells” which repeatedly fire when an animal is in a cer-
tain spatial location (O’Keefe and Dostrovsky, 1971). Ex-
perimental research also favors an alternative concept of
spatial memory based on a linked collection of stored
episodes (Wilson and McNaughton, 1993). Each episode
comprises a sequence of events, which, besides spatial lo-
cations, may include other features of environment (ori-
entation, odor, sound, etc). It is plausible to describe the
corresponding learning with a population model that rep-
resents neural activity by rate coding. In (Seliger et al.,
2003) a two-layer dynamical model of SSM was proposed
that can answer the following key questions: (i) How is a
certain event, e.g. an image of the environment, recorded
in the structure of the synaptic connections between mul-
tiple sensory neurons (SNs) and a single principal neuron
(PN) during learning? (ii) What kind of cooperative dy-
namics forces individual PNs to fire sequentially, in a way
that would correspond to a specific sequence of snapshots
of the environment? (iii) How complex should this net-
work be in order to store a certain number of different
episodes without mixing different events or storing spu-
rious episodes?

The two-layer structure of the SSM model is remi-
niscent of the projection network implementation of the
‘normal form projection algorithm’ (NFPA), see (Baird
and Eeckman, 1993). In that model, the dynamics of
the network is cast in terms of normal form equations
which are written for amplitudes of certain normal forms
corresponding to different patterns stored in the system.
The normal form dynamics can be chosen to follow cer-



tain dynamical rules. In (Baird and Eeckman, 1993) it
was shown that a Hopfield-type network with improved
capacity can be built using this approach. Furthermore,
it has been suggested (Baird and Eeckman, 1993) that
specific choices of the coupling matrix for the normal
form dynamics can lead to multistability among more
complex attracting sets than simple fixed points, such
as limit cycles or even chaotic attractors. For exam-
ple, quasiperiodic oscillations can be described by a nor-
mal form that corresponds to a multiple Hopf bifurca-
tion (Guckenheimer and Holmes, 1986). As we will see
below, a model of SSM after learning is completed, can
be viewed as a variant of the NFPA with a specific choice
of normal form dynamics corresponding to the winnerless
competition among different patterns.

To illustrate these ideas we consider a two-level net-
work of Ny SNs (z;(t)) and N, principal neurons (a;(t)).
One can reasonably assume that sensory neurons do not
have their own complex dynamics and are slaved to either
external stimuli in the learning or storing regime, or to
the PNs in the retrieval regime. In the learning regime,
x;(t) is a binary input pattern consisting of 0’s and 1’s.
During the retrieval phase, x;(t) = Z;V:pl P;;a;(t) , where
P;; is the Ny x N, projection matrix of connections among
SNs and PNs.

The PNs are driven by SNs during the learning phase,
but they also have their own dynamics controlled by in-
hibitory interconnections. When learning is complete,
the direct driving from SNs is disconnected. The equa-
tions for the PN rates a;(t) read

da;(t) all N
ét = a;(t)—a;(t) > Via;(t)+aa; Y Pla;(t)+E(t),
j=1 J=1

(30)
where « # 0 in the learning phase, a = 0 in the retrieval
phase, and Pg is the projection matrix. The coupling be-
tween SNs and PNs is bidirectional. The last term on the
right hand side of equation (30) represents small positive
external perturbations that can input signals from other
parts of the brain which control learning and retrieval
dynamics.

After a certain pattern is presented to the model, the

sensory stimuli reset the state of the PN layer according

to the projection rule a;(t) = Z;le Pgmj(t), but the

a;(t) change according to (30).

The dynamics of SNs and PNs during the learning and
retrieval phases have two learning processes: (i) form-
ing the projection matrix P;; which is responsible for
connecting a group of sensory neurons of the first layer
corresponding to a certain stored pattern to a single PN
which represents this pattern at the PN level; (ii) learn-
ing of the competition matrix V;; which is responsible for
the temporal (logical) ordering of the sequential memory.

The slow learning dynamics of the projection matrix
is controlled by the following equation:

Pij = Eai(ﬂiﬂj - R ) (31)
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with € < 1. We assume that initially all F;; connec-
tions are nearly identical P;; = 1 + 7;;, where 7;; are
small random perturbations, 3 n;; = 0, (n7;) = 15 < 1.
Additionally, we assume that initially the matrix Vj; is
purely competitive: Vi; =1 and Vj; =V > 1 for ¢ # j.

Suppose we want to ‘memorize’ a certain pattern A
in our projection matrix. We apply a set of inputs A;
corresponding to the pattern A to the SNs. As be-
fore, we assume that external stimuli render the SNs
in one of two states: excited, A; = 1, and quiescent,
A; = 0. The initial state of the PN layer is fully excited:
ai(0) = >_; P;jA;. According to the competitive nature
of the interactions between PNs after a short transient,
only one of them, the neuron A which corresponds to
the maximum a;(0), remains excited and others become
quiescent. Which neuron becomes ‘responsible’ for the
pattern A is actually random, as it depends on the ini-
tial projection matrix P;;. It follows from Eq. (31) that
for small € ‘synapses’ of suppressed PNs do not change,
whereas synapses of the single excited neuron evolve such
that the connections between excited SNs and PNs neu-
rons amplify towards 8 > 1, and connections between ex-
cited PNs and quiescent SNs decay to zero. As a result,
the first input pattern will be ‘recorded’ in one of the rows
of the matrix P;;, while other rows will remain almost un-
changed. Now suppose that we want to record a second
pattern different from the first one. We can repeat the
procedure described above, namely, apply external stim-
uli associated with pattern B) to the SNs, ‘project’ them
to the initial state of the PN layer, a;(0) = >_; Fi;B;,
and let the system evolve. Since synaptic connections
from SNs suppressed by the first pattern to neuron A
have been eliminated, a new set of stimuli correspond-
ing to pattern B will excite neuron A more weakly than
most of the others, and competition will lead to selection
of one PN B different from neuron A. In this way we can
record as many patterns as there are PNs.

The sequential order of the patterns recorded in the
projection network is determined by the competition ma-
trix V;;, Eq. (30). Initially it is set to V;; = Vj > 1 for
i # j and V;; = 1 which corresponds to winner-take-all
competition. The goal of sequential spatial learning is
to record the transition of pattern A to pattern B in the
form of suppressing the competition matrix element Vg 4.
We suppose that the slow dynamics of the nondiagonal
elements of the competition matrix are controlled by the
delay-differential equation:

Vi = cai(t)a;(t — 7) (Vi — Viy) (32)

where 7 is constant. As seen from (32) only the matrix
elements corresponding to a;(t) # 0 and a;(t — 7) #
0, are changing towards the asymptotic value V73 < 1
corresponding to the desired transition. Since most of
the time, except for short transients, only one of the PNs
is excited, only one of the connections V;; is changing
at any time. As a result, an arbitrary, nonrepeating,
sequence of patterns can be recorded.
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FIG. 48 Amplitudes of principal neurons during the memory
retrieval phase in a two-layer dynamical model of sequential
spatial memory. (a) periodic retrieval, two different test pat-
terns presented, (b) aperiodic retrieval with modulated inhi-
bition (see text). Modified from (Seliger et al., 2003).

When a test pattern T is presented to the sensory
layer: x;(0) = T(i) a;(0) = Y, P,;j7T;, and T resem-
bles one of the recorded patterns, this will initiate a peri-
odic sequence of patterns corresponding to the previously
recorded sequence in the network. Figure 48 shows the
behavior of the principal neurons after different initial
patterns resembling different digits have been presented.
In both cases, the system quickly settles onto a cyclic gen-
eration of patterns associated with a given test pattern.
At any given time, except for a short transient time be-
tween the patterns, only a single PN is on, corresponding
to a particular pattern.

E. Sequences in complex systems with random connections

The level of cellular and network complexity in the
nervous system leads one to ask: How do evolution and
genetics build a complex brain? Comparative studies of
the neocortex indicate that early mammalian neocortices
were composed of only a few cortical fields and in pri-
mates the neocortex expanded dramatically; the num-
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ber of cortical fields increased and the connectivity be-
tween them became very complex. The architecture of
the microcircuitry of the mammalian neocortex remains
largely unknown in terms of cell to cell connections, how-
ever, how groups of neurons connect with other groups
is becoming better understood thanks to new anatom-
ical techniques and the use of slice techniques. Many
parts of the neocortex developed under strict genetic
control as precise networks with connections that ap-
pear similar from animal to animal. (Kozloski et al.,
2001) discusses visual networks in this context. However,
the local connectivity can be probabilistic or random as a
consequence of experience-dependent plasticity and self-
organization (Chklovskii et al., 2004). In particular, the
imaging of individual pyramidal neurons in the mouse
barrel cortex over a period of weeks (Maravall et al.,
2004) showed that sensory experience drives the forma-
tion and elimination of synapses and that these changes
might underlie adaptive remodeling of neural circuits.

Thus the brain appears as a compromise between ex-
isting genetic constraints and the need to adapt, i.e.,
networks are formed by both genetics and activity-
dependent or self-organizing mechanisms. This makes
it very difficult to determine the principles of network
architecture and to build reasonable dynamical models
that are able to predict the reactions of a complex neural
system to changes in the environment. In this way we
have to take into account that even self-organized net-
works are under genetic control but in a different sense.
For example, genetics can control the average balance
between excitatory and inhibitory synaptic connections,
sparseness of the connections, etc. The point of view that
the infant cortex is not a completely organized machine is
based on the supposition that there is insufficient storage
capacity in the DNA to control every neuron and every
synapse. This idea was formulated first by Alan Turing
in 1948 (Ince, 1992).

A simple calculation reveals that the total size of the
human genome can specify the connectivity of about 10°
neurons. The human brain actually contains around 10!
neurons. Let us say that we have N neurons. Each neu-
ron requires N p log, IV bits to completely specify its con-
nections, where p is the average number of connections.
Therefore, we need at least N?p log, N bits to specify
the entire on-off connectivity matrix of N neurons. If the
connectivity degree p is not very sparse then we just need
N? bits. So, if we solve min(N?2, N2p log, N) = 3.3 - 10°
base pairs in the human genome using a connectivity de-
gree of 1% we obtain a maximum of 10° neurons that
can be completely specified. Since we do not know how
much of the genome is used for brain connectivity, it is
not possible to narrow down the estimation. Neverthe-
less, it does not make sense to expect the whole genome
to specify all connections in the brain. This simple es-
timate makes clear that learning and synaptic plasticity
have a very important role in determining the connectiv-
ity of brain circuits.

The dynamics of complex network models are difficult



to dissect. The mapping of the corresponding local and
global bifurcations in a low dimensional system has been
extensively studied. To perform such analysis in high
dimensional systems is very demanding if not impossi-
ble. Average measures, such as mean firing rates, aver-
age membrane potential, correlations, etc. can help to
understand the dynamics of the network as a function of
a few variables. One of the first models to use a mean
field approach was the Wilson-Cowan model (Wilson
and Cowan, 1973). The individual neurons in the model
resemble integrate-and-fire neurons with a membrane in-
tegration time p and a refractory period r. Wilson and
Cowan’s main hypothesis is that the unreliable individ-
ual responses, when grouped together, can lead to more
reliable operations. Wilson-Cowan formalism can be re-
duced to the following equations:

u% — _B(e,t) + (1 - rE(, 1)) x
Le ([ By, tywee (y, x)dy— (33)
[ 1(y, Ywei(y, x)dy + Se(x,t))
M% = —I(z,t)+ (1 —rI(z,t)) x
Li ([ E(y, t)wie(y, z)dy— (34)

J 1y, ywii(y, 2)dy + Si(x,1)) |

where E(x,t) and I(x,t) are the proportion of firing neu-
rons in the excitatory and inhibitory population, the co-
ordinate x is a continuous variable that represents the
position in the cortical surface, Wee, Wei, Wie, and wy;
are the connectivity of the cortex, and S, and S; are
external inputs to the excitatory and inhibitory popu-
lations, respectively. The gain functions L. and L; ba-
sically reflect the expected proportion of excitatory and
inhibitory neurons receiving at least threshold excitation
per unit of time. One subtle trick used in the derivation
of this model is that the membrane integration time is
introduced through the synaptic connections. The model
expressed in this form attempts to eliminate the uncer-
tainty of single neurons by grouping them according to
those with reliable common responses. We are still left
with the problem of what to expect in a network of clus-
ters connected randomly to each other. Let us discuss it
in more detail.

In a random network of excitatory and inhibitory
neurons, it is not uncommon to find oscillatory activ-
ity (Huerta and Rabinovich, 2004; Jin, 2002). However,
it is more interesting to study the transient behavior of
neural recurrent networks. These are fast and very im-
portant for sensory processing and for the control of mo-
tor commands. In studying this one needs to address two
main issues: (i) whether it is possible to consistently find
networks with random connections, described by equa-
tions similar to (33) and (34), behaving regularly, and
(ii) whether transient behavior in these networks is re-
producible.
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In (Huerta and Rabinovich, 2004) it was shown, by us-
ing the Wilson-Cowan formalism, that it is more likely to
find periodic sequential activity (limit cycles) in the re-
gions of the control parameter space where inhibitory and
excitatory synapses are slightly out-of-balance. However,
reproducible transient dynamics is more likely found in
the region of parameter space far from balanced excitation
and inhibition. In particular, the authors investigated the
model:

da,(t) Ak ol
c;t =0 ngEx](t) ngly](t) + SE
j=1 j=1
— xz;(t) (35)
NE NI
dy(t
W) o (S wtfFayt) 3wl )+ !
j=1 =1
— vi(t), (36)

where 2(t) and y;(t) represent the fraction of active neu-
rons in cluster 7 of the excitatory and inhibitory popu-
lation, respectively. The numbers of excitatory and in-
hibitory clusters are Ng and Nj. The labels E and I are
used to denote quantities associated with the excitatory
or inhibitory populations respectively. The external in-
puts Sg ; are instantaneous ‘kicks’ applied to a fraction
of the total population at time zero. The gain function is
O(z) = [tanh((z — b)/o) 4+ 1]/2, with a threshold b = 0.1
below the excitatory and inhibitory synaptic strength of
a single connection. The clusters are taken to have very
sharp thresholds of excitability by choosing ¢ = 0.01.
There is a wide range of values that generates similar
results. The time scale is set as in (Wilson and Cowan,
1973), p = 10 ms. The connectivity matrices wfjc»y have
entries drawn from a Bernoulli process (Huerta and Ra-
binovich, 2004). The main control parameters in this
problem are the probabilities of connections from popula-
tion to population.

Now we can answer to the question: What kind of
activity can a network with many neurons and random
connections produce? The intuition prompts that the
answer has to be a complex multidimentional dynamics.
However, this is not the case (Fig. 49): the most observ-
able stimulus-dependent dynamics are more less simple
and reproducible: periodic, transient or chaotic (also low
dimensional).

This is a very important point for the understanding
of the cortex dynamics that involves the cooperative ac-
tivity of many complex networks (units or microcircuits).
From the functional point of view, the stimulus depen-
dent dynamics of the cortex can be considered as a co-
ordinated behavior of many units with low dimensional
transient dynamics. This is the basis of a new approach of
cortex modeling named ”Liquid State Machine” (Maass
et al., 2002).
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FIG. 49 (Color in online edition) Three dimensional projec-
tions of simulations of random networks of 200 neurons. For
illustrative purposes we show three types of dynamics that
can be generated by a random network: (upper) chaos, (mid-
dle) limit cycle (both in the areas of parameter space that
are close to “balanced”), and (lower) transient dynamics (far
from “balanced”).

F. Coordination of sequential activity

Coordination of different sequential behaviors is cru-
cially important for survival. From the modeling point
of view is a very complex problem. The IO (a net-
work that we have already discussed in section II1.B.2)
has been suggested as a system that coordinates motor
voluntary movements that involve several simultaneous
rhythms (Llinds and Welsh, 1993). Here we show an ex-
ample of how subthreshold oscillations coordinate differ-
ent incommensurate rhythms in a commensurate fashion.
In the 10, neurons are electrically coupled to their close
neighbors. Their activity is characterized by subthresh-
old oscillations and spiking activity (see Fig. 50). The
cooperative dynamics of the IO under the action of sev-
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FIG. 50 (Color) Spatio-temporal patterns of coordinated
rhythms induced by stimuli in a model of the inferior olive.
Several structures with different frequencies can coexist si-
multaneously in a commensurate representation of the spiking
frequencies of the network when several stimuli are present.
Incommensurate stimuli are introduced in the form of current
injections in different clusters of the network. (Panels on the
right show the position of the input clusters.) These current
injections induce different spiking frequencies in the neurons.
Colors in these panels represent different current injections,
and thus different spiking frequencies in the input clusters).
Top row shows the activity of a network with two different
input clusters. Bottom row shows the activity of a network
with 25 different input clusters. Sequences develop in time
from left to right. Regions with the same color have syn-
chronous behavior. Color bar maps the membrane potential.
Red corresponds to spiking neurons (-45mV is above the fir-
ing threshold in the model). Dark blue means hyperpolarized
activity. Bottom panel shows the activity of a single neuron
with subthreshold oscillations and spiking activity (modified
from (Varona et al., 2002a)).

eral incommensurate inputs has been modeled in (Varona
et al., 2002a). The results of these large-network simula-
tions show that the electrical coupling of IO neurons pro-
duces quasi-synchronized subthreshold oscillations. Be-
cause spiking activity can only happen on top of these
oscillations, incommensurate inputs can produce regions
with different commensurate spiking frequencies. Several
spiking frequencies are able to coexist in these networks.
The coexistence of different rhythms is related to the dif-
ferent clusterization of the spatio-temporal patterns.

Another important question related to coordination of
several sequential behaviors is: what dynamical princi-
ples can be a basis for fast neuronal planning and re-
action to a changing environment? One can think that
the WLC principle can be generalized in order to orga-
nize the sequential switching according to: (i) the learned
skill and (ii) the dynamical sensory inputs. The corre-
sponding mathematical model can be similar to (26-29)
together with a learning rule similar to (25). The stimuli
S! change sequentially and the timing of each step (the
time that the system spends moving from the vicinity of
one saddle to the vicinity of the next one, see Fig. 51)



FIG. 51 Illustration of the learned sequential switching in a
recurrent network with WLC dynamics: thin lines — possible
learned sequences, thick line — sequential switching chosen
online by the dynamical stimulus.

should be coordinated with the time of change in the
environment. In recurrent networks, the stimulus can go
sequentially to the specific goal of an optimal heteroclinic
sequence among many such sequences that exist in the
phase space of the model as a result of learning. What is
important is that at the same time, i.e., in parallel with
the choosing of the rest of the motor plan, the already
existing part of the motor activity plan is executed.

The two ideas that we just discussed can be applied
to the cerebellar circuit, which is an example of a com-
plex recurrent network (see Fig. 52). To give an im-
pression of the complexity of the cerebellar cortex we
note that it is organized into three layers: the molec-
ular layer, the Purkinje cell layer, and the granule cell
layer. Only two significant inputs reach the cerebellar
cortex: mossy fibers and climbing fibers. Mossy fibers
are in the majority (4:1) and carry a wealth of sensory
and contextual information of multiple modalities. They
make specialized excitatory synapses in structures called
‘glomeruli’ with the dendrites of the very numerous gran-
ule cells. Granule cell axons form parallel fibers that run
transversely in the molecular layer, making excitatory
synapses with Purkinje cells. Each Purkinje cell receives
~ 150,000 synapses. These synapses are thought to be
a major storage site for the information acquired dur-
ing motor learning. The Purkinje cell axon provides the
only output from the cerebellar cortex. This is via the
deep cerebellar nuclei. Each Purkinje cell receives just
one climbing fiber input from the inferior olive, but this
input is very powerful because it involves several hun-
dred of synaptic contacts. The climbing fiber is thought
to have a role in ‘instructing’ learning in the cerebellum.
The Golgi cell is excited by mossy fibers and granule cells
and exercises an inhibitory feedback control upon gran-
ule cell activity. Stellate and Basket cells are excited by
parallel fibers in order to provide feed-forward inhibition
to Purkinje cells.
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FIG. 52 A schematic representation of the mammalian cere-
bellar circuit. Arrows indicate the direction of transmission
across each synapse. Sources of mossy fibers; Ba, basket cell;
BR, brush cell; cf, climbing fiber; CN, cerebellar nuclei; Go,
Golgi cell; 10, inferior olive; mf, mossy fiber; pf, parallel
fibers; PN, pontine nuclei; sb and smb, spiny and smooth
branches of P cell dendrites, respectively; PC, Purkinje cell;
bat, basket cell terminal; pcc, P cell collateral; no, nucleo-
olivary pathway; nc, collateral of nuclear relay cell (modified
from (Voogd and Glickstein, 1998)).

The huge number of inhibitory neurons and the ar-
chitecture of the cerebellar networks (de Zeeuw et al.,
1998) support the generalized WLC mechanism for co-
ordination. A widely discussed hypothesis is that the
specific circuitry of the IO, cerebellar cortex, and deep
cerebellar nuclei called the ‘slow loop’ (see Fig. 52) can
serve as a dynamical working memory or as a neuronal
clock with =100 msec cycle time which would make it
easy to connect it to behavioral timescales (Kistler and
de Zeeuw, 2002; Melamed et al., 2004).

Temporal coordination and, in particular, synchro-
nization of neural activity, is a robust phenomena, fre-
quently observed across populations of neurons with di-
verse membrane properties and intrinsic frequencies. In
the light of such diversity the question of how can pre-
cise synchronization be achieved in heterogeneous net-
works is critical. Several mechanisms have been sug-
gested and many of them require an unreasonably high
degree of network homogeneity or very strong connectiv-
ity to achieve coherent neural activity. As we discussed
above (section II.A.4), in a network of two synaptically
coupled neurons, STDP at the synapse leads to the dy-
namical self-adaptation of the synaptic conductance to
a value that is optimal for the entrainment of the post-
synaptic neuron. It is interesting to note that just a
few STDP synapses are able to make the entrainment
of a heterogeneous network of electrically coupled neu-
rons more effective (Zhigulin and Rabinovich, 2004). It
has been shown that such a network oscillates with a
much higher degree of coherence than when it is subject
to stimulation that is mediated by STDP synapses as
compared with stimulation through static synapses. The



observed phenomenon depends on the number of stim-
ulated neurons, the strength of electrical coupling and
the degree of heterogeneity. In reality, long-term plastic-
ity depends not only on spike timing (STDP) but also
on the firing rate and the cooperativity among different
neuronal inputs (Sjostrom et al., 2001). This makes mod-
eling self-organization and learning more challenging.
Real behavior in nonstationary or complex environ-
ments, as we already discussed, requires the switching be-
tween different sequential activities. Jancke et al. (Jancke
et al., 2000) have identified distributed regions in differ-
ent parts of the cortex that are involved in the switching
among sequential movements. It is important for the
dynamical modeling that this differential pattern of acti-
vation is not seen for simple repetitive movements. Thus,
such movements are too simple to evoke additional acti-
vation. This means that a dynamical model that aims
to describe the sequential behavior in general has to cor-
rectly describe the switching from a low-dimensional sub-
space to a high-dimensional state space and vice versa.
There are no general methods for the description of multi-
dimensional dissipative nonlinear systems with such tran-
sient but reproducible dynamics. We think that WLC
principle might be the first step in this direction.

V. CONCLUSION

Both physicists/mathematicians and physiologists
agree that an important attribute of any dynamical
model of CNS activity is that it should not only be able
to fit the available anatomical and physiological data,
but it should also be capable of explaining function and
predict behavior. However, the ways in which physi-
cists/mathematicians and physiologists use modeling are
based on their own experience and views and thus are
different. In this review we tried to bring these differ-
ent viewpoints closer together and, using many exam-
ples from sensory, motor and central nervous systems,
we discussed just a few principles like reproducibility and
adaptability, robustness and sensitivity.

Let us return to the questions formulated at the be-
ginning of the review:

e What can nonlinear dynamics learn from neuro-
science?

e What can neuroscience learn from nonlinear dy-
namics?

After reading this review, we hope that the reader can
join us in integrating the key messages in our presenta-
tion. Perhaps we may offer our compact formulation:

Addressing the first question: What can nonlinear dy-
namics learn from neuroscience?

e The most important activities of neuronal systems
are transient and cannot be understood by analyz-
ing attractor dynamics alone. These need to be
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augmented by reliable descriptions of stimulus de-
pendent transient motions in state space as this
comprises the heart of most neurobiological activ-
ity. Nonetheless, because the dynamics of realis-
tic neuronal models are strongly dissipative, their
stimulus dependent transient behavior is strongly
attracted to some low-dimensional manifolds em-
bedded in the high-dimensional state space of the
neural network. It is a strong stimulus to nonlinear
dynamics to develop a theory of reasonably low-
dimensional transient activity and, in particular,
to consider the local and global bifurcations of such
semi-stable objects as homoclinic and heteroclinic
trajectories.

e For many dynamical problems of neuroscience, in
contrast to most traditional dynamical approaches,
the initial conditions do matter crucially. Per-
sistent neuronal activity (i.e., dynamical memory)
stimulus dependent transient competition, stimulus
dependent transient synchronization, and stimulus-
dependent synaptic plasticity are all aspects of this.
Clearly addressing these important phenomena will
require an expansion in our approaches to dynam-
ical systems.

Addressing the second question: What can neuro-
science learn from nonlinear dynamics 7

e Dynamical models confirm the key role of inhibition
in neuronal systems. The function of inhibition is
not just to organize a balance with excitation in
order to stabilize a network but much more: a)
inhibitory networks can generate rhythms, such as
reproducible and adaptive motor rhythms in CPGs,
or gamma rhythms in the brain; b) they are respon-
sible for the transformation of an identity sensory
code to a spatio-temporal code important for bet-
ter recognition in an acoustically cluttered environ-
ment; and ¢) thanks to inhibition, neural systems
can be at the same time very sensitive to their input
and robust against noise.

e Dynamical chaos is not just a beautiful fundamen-
tal phenomenon but it is also important for the
survival of living organisms. Neuronal systems may
use chaos for the organization of nontrivial behavior
such as the irregular hunting swimming of Clione
and for the organization of higher brain functions.

e The improvement in yield, stability and longevity
of multielectrode recordings, new imaging tech-
niques, combined with new data processing meth-
ods, has allowed neurophysiologists to describe
brain activities as the dynamics of spatio-temporal
patterns in some virtual space. We think that this
is a basis for the building of a bridge between tran-
sient large-scale brain activity and animal behavior.



And finally we hope that as we pursue the investigation
of dynamical principles in neuroscience, we will eventu-
ally not see these two questions apart from each other but
as an integrated approach to deep and complex scientific
problems.
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Glossary

AL antennal lobe, the first site of sensory integration from
the olfactory receptors of insects.

AMPA receptors transmembrane receptor for the neu-
rotransmitter glutamate that mediates fast synaptic
transmission.

bumps spatially localized regions of high neural activity.

CA1 subsystem of the hippocampus with a very active role
in general memory.

carbachol chemical that induces oscillations in in wvitro
preparations.

Clione marine mollusk whose nervous system is frequently
used in neurophysiology studies.

CNS central nervous system.

CPG central pattern generator, a small neural circuit that
can produce stereotyped rhythmic outputs without
rhythmic sensory or central input.

depolarization any change in the neuron membrane poten-
tial that makes it more positive than when the cell is
in its resting state.

dynamic clamp a computer setup to insert virtual conduc-
tances into a neural membrane typically used to add
synaptic input to a cell by calculating the response cur-
rent to a specific presynaptic input.

GABA neurotransmitter of typically inhibitory synapses,
they can be mediated by fast GABA(A) or slow
GABA(B) receptors.

heteroclinic loop a close chain of heteroclinic trajectories.

heteroclinic trajectory trajectory that lays simultane-
ously on the stable manifold of one saddle point (or
limit cycle) and the unstable manifold of another sad-
dle (or limit cycle) connecting them.

H-H Hodgkin-Huxley neuron model.
HVC High vocal center in the brain of songbirds .

hyperpolarization any change in the neuron membrane po-
tential that makes it more negative than when the cell
is in its resting state.
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interneurons neurons whose axons remain within a partic-
ular brain region as contrasted with projection neurons
which have axons projecting to other brain regions, or
with motoneurons that innervate muscles.

IO inferior olive, a neural system which is an input to the
cerebellar cortex presumably involve in motor coordi-
nation.

KC Kenyon cells, interneurons of the mushroom body of in-
sects.

Kolmogorov-Sinai entropy a measure of the degree of pre-
dictability of further states visited by a chaotic trajec-
tory started within a small region in a state space.

LP lateral pyloric neuron of the crustacean stomatogastric
CPG.

LTD long term depression, activity-dependent decrease of
synaptic efficacy transmission.

LTM long term memory.

LTP long term potentiation, activity-dependent reinforce-
ment of synaptic efficacy transmission.

Lyapunov exponents \; the rate of exponential divergence
from a perturbed initial conditions in the j-th direc-
tion of the state space. For trajectories belonging to a
strange attractor the spectrum JA; is independent of the
initial conditions and characterizes the stable chaotic
behavior.

MC micro-circuits, circuits composed of a small number of
neurons which perform specific operational tasks.

mushroom body lobed subsystem of the insect brain in-
volved in classification, learning and memory of odors.

mutual information a measure of the independence of two
signals X and Y, i.e., the information of X that is
shared by Y. In the discrete case, if the joint prob-
ability density function of X and Y is p(z,y) = P(X =
z,Y = y), the probability density function of X alone
is f(z) = P(X = x), and the probability density func-
tion of Y alone is g(y) = P(Y = y), then the mu-
tual information of X and Y is given by: I(X,Y) =
>y P(@,y) logy [p(@,y)/ f(2)g(y)]-

neuromodulator a substance other than a neurotransmit-
ter, released by neurons that can affect the intrinsic and
synaptic dynamics of other neurons.

neurotransmitter chemicals that are used to relay at the
synapses the signals between a neurons.

pacemaker neuron or circuit that has endogenous rhythmic
activity.

PD pyloric dilator neuron of the crustacean CPG.

phase synchronization or (locking), the onset of a cer-
tain relationship between the phases of coupled self-
sustained oscillators.

place cell a type of neuron found in the hippocampus that
fires strongly when an animal is in a specific location in
an environment.

plasticity changes that occur in the organization of synaptic
connections or intracellular dynamics.

PN projection or principal neurons.

Purkinje cell main cell type of the cerebellar cortex.



RA premotor nucleus of the songbird brain.

receptor a protein on the cell membrane that binds to a
neurotransmitter, neuromodulator or other substances,
and initiates the cellular response to the ligand.

receptor neuron sensory neuron.
SHS stable heteroclinic sequence.
SN sensory neurons.

SSM sequential spatial memory.

statocyst balance organ in some invertebrates that consists
of a sphere-like structure containing a mineralized mass
(statolith) and several sensory neurons also called sta-
tocyst receptors.

STDP Spike timing dependent plasticity.
STM short term memory.

structural stability it means that small changes in the pa-
rameters do not change the topology of the phase por-
trait in the state space.

synapse specialized junction through which neurons sig-
nal to one another. At least three different types of
synapses: excitatory, inhibitory chemical synapses and
electrical synapses or gap-junctions.

synfire chain the propagation of synchronous spiking activ-
ity in a sequence of layers of neurons belonging to a
feed-forward network.

WLC winnerless competition principle for the nonau-
tonomous transient dynamics of neural systems receiv-
ing external stimuli and exhibiting sequential switching

among temporal “winners”’.
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