
1 Introduction

1.1 Most problems in physics cannot be solved exactly.
The few that that can be are solved by exploiting symmetries. The original exam-
ple is the Kepler problem of a planet moving around the Sun under the influence
of gravity. The symmetry under rotations allows this problem to be reduced to a
one dimensional problem. Another example is the hydrogen atom where again the
Schrodinger equation can be reduced to a one dimensional equation using spheri-
cal symmetry.

1.2 The fundamental laws of physics themselves have certain
symmetries, which lead to conservation laws.

Examples are conservation laws for energy, momentum and angular momentum.
We understand now that these symmetries are properties of space-time.

1.3 At a deeper level, symmetries determine the laws of physics.
Symmetries like general co-ordinate invariance and gauge invariance that not only
help us find solutions to physical problems, but determine the dynamical laws of
physics themselves such as the Einstein, Dirac and Yang-Mills equations. These
are the most important cases, but their mathematical study lies beyond this course.
I will glimpses of these deeper ideas when possible.

1.4 The basic mathematical idea is a group.

We will give a precise axiomatic definition later. For now, a group describes the
transformations (symmetries) of some physical or geometrical object. For exam-
ple an equilateral triangle ABC can be rotated around its center by 120 degrees to
get to an equivalent situation, changing only the labelling of the vertices to BCA
If this do it again we get CAB. A third iteration gets us back to the same trian-
gle, even labelled the same way. The set of these transformations is a group with
three elements: the identity 1 (which does nothing), an element ωwhich rotates
by 120degrees, an element ω2 which rotates by 240 degrees. The condition

ω
3 = 1
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expresses the fact that a rotation through 360degrees is the same as the identity.
This group

{
1,ω,ω2} is called Z3, the cyclic group of three elements. This is an

example of an abelian group, one in which the product of two elements does not
depend on the order of multiplication. Abel was a Norwegian mathematician who,
along with Galois, invented the idea of a group.

Exercise 1. What is the symmetry group of rotations of a square? Of a rotations
of a regular polygon of n sides? Of rotations of a circle?

1.5 In general ab ∕= ba in a group
For example, a rigid body (like a book) can be rotated around the x-axis, y-axis or
z-axis. It turns out that such rotations do not commute: a rotation by 90 degrees
around the x−axis followed by one around the y− axis is the not the same thing
as first rotating around the y−axis first and then the x-axis. (Try this with a book).

1.6 A related idea is that of a Lie algebra
They are named for Sophus Lie,a Norwegian mathematician. A Lie algebra de-
scribes infinitesimal symmetries, like rotations through a tiny angle. . If you look
at the difference between two such infinitesimal rotations around xand y axes, it is
a small rotation around the z axis!. This is expressed by commutation relations

LxLy−LyLx = Lz

etc. Such relations define a Lie algebra. These have turned out out to be very
important in quantum physics. We will study them in some detail.

1.7 Matrices are a useful way of thinking about groups and
algebras

Many physical quantities (mass, energy) are represented by numbers. But we have
found that rotations cannot be described by numbers: ab ∕= ba. But matrices can
do the job. For example, the rotations through 90 degrees around the x,y,z axes
are represented by the matrices

a =

⎛⎝ 1 0 0
0 0 1
0 −1 0

⎞⎠ , b =

⎛⎝ 0 0 −1
0 1 0
1 0 0

⎞⎠ , c =

⎛⎝ 0 1 0
−1 0 0
1 0 1

⎞⎠
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Exercise 2. Find the multiplication table of the group generated by these matrices;
that is, the set of all matrices that can be obtained by mutiplying them repeatedly.

1.8 Galois and Abel discovered groups while solving an age old
problem: which polynomial equations can you solve alge-
braically?

Everyone knows that the quadratic equation

ax2 +bx+ c = 0

has the two solutions

x =
−b±

√
b2−4ac

2a
.

In the middle ages, it was found that cubic and fourth degree equations can
also be solved in a similar way, in terms of cube roots and fourth roots. The
formulas are much more complicated though. But no one cluld find a solution
for the general fifth order equation in terms of fifth roots, and similarly for higher
order equations. But special cases could be solved that way. Galois, continuing
ideas of Abel, showed that in fact this is impossible: there are fifth order equations
that cannot be solved even if you could calculate fifth roots. There are similar
problems in quantum physics open still: the Schrodinger equations can be solved
exactly and others not. How can we tell which are solvable and which cannot
be? I have some ideas on this which I will mention later in the course. Can
computational complexity be approached this way? P ∕= NP?

1.9 The Vision of Felix Klein
Before they became standard tools in physics, groups became important in geome-
try through a visionary research program of Felix Klein. It is obvious that a sphere
has symmetry under rotations. Also, a lattice of points on the plane separated by
equal steps, has a symmetry under translations and some rotations. Klein saw
a way to extend these ideas to non-Euclidean geometries such as a hyperboloid.
These led Sophus Lie, Emma Noether, Poincare and others to study deeper con-
nections between groups and physics. It was not until the discovery of relativity
and quantum mechanics that the deep role that symmetry plays in physics became
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clear. A classic text by Hermann Weyl was important in bridging physics and

mathematics. The book

Indra’s Pearls; The Vision of Felix Klein by D. Mumford et. al.

gives much more detailed account of the mathematical side of this story. Also
many pretty pictures at the book’s website

http://klein.math.okstate.edu/IndrasPearls/

1.10 Modern physics needs things more general than groups:
quantum groups, Hopf algebras, Yangians.

Their mathematical meaning as well as physical consequences are still mysterious.
As before they explain why Bethe could solve certain really difficult problems
(models for magnetism). We would like to systemically solve problems, instead
of relying on clever guesses like the Bethe ansatz. This is beyond the scope of this
course, but perhaps some of you will join in this quest.

1.11 Cultural references to symmetries can be found long be-
fore physics.

Here is an example, from a Buddhist manual on meditation:
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In the glistening surface of each pearl are reflected all the other pearls

In each reflection, again are reflected all the infinitely many other
pearls,

So that by this process , reflections of reflections continue without
end.

Highly symmetric geometric patterns can be found in mosaics of many mosques,
on the Taj Mahal as well as in Cathedrals of Europe. We seek symmetry every-
where in life. Even beyond.
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