
Lecture 3

1. LIE ALGEBRAS

1.1. A Lie algebra is a vector space along with a map [., .] : L ×L →L
such that,

[αa+βb,c] = α[a,c]+β [b,c] bi− linear

[a,b] =−[b,a] Anti− symmetry

[[a,b],c]+ [[b,c],a][[c,a],b] = 0, Jacobi identity

We will only think of real vector spaces. Even when we talk of matrices
with complex numbers as entries, we will assume that only linear combina-
tions with real combinations are taken.

1.1.1. A homomorphism is a linear map among Lie algebras that preserves
the commutation relations.

1.1.2. An isomorphism is a homomorphism that is invertible; that is, there
is a one-one correspondence of basis vectors that preserves the commuta-
tion relations.

1.1.3. An homomorphism to a Lie algebra of matrices is called a represe-
tation. A representation is faithful if it is an isomorphism.

1.2. Examples.
(1) The basic example is the cross-product in three dimensional Eu-

clidean space. Recall that

a×b =

∣∣∣∣∣∣
i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
The bilinearity and anti-symmetry are obvious; the Jacobi identity
can be verified through tedious calculations. Or you can use the
fact that any cross product is determined by the cross-product of the
basis vectors through linearity; and verify the Jacobi identity on the
basis vectors using the cross products

i× j = k, j×k = i, k×i= j

Under many different names, this Lie algebra appears everywhere
in physics. It is the single most important example of a Lie algebra.
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(2) The commutator of matrices is the other important example:

[A,B] = AB−BA

Again, anti-symmetry is obvious. The Jacobi identity follows from
the associativity of matrix multiplication. We will see that this is the
infinitesimal version of the group GL(n).

(3) Various sub-algebras of the algebra of matrices provide the other
important examples. The product of anti-symmetric matrices need
not be either symmetric or antisymmeric:

(AB)T = BT AT = BA.

But the commutator of anti-symmeric matrices is always anti-symmetric

[A,B]T = (AB−BA)T = BA−AB =−[A,B].
This Lie algebra is the infinitesimal version of the orthogonal group
O(n) :recall that an orthogonal matrix that is infinitesimally close to
the identity is of the form 1+A with AT =−A. We will call this Lie
algebra o(n).

(4) Similarly, the commutator of anti-hermitean matrices is anti-hermitean.
This Lie algebra u(n) is the infinitesimal version of the group of uni-
tary matrices U(n).

(5) The property of being traceless is preserved under the commutator.
Thus we have the Lie algebra of traceless anti-hermitean matrices
su(n) which is the infinitesimal version of the group SU(n) of uni-
tary matrice of determinant one. Recall that if a matrix is infinites-
imemally close to one, det(1+A)≈ 1+ trA.

(6) The Lie algebra o(3) is in fact the same as the cross-product on three
dimensional vectors. For, any antisymetric matrix can be written as

A = A12S12 +A23S23 +A13S13,

S12 =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ , S23 =

⎛⎝ 0 0 0
0 0 1
0 −1 0

⎞⎠ , S13 =

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠
The commutation relations

[S23,S13] = S12, [S13,S12] = S23, [S12,S23] = S13

are isomorphic to those above under the correspondence i 7→ S23, j 7→
S13,k 7→ S12.

(7) Moreover the Lie algebra su(2) is isomorphic to o(3). Any trace-
less anti-hermitean matrix can be written as a linear combination of
Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)



3

The correspondence S12 7→ i
2σ3, S23 7→ i

2σ1, S13 7→ i
2σ2 gives

an isomorphism. This is fundamental to understanding the spin of
an electron.

(8) The Poisson bracket of classical mechanics was the first example
of a Lie algebra: this is where Lie discovered it. Recall that ob-
servables of classical mechanics are functions of positions and mo-
menta. For a single degree of freedom (for simplicity) the Poisson
bracket is defined as

{A,B}= ∂A
∂ p

∂B
∂q
− ∂A

∂q
∂B
∂ p

Verifying the Jacobi identity for this is a heart-warming exercise.
For more than one degree of freedom we sum over each pair of
conjugate variables:

{A,B}= ∑
i

(
∂A
∂ pi

∂B
∂qi
− ∂A

∂qi

∂B
∂ pi

)
(9) In particular we have the canonical commutation relations (also

called the Heisenberg algebra)

{p,q}= 1, {p,1}= {q,1}= 0.

This is an example of a nilpotent algebra: if we take repeated com-
mutators, the brackets vanish.

(10) The Poisson brackets of the components of angular momentum pro-
vide yet another physically important realization of the Lie algebra
o(3)

L = r×p

{L1,L2}= L3, {L2,L3}= L1, {L3,L1}= L2

This isomorphism arises because the canonical transformations gen-
erated by angular momentum are rotations.We can regard the earlier
examples in terms of matrices as representations of this Lie algebra
of the angular momentum components.

(11) A Lie algebra that is commutative is trivial: the bracket must vanish.
Thus, to be interesting a Lie algebra must be non-abelian.

(12) The only Lie algebra of dimension one is the trivial algebra.
(13) The only non-abelian Lie algebra of dimension two can be written

as
[e0,e1] = e1

by a choise of basis. Find a representation for it in terms of 2× 2

matrices. Answer: e0 7→
(

1 0
0 −1

)
,e1 7→

(
0 1
0 0

)
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(14) There are a handful of three dimensional Lie algebras. We already
saw o(3)≈ su(2)in its various guises as the most important of all Lie
algebras; it is three dimensional because there are three independent
basic elements in it. Another three dimensional Lie algebra, which
is not isomorphic to this one, is called sl(2,R)

[e1,e2] =−e3, [e3,e2] = e1, [e3,e1] = e2.

The sign of the first commutator is what distinguishes this from
o(3).

(15) Find an isomorphism of sl(2,R) with the space of traceless real 2×2
matrices.

(16) Also, find a set of three functions of position and momentum with
Poisson brackets isomorphic to sl(2,R).

(17) In addition to matrix algebras such as su(n),so(n) there is also a
finite sequence of exceptional Lie algebras. Many physicists have
tried hard to explain various physical phenomena in terms of ex-
ceptional Lie algebras because they are so mathematically beauti-
ful. But nothing has worked. We will stay away from them in this
course.

2. LIE GROUPS

2.1. A Lie group is a group in which there is a co-ordinate system such
that the multiplication and inverse are differentiable functions. In other
words, a Lie group is a manifold along with a multiplication and inverse are
differentiable functions. (If you don’t know what a manifold is don’t worry
about this).

2.1.1. A discrete group like the set of integers, or the set of of rationals, or
a finite group like the permutation groups, arenot Lie: there is no way to
differentiate group elements.

2.1.2. GL(n,R) is a Lie group. The matrix elements themselves provide a
co-ordinate system. The condition detg ∕= 0 leaves behind an open neigh-
borhood of Rn2

.

2.1.3. U(n) is a Lie group. We have to solve the constraints defining the
group

g† = g−1

The matrix elements themselves are no longer a co-ordinate system: we
need to solve these rather complicted nonlinear equations.The substitution

g = ea



5

allows us to solve them. The exponential of a matrix is defined by an
infinite series in the same way as the exponential of a number

ea = 1+a+
a2

2!
+

a3

3!
+ ⋅ ⋅ ⋅

It satisfies the conditions

(ea)† = ea†
, (ea)−1 = e−a.

(Prove these.) The tricky part is that

eaeb ∕= ea+b

unless [a,b] = 0. There is a much more complicated formula that replaces
this which we will come to soon. But just the above two identities are
enough to solve the unitarity condition.

2.1.4. If a† = −a, then ea is a unitary matrix. The matrix elements of the
anti-hermitean matrix provide a co-ordinate system on U(n) in the neigh-
borhood of the identity. More precisely, define the norm of an anti-hermitean
matrix by ∣a∣2 = tra†a. As long as ∣a∣< π, the exponential function is injec-
tive (i.e., ea completely defines a within the disc ∣a∣< π). This establishes a
co-ordinate system around the origin. Next we establish a co-ordinate sys-
tem around the roots of unity by setting g = e

2πi
n keb, for k = 0,1, ⋅ ⋅ ⋅n− 1

again with ∣b∣ < π. It is possible to show ( we will omit the detials of the
construction and the proof) these n co-ordinate systems cover all over U(n) :

2.1.5. Every unitary matrix can be written in the form g = e
2πi
n keb for some

k = 0,1 ⋅ ⋅ ⋅n−1 and b† =−bwith ∣b∣< π.. Of course most parts of U(n)are
covered by more than one of these co-ordinate systems: the changes of
variables from one system to the other is differentiable. This is similar to
the way that a polar co-ordinate system cannot cover all of the plane: the
origin and the line θ = 0 have to be excluded. But two polar systems with
different centers and axes can cover all of the plane; in regions covered by
both systems we can differentiably change varaibles among them

2.2. If a† =−a and tra= 0,then ea ∈ SU(n). The point is that detea = etra.
This identity is obvious for matrices that can be diagonalized (Prove it!).
More gnerally it follows by continuity as the determinant, trace and expo-
nential are all continuous functions and matrices that cannot be diagonal-
ized can be perturbed infinitesimally and made diagonalizable. This makes
SU(n) into a Lie group by similar arguments.
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2.3. If aT = −a, then ea ∈ SO(n). Recall that anti-symmetric matrices
have zero trace. Hence detea = etra = 1. It is not possible to express Parity
as the exponential of an anti-symmetric matrix.

2.4. Every Lie group determines a Lie algebra. More than one Lie group
might lead to the same Lie algebra. For example, SU(2)and SO(3) yield the
same Lie algebra, although they are not isomprphic as groups.

3. FROM LIE GROUPS TO LIE ALGEBRAS

3.1. The set of elements infinitesimally close to the identity in a Lie
group form a Lie algebra. For matrix groups like GL(n,R),SU(n),SO(n)above
we put

g = ea, h = eb

with a,b having infinitesimally small parameters, we can compute

ea ≈ 1+a+
a2

2
+O(a3)

g−1 = e−a ≈ 1−a+
a2

2
+O(a3)

gh≈ 1+a+b+
a2 +2ab+b2

2
+O(a3,b3)

g−1h−1 = 1−a−b+
a2 +2ab+b2

2
+O(a3,b3)

ghg−1h−1 = 1+[a,b]+O(a3,b3)

(Calculate each line out and verify this.) Thus the lack of commutativity
of group multiplication taken to second order determines the commutator.

3.2. The Lie algebra of U(n) is u(n),the set of anti-hermitean matrices;
that of SU(n) is su(n), the traceless anti-hermitean matrices.

3.3. The Lie algebra of SO(n) is o(n) the set of anti-symmetric matrices.
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4. FROM LIE ALGEBRAS TO LIE GROUPS

The passage from Lie groups to Lie algebras is a kind of differentiation.
The converse is a kind of non-commutative integration: you should expect
this to be much harder. It is actually beyond the scope of this course. The
material below is just a guide to those who want to venture further. The
book by M. Hausner and J. T. Schwartz Lie Groups and Lie Algebras is
quite good for this topic. A purely algebraic proof of the BCH lemma is in
the book Free Lie Algebras by Reuttenauer.

4.1. The Lie bracket completely determines the group multiplication.
In the exponential co-ordinate system, the multiplication of group elements
follows from taking repeated commutators and adding them up in a partic-
ular way. The key is a formula that allows us to multiply the exponentials
of matrices that do not commute, called the

4.2. The Baker-Campbell-Hausdorff Formula.

eaeb = ea+
´ 1

0 dtψ
(

eâetb̂
)

b

Here

ψ(x) =
∞

∑
n=0

Bn
xn

n!
≡ x logx

x−1
is the generating function for Bernoulli numbers. We denote the opera-

tion of taking a commutator by âb≡ [a,b] (this is also called ada in mathe-
matics books) so that â2b≡ [a, [a,b]] ,â3b = [a, [a, [a,b]]] etc.

For the first few terms

eaeb = ea+b+ 1
2 [a,b]+

1
12 ([a,[a,b]]+[b,[b,a])− 1

24 [b,[a,[a,b]]]+⋅⋅⋅

To prove this we will need a series of intermediate results

Lemma 1.

eaba−a = eâb≡ b+[a,b]+
1
2!
[a, [a,b]]+

1
3!
[a, [a, [a,b]]]+ ⋅ ⋅ ⋅

Proof. Let b(t) = etabe−ta,b(0) = b.Then

b(t+ε)= e(t+ε)abe−(t+ε)a = eεaetabe−tae−εa≈ (1+εa)b(t)(1−εa)≈ b(t)+ε[a,b(t)]

up to terms second order in ε.Thus

d
dt

b(t) = [a,b(t)] = âb(t).

Regarding â as a linear operator on b,the solution is

b(t) = etâb.
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□

Lemma 2. Let a(t) be a function of a real variable valued in the Lie alge-
bra. Then , with φ(z) = ez−1

z = 1+ 1
2!z+

1
3!z

2 + ⋅ ⋅ ⋅

,
d
dt

ea(t) = φ(−â(t))
da(t)

dt
.

Proof. Define g(s, t) = esa(t) . Then

A(s, t) = g−1 ∂g
∂ s

= a(t)

by the definition of the exponential. Define

B(s, t) = g−1 ∂g
∂ t

= e−sa(t)∂esa(t)

∂ s
.

We can verify the identity

∂B
∂ s
− ∂A

∂ t
+[A,B] = 0

which now becomes

∂B
∂ s
− ∂a(t)

∂ t
+[a(t),B] = 0

or

∂B
∂ s

=−â(t)B+ ȧ, B(0, t) = 0

The dot denotes differentiation w.r.t. t.
We can think of tas a constant and solve this as a power series in s:

B(s, t) = sȧ+
s2

2!
(−â(t))ȧ+ ⋅ ⋅ ⋅ s

n

n!

(
−â(t)

)n−1
ȧ

Putting s = 1in this we get the result we want. □

Lemma 3. Let eaetb = ec(t).Then

e−c(t) d
dt

ec(t) = b

Proof. Just calculate:
d
dt

ec(t) = ea d
dt

etb = eaetbb = ec(t)b.

□
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Now we can prove the BCH formula

Proof. Using the Lemmas 2,3 above

φ(−ĉ(t))ċ = b

Now the function ψ(z) = z logz
z−1 satisfies

ψ(z)φ(− logz) = 1

so that

dc
dt

= ψ(eĉ(t))b

If we integrate this differential equation (recall the boundary condition
c(0) = a )and evaluate it at t = 1, we get the result claimed. □

All this leads up to a fundamental theorem of Lie.

4.3. A Lie algebra determines a unique simply connected Lie group.
Every Lie group with this Lie algebra is a quotient of this simply con-
nected Lie group by a countable abelian group. To understand this result
you have to know a bit of algebaic topology: a simply connected space. The
most important physical application is to spin which we will discuss in de-
tail later.


