
Lecture 4

1. THE REPRESENTATIONS OF o(3)

The book Principles of Quantum Mechanics by R. Shankar has a more
detailed discussion of this topic.

Symmetry transformations form a group. Infinitesimal transformations
form a Lie algebra. In quantum mechanics, symmetry transformations are
represented by unitary matrices: the states of the system change but their
length must not. The same symmetry can have quite different consequences
depending on how it is represented on the states. We will work out all the
unitary representations of the Lie algebra of rotations. They can by broken
up into direct sums of certain irreducible representations (indivisible pieces)
. Each irreducible representation is determined by the largest allowed value
of angular momentum along some (say third) direction. The trivial case is
when the angular momentum vanishes. The next is when the largest angular
momentum is h̄

2 , then h̄, after that 3h̄
2 and so on. Each elementary particle of

nature falls into one of these irerducible representation.
The representation theory of so(3)forms the template on which that of

other Lie algebras is constructed. By now there is a complete understand-
ing of unitary representation of all the compact Lie algebras: i.e., algebras
which admit a positive scalar product such as so(3). Modern theoretical
physics also raises questions involving infinite dimensional Lie algebras
about which very little is known as yet.

1.1. Infinitesimal rotations around the co-ordinate axes satisfy.

[S12,S23] = S13, [S23,S13] = S12, [S13,S12] = S13

As we saw before, these infinitesimal rotations are 3× 3antisymmetric
matrices

S12 =

 0 1 0
−1 0 0
0 0 0

 , S23 =

 0 0 0
0 0 1
0 −1 0

 , S13 =

 0 0 1
0 0 0
−1 0 0


1.1.1. A finite rotation is an orthogonal matrix of the form eθ12S12+θ23S23+θ13S13 ,
the θ ’s being the angles of rotation in each co-ordinate plane.

1.1.2. Any triplet of matrices (K12,K23,K13) satisfying these commutation
relations is a representation of the rotation algebra.
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1.1.3. The representation is unitary if the K’s are anti-hermitean. In this
case the exponentials eθ12K12+θ23K23+θ13K13 are a unitary representation of
the group of rotation. It is always much easier to work with inifiniteismal
transformations instead of finite ones. Whenever possible we will work
with the Lie algebra rather than the group. A representation of a Lie al-
gebra that leads to a unitary representation for the group is called unitary
representation.

Physicists like to work with hermiean rather than anti-hermitean matri-
ces: they represent observables in quantum mechanics. This is easy to ar-
range,as a hermitean matrix is simply i times an anti- hermiean matrix. The
corresponding observables are the components of angular momentum in the
case of rotations. Thus, putting iK12 = J1etc. we get

1.1.4. The components of angular momentum are hermitean matrices sat-
isfying the commutation relations.

[J1,J2] = iJ3, [J2,J3] = iJ1, [J3,J1] = iJ2.

We will find all possible solutions to these conditions:all possible unitary
representain of the rotation Lie algebra. Then we will know all possible
ways a system can posses angular momentum. But a change of basis does
not really give us a new set of angular momentum matrices.

1.1.5. Two representations are equivalent if there is a unitary matrix U such
that

UJ1U† = J̃1, UJ2U† = J̃2, UJ3U† = J̃3

. We are interesting in finding all possible representations up to this equiv-
alence. Now, given two repesentations M and N, we can always find a third
by taking the direct sum of matrices

J =
(

M 0
0 N

)
or

J =M⊕N

The resulting representation is said to be reducible, as there is an invari-

ant subspace (say states of the form
(

ψ

0

)
) that by itself is a representa-

tion of the angular momentum algebra.

1.1.6. An irreducible representation is one that has no smaller representa-
tion contained in it.
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1.1.7. Any unitary representation of the angular momentum algebra is a
direct sum of irreducible representations. Suppose a representation had an
invariant subspace. Then its orthogonal complement would also be invari-
ant. We can write the representation as a direct sum of these two sub-
representations. Then we repeat the argument on each of these spaces, until
we get a situation with no invariant subspaces.

The projection operator to an invariant subspace commutes with J.[
J,

(
1 0
0 0

)]
= 0.

This leads to an important criterion:

1.1.8. Schur’s Lemma: A representation is irreducible if and only if there
is no operator that commutes with all the components of angular momen-
tum (except a multiple of the identity). In summary, it is enough to find all
the irreducible representations (up to equivalence) of the angular momen-
tum algebra. Any representation is equivalent to a sum of such irreducible
representations. Remember that more than one copy of a given irreducible
representation can appear in this sum.

1.2. The Irreducible Representatons of o(3). The operator

J2 = J2
1 + J2

2 + J2
3

has the classical meaning of the square of the magnitude of angular mo-
mentum. Being a scalar, it must be unchanged by rotations. In quantum
mechanics it is a matrix, so it is hard to think of it as in general as the length
of any vector. Still, it is true that

1.2.1.
[J2,J] = 0.

.

Proof. Let us prove it for one component: the argument is the same for the
others.

[J2
1 + J2

2 + J2
3 ,J3] = J1[J1,J3]+ [J1,J3]J1 + J2[J2,J3]+ [J2,J3]J2

=−i(J1J2 + J2J1)+ i(J2J1 + J1J2) = 0.

�

Schur’s Lemma this tells us that
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1.2.2. In an irreducible representation, J2 is a multiple of the identity. Be-
ing a hermitean matrix, there is a basis in which J3 diagonal. We cannot
diagonalize J1 or J2 in the same basis since they do not commute with J3.
Let us denote the eigenvalues of J3 by m. (Not to be confused with mass.)

J3|m >= m|m >

We can choose these states to be orthonormal:

< m|m′ >= δmm′.

What effect do J1 and J2have on these eigenstates? It is useful to form
combinations

J± = J1± iJ2.

Because J1,J2are hermitean, these two combinations are conjugates of
each other:

J± = J†
∓.

The commutation relations of angular momentum can be written as

[J3,J±] = J±

[J+,J−] = 2J3

Moreover

J−J+ = J2
1 + J2

2 + i[J1,J2] = J2
1 + J2

2 − J3

so that

(1.1) J2 = J3(J3 +1)+ J−J+.

These identities are about to become very useful.

1.2.3.
J3J+|m >= (m+1)J+|m > .

.

Proof. Just calculate:

J3J+|m >= J+J3|m > +[J3,J+]|m >= mJ+|m > +J+|m > .

�
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This means that J+ is a “raising operator”: it increases the eigenvalue of
J3 by one step. as long as J+|m >6= 0. But we cannot increase the value of
m for ever: J2 is equal to J2

3 plus a positive operator:

J2
3 ≤ J2.

Since J2 is a multiple of the identity in an irreducible representation, J2
3

is bounded by the value of J2. Repeated application of J+ must eventually
give zero, when it hits the state with the largest eigenvalue of J3. Let us call
this largest eigenvalue j.

In olden days, eigenvalues of Lie algebra generators were called “weights”.
So

1.2.4. A state satisfying J3| j >= j| j >, J+| j >= 0 is called a “highest
weight state”. Using (1.1) we see that

J2| j >= j( j +1)| j > .

But, J2 is a multiple of the identity:

J2 = j( j +1).
In exactly the same way we can see that J−is a lowering operator

J3J−|m >= (m−1)J−|m >

The lowest eigenvalue j′ of J3 occurs for a state annihilated by J−;i.e., a
lowest weight state sastisfies

J−| j′ >= 0.

Using the identity

J2 = J3(J3−1)+ J+J−we
can show that

J2| j′ >= j′( j′−1)| j′ > .

Thus

j( j +1) = j′( j′−1)
or

j′ =− j.
We just solved the eigenvalue problem for J3 :.
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J3|m >= m|m >, for m = j, j−1, · · ·− j.

There are 2 j + 1 such states, which form a basis in the Hilbert space of an
irreducible representation. If the space is odd dimensional jis an integer.
Other wise it is a half-integer. No other values are allowed.

1.2.5. An irreducible representation of the angular momentum algebra is
determined by a number jwhich can take values 0, 1

2 ,1, 3
2 , · · · . The dimen-

sion of the representation is 2 j + 1. An orthonormal basis is given by the
eigenstates of J3.

J3|m >= m|m >, for m = j, j−1, · · ·− j.

To complete the story we must determine the matrix elements of J1,J2
(or equivalently J±)in this basis. Suppose

J+|m >= cm|m+1 > .

From hermiticity

cm =< m+1|J+|m >=< m|J−|m+1 >∗

In other words

J−|m+1 >= c∗m|m >

or

J−|m >= c∗m−1|m−1 > .

Now

J2|m >= j( j +1)|m >

since it is a multiple of the identity. Using (1.1)

j( j +1) = m(m+1)+ |cm|2.
Or

|cm|=
√

j( j +1)−m(m+1).

It is possible to choose cmto be real: the phase can be absorbed into the
definition of the basis vectors |m > . We get
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Theorem 1. There is an irreducible representation of the Lie algebra o(3)
for each value of the dimension n = 0,1, · · · The value of J2 is j( j+1)where
2 j+1 = n. There is an orthonormal basis |m >, for m = j, j−1, · · ·− j such
that

J3|m >= m|m >,

J+|m >=
√

j( j +1)−m(m+1)|m+1 >, J−|m >=
√

j( j +1)−m(m−1)|m−1 >

Let us work out special cases.

Corollary. The case j = 0 is the trivial representation with zero angular
momenum.

Corollary. When j = 1
2 we get a representation in terms of Pauli matrices.

J3 =
1
2

(
1 0
0 −1

)
=

1
2

σ3, J1 =
1
2

(
0 1
1 0

)
=

1
2

σ1, J2 =
1
2

(
0 −i
i 0

)
=

1
2

σ2.

Corollary. When j = 1we get

J3 =

 1 0 0
0 0 0
0 0 −1

 , J−=

 0 0 0√
2 0 0

0
√

2 0

 , J+ =

 0
√

2 0
0 0

√
2

0 0 0


This is in fact the representation in terms of rotation matrices we started

with: the defining representation. It looks different only because we are
using a different basis, which diagonalizes iS12. Find a change of basis
such that

J3 = U (iS12)U†

and verify that J1 = U(iS23)U† and J2 = U(iS13)U†.

Exercise. Find the matrices representing angular momentum for j = 3
2 and

for j = 2.

2. ORBITAL ANGULAR MOMENTUM

There is a representation of o(3) on functions of position:

L = r×p ,p =−i∇.

This representats orbital angular momentum. It is clear that the distance
r commutes with it. The components of L depend only on the angular
variables. For example,
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L3 =−i
∂

∂φ

The simultaneous eigenfunctions of L2,L3 are the spherical harmonics
Ylm(θ ,φ). More on this in Shankar’s book.

3. SPIN

In quantum mechanics it is possible for a particle to have angular mo-
mentum even when its momentum is zero. The total angular momentum is
the sum of orbital angular momentum and an intrinsic angular momentum,
also called spin.

J = L+S
[Li,S j] = 0

[S1,S2] = iS3

etc. Because S is by itself a representation of the angular momentum alge-
bra,

S2 = s(s+1)
in an irreducible representation of spin.
The simplest case is when s = 1

2 :

S1 =
1
2

(
0 1
1 0

)
S2 =

1
2

(
0 −i
i 0

)
S3 =

1
2

(
1 0
0 −1

)
The electron, proton, neutron are all examples of this.

4. SPIN-ORBIT COUPLING

An electron orbiting the nucleus of a hydrogen atom produces a small
magnetic field. Also, it has an intrinsic magnetic moment that points along
its spin. Thus there is a small correction to the energy of an electron due to
the coupling of its magnetic moment to its own magnetic field.

H1 = µσ ·L
which must be added to the usual hamiltonian H0 of the atom. Since

[H0,L] = 0 = [H0,σ ]
the correction term can be diagonalized separately and added to the eigneval-

ues of H0. Now
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σ ·L =
1
2

(σ +L)2− σ2

2
− L2

2
=

j( j +1)− l(l +1)
2

− 3
4

Although L is not conserved any more, L2 still is conserved. Thus the
energies are

En + µ

[
j( j +1)− l(l +1)

2
− 3

4

]
where En are the usual Rydberg energies which only depend on the prin-

cipal quantum number. The constant µis proprtional to the fine structure
constant e2

h̄c .

5. LIE ALGEBRAS OF COMPACT SIMPLE TYPE

It is crucial that there is a positive operator L2 = L2
1 +L2

2 +L2
3 which com-

mutes with all the Li. Algebras of this type are much easier to understand.

5.1. A Lie algebra in which there is a positive quadratic form that com-
mutes with all the basis elements is said to be of compact type.

5.2. A compact Lie algebra L is simple if it cannot be written as the
sum of two other non-trivial Lie algebras. Simple does not mean easy to
understand here: it means instead that the Lie algebra cannot be broken up
into smaller pieces.

5.3. Any compact Lie algebra is a sum of simple Lie algebras. We
won’t prove this fact here.

5.4. Cartan found all the compact simple Lie algebras. su(n),o(n) form
two infinite series of such Lie algebras. There is one more infinite series
(called Dn) that are related to matrices with quaternionic entries. We won’t
say much about the last sequence in this course. But they do have various
uses in physics. We will develop the theory of representations of unitary
and orthogonal algebras later.

5.4.1. The Exceptionals. In addition there are some exceptional Lie alge-
bras that do not fall into such an infinite sequence of matrices (with names
like G2,F4,E6,E7,E8) . Many mathematicians and physicists love them
precisely because they so not fall into a pattern : every so often someone
has a theory unifying everything in terms of one of these exceptional Lie
algebras. None of them have worked so far.
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5.5. Rank of a Lie Algebra. The maximum number of basis elements that
commute with each other is called the rank. o(3) is rank one, as only J3
qualifies. For su(3) the rank is 2; more generally for su(n) the rank is n−1.

The rank determines the number of labels such as m (the magnetic quan-
tum number) that are needed to label a basis in an irreducible representation.

5.6. Casimir Operators. In a compact Lie algebra there is always one op-
erator like L2 which commutes with all generators. But there may be others
that commute which are cubic or higher order. Such polynomials in the
basis elements that commute with all of them are called Casimir operators.
Their eigenvalues are constant within an irreducible representation.

5.7. The representation theory of non-compact Lie algebras is much
deeper. The works of Harish-Chandra and later Kirillov have almost com-
pletely settled this subject. But there are still occasional surprises. This
theory is beyond the scope of this course.


