
Lecture 5
1 The Rigid Body

1.1 If the distance between any two points of a body is fixed as
it moves, it is a rigid body.

Thus a rigid body can move by a translation of its center of mass; and a rotation
around its center of mass. Imagine throwing a book into the air. Its center of mass
will follow a parabolic trajectory as it turns around its axes. The complicated part
of the story is the rotation, and we will focus on it exclusively.

1.2 We will study in this section only the case when the total
torque on the body is zero.

This will be complicated enough. The angular momentum R of the body as mea-
sured by an inertial observer is conserved in this case.

1.3 The angular velocity of a body is the vector pointing along
the axis of rotation and having as magnitude the rate of
change of the angle.

1.3.1 The velocity at any point of a rigid body is

v = ω× r

We use a co-ordinate system located at the center of mass which is assumed to be
at rest.

1.3.2 The rotational kinetic energy is a quadratic funcion of angular veloc-
ity:

K =
1
2

ω
T Aω

A is a symmetrix matrix called the moment of inertia. We can derive a formula
for it in terms of the density of the body
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K =
1
2

ˆ
ρ(r) [ω× r]2 d3r

=
1
2

ˆ
ρ(r)

[
ω

2r2− (ω ⋅ r)2
]

d3r

=
1
2

ωiω j

ˆ
ρ(r)

[
r2

δi j− rir j
]

d3r

so that

Ai j =

ˆ
ρ(r)

[
r2

δi j− rir j
]

d3r.

Since kinetic energy is always ≥ 0, the matrix A is positive. That is, its eigen-
values are positive.

1.3.3 The eigenvalues A1,A2,A3 of the moment of inertia are called the prin-
cipal moments; the eigenvectors can be chosen to point along the axes
of an co-ordinate system, called the body centered frame.

1.3.4 In the body centered frame the angular momentum has a simpler for-
mula: L = (A1ω1,A2ω2,A3ω3)

An important point is that this frame rotates with the body and therefore may not
be an inertial co-ordinate system. In particular, even if there are no torques acting
on the body, the angular momentum defined in this frame may not be conserved:
it differs from the angular momentum defined in an inertial frame by a time de-
pendent rotation. But, a rotation leaves the length of a vector unchanged.

1.3.5 The magnitude L of angular momentum is conserved

L2 = L2
1 +L2

2 +L2
3. (1)

1.3.6 The rotational kinetic energy of a body is, in the same frame ,

K =
L2

1
2A1

+
L2

2
2A2

+
L2

3
2A3

(2)

This is similar to the way that the translational kinetic energy is p2

2m .
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1.3.7 The rotational kinetic energy is conserved as well.

1.4 Thus the angular momentum vecor moves along the inter-
section of a sphere with an ellipsoid.

Imagine a space in which the axes measure the components of angular momen-
tum along the principal directions L1,L2,L3. As L is not conserved, the angu-
lar momentum vector moves around with time in space. The sphere is the sur-
face of constant magnitude for angular momentum, so the tip of L lies on this
sphere. The condition K = constant picks out an ellipsoid whose principal radii
are
√

2KA1,
√

2KA2,
√

2KA3. Thus as time evolves, the angular momentum vector
must move along the curve defined by the intersection of these two surfaces.

1.4.1 The simplest case is a body with spherical symmetry: all the eigenval-
ues are equal. In this case L is a constant.

In this case any right-handed co-ordinate system can be chosen as the principal
axes. In fact we do not need complete spherical symmetry to have equal moments
of inertia. Any body with the symmetries of a Platonic solid will have equal
principal moments of inertia. For example, a cube or a football (soccer ball). In
this case, there is no difference between the body centered and inertial co-ordinate
systems. L = R = constant.

1.4.2 The next simplest case is a body with cylindrical symmetry when two
of the eigenvalues are equal.

In this case the body-centered angular momentum around the axis of symmetry
(say L3) is still conserved. Since the sum of the squares of the other two must be
fixed, the angular momentum precesses around this axis.

1.4.3 For a cylinder of radius R and height H, A1 =A2 =m
[1

4R2 + 1
3H2] , A3 =

1
2mR2.

For cylinder of small height, like a coin A1 = A2 < A3 .

1.4.4 The most complicated case is when no pair of eigenvalues are equal.

The angular momentum moves along a beautiful but complicated curve called an
“elliptic curve”. This is because it be parametrized by elliptic functions. Their
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study is a deep and still evolving branch of algebraic geometry. As usual, in solv-
ing algebraic equations, it is useful to continue the equation into complex values
of the indeterminates L1,L2,L3. Then we get a complex curve, which is also two
dimensional as a real manifold. But we have a complete list of all two dimensional
manifolds. From the boundedness of energy and angular momentum we can argue
that it is compact. Since time evolution requires the angular momentum to always
change with time (except for a few degenerate values of K,L) this manifold must
admit a non-zero vector field everywhere. Just on these grounds we can identify
what the curve is:

1.4.5 The complex curve defined by the pair of equations (21) is generically
a torus.

The physical values are then a real section (one real dimensional submanifold) of
this curve. Depending on how you cut it, we can get a circle or two disconnected
circles.

2 Euler Equations
We still have not determined the time dependence of the angular momentum vec-
tor. The above argument based on conservation laws tells us the shape of the
curve followed by the angular momentum vector: but not the rate at which it
moves along it, which is not a constant.

Recall that the components of angular momentum satisfy the Poisson brackets
of the rotation Lie algebra

{L1,L2}= L3, {L2,L3}= L1, {L3,L1}= L2,

This along with the formula for energy (2) gives the time derivatives

dLi

dt
= {H,Li}

These give

2.1 The Euler equations of a rigid body are
dL1

dt
= a1L2L3,

dL2

dt
= a2L3L1,

dL3

dt
= a3L1L2,
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Here

a1 =
1

A2
− 1

A3
, a2 =

1
A3
− 1

A1
, a3 =

1
A1
− 1

A2

etc.
If all the eigenvalues of A are equal, a1 = a2 = a3 = 0 and the angular momen-

tum is a constant as expected. If A1 = A2then L3 is conserved. In this case

dL1

dt
= a1L3L2,

dL2

dt
=−a1L3L1

can be solved in terms of trigonometric functions.

2.2 The solution in the general case involves the Jacobi elliptic
functions.

2.2.1 These are a set of three functions depending on a paramater k (modu-
lus) and a variable u defined by the differential equatons

dcn(u,k)
du

=−sn(u,k)dn(u,k), dsn(u,k)= cn(u,k)dn(u,k),
ddn(u,k)

du
= k2cn(u,k)sn(u,k)

To complete the definition, the initial values at u = 0 are

cn(0,k) = 1, sn(0,k) = 0, dn(0,k) = 1

2.2.2 They satisfy the conditions

cn2 + sn2 = 1, k2sn2 +dn2 = 1.

They are well studied and tabulated. Also, if k = 0 they reduce to the trigono-
metric functions.

Exercise 1. Solve the Euler equations in terms of the Jacobi functions using the
ansatz

L1 =C1cn(ωt,k)

etc. with appropriate choices of constants C1,ω,k etc. Determine how C1,ω,k etc
depend on the energy, total angular momentum and the moments of inertia.
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