
Lecture 6

1. IDEAL INCOMPRESSIBLE FLUIDS

Euler not only figured out the equations of a rigid body but also those of
a fluid. An ideal fluid is a model of fluid motion in which we ignore the
effects of friction: in the real world fluids lose energy when different layers
have different velocities or when the fluid molecules rub against a boundary.
In many cases though the effect is small. Also if the velocity of fluid flow
is small compared to the speed of sound of the fluid material, we can treat
the density as time independent. The velocity of a fluid is given by a vector
field: a vector at any point.

1.1. A vector field can be thought of as a first order partial differential
operator.

u( f ) = u ·∇ f

Note that

(1.1) u( f1 f2) = f1u( f2)+u( f1) f2

This is just Leibnitz rule of derivations. Conversely,

1.2. Any linear operator satisfying (1.1) for all smooth functions is a
vector field. All such operators are of the form u = u·∇ for some vector
field: (1.1) is the condition that u be a first order derivative operator. So we
will from now on say that

1.3. A vector field is a linear operator satisfying the Leibnitz rule. The
product of two vector fields (thought of as operators) is a second order de-
rivative: no longer a vector field. But,

1.4. The commutator of two vector fields is also a vector field. Explic-
itly, we can see that the second derivatives cancel out in the commutator to
give

[u,v] f = u(v( f ))− v(u( f ))

[u,v] = u ·∇v−v ·∇u

[u,v]i = u j
∂ jvi− v j

∂ jui.

All different ways of thinking about the commutator of vector fields.
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1.5. The set of all vector fields is a Lie algebra under the operation of
commutator. Not surprising if we know that vector fields are first order
partial differential operators. The only question is whether the commutator
of first order operators is still first order.

1.6. An incompressible vector field satisfies.
∇ ·u = 0

If the density is variable the conservation of mass is

∂ρ

∂ t
+∇ · [ρu] = 0

It says that the net amount of mass flowing into a small region is equal to
the increase of mass inside it . If the density is constant we get the above
condition. Since it is constant we can use units such that ρ = 1.

1.7. The commutator of incompressible vector fields is incompressible.
Thus the set of incompressible vector fields form a Lie algebra.

The condition of constant density is much weaker than that of a rigid
body. Still, this Lie algebra of incompressible vector fields is analogous to
the rotations of a rigid body. We can introduce a basis and write the com-
mutation relations in terms of them. But we will need an infinite number of
basis elements: there are many more incompressible vector fields than just
infinitesimal rotations.

1.8. In the absence of external forces the total energy is the kinetic en-
ergy.

K =
1
2

ˆ
u2d3x.

1.9. The equations of motion of an ideal incompressible fluid follow
from the commutator and the kinetic energy. These are the famous Euler
equations. The derivation outlined above is a bit above the level of this
course. I refer to you to another set of lectures I gave:

http://arxiv.org/abs/0906.0184.

2. THE QUANTUM RIGID BODY

2.1. There are many molecules whose rotational spectrum is given by
rigid body mechanics. In the case of molecules, the vibrational frequen-
cies are usually much higher than the rotational frequencies. So to a good
approximation we can treat some of them as rigid bodies in calculating
the rotational spectrum. Of course, no object is strictly rigid. If we apply
enough stresses any object can be deformed. If the angular momentum is
too large, the centrigual forces will deform the body.



3

2.2. The simplest case of a molecule with the symmetries of a Platonic
solid is easy to solve. There are some molecules that have a high degree of
symmetry under discrete rotations. A famous example is the “Bucky ball”
a molecule made of sixty carbon atoms arranged symmetrically. In such
cases the three eigenvalues of moment inertia coincide.

H =
L2

2A
.

The spectrum is

El =
j( j +1)

2A
each state being 2l + 1-fold degenerate: the energy does not depend

onm =− j, · · · j.

2.3. The next simplest case has two prinicpal moments equal.

H =
L2

1 +L2
2

2A1
+

L2
3

2A3
.

In this case we can rewrite

H =
L2

1 +L2
2 +L2

3
2A1

+
[

1
2A3
− 1

2A1

]
L2

3.

The energy eigenvalues are

Elm =
j( j +1)

2A1
+

[
1

2A3
− 1

2A1

]
m2, m =− j− j +1, · · · j−1, j.

Note that m and−m have the same energy, so the degeneracy is not com-
pletely lifted.

2.3.1. If A1 = A2 > A3 the ground state has m = 0 if j is integer and m =±1
2

if j is half integer. Then, A−1
3 > A−1

1 and we want to minimize |m| to get
the lowest energy. Thus, for integer angular momentum and A1 = A2 > A3
the ground state is unique. These bodies are shaped like a long rod or cigar.
The angular momentum will, in the ground state, point perpendicular to the
axis of symmetry.

2.3.2. If A1 = A2 < A3 the ground state has m = ± j. Such a body will
put all of its angular momentum to point along the axis of symmetry to
minimize the energy.These are shaped like a pancake or frisbee. The energy
is the same for either direction of rotation: the actual ground state will be a
superposition of the two. Exactly which superposition will depend on finer
details: small corrections to energy we are ignoring for now.
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2.4. If there are no symmetries, the principal moments of inertia are
unequal and the spectrum is more complicated. Neverthless we can de-
termine it for small angular momentum by “brute force” diagonalization of
the hamiltonian. For large angular momenta the semi-classical approxima-
tion ought to be close. In between is a puzzle.

2.4.1. The energy eigenvalues for total angular momentum j are deter-
mined by the equation.

Pl(z1,z2,z3) = 0

za =
1

2Aa
− E

j( j +1)
, a = 1,2,3.

P(z1,z2,z3) = det
[
z1L2

1 + z2L2
2 + z3L2

3
]

The characteristic equation of the hamitonian is

det [H−E] = det[H− E
j( j +1)

L2]

and then we split
L2 = L2

1 +L2
2 +L2

3.

Thus we have a polynomial of order 2 j + 1 in three variables. It is con-
venient to continue the values of za into complex values, as often in solv-
ing polynomial equations. Note that this polynomial is symmetric under
the permutation of z1,z2,z3: this can be undone by a rotation which is an
equivalence transformation that leaves the spectrum unchanged. More in-
terestingly, we have the homogenity

P(λ z1,λ z2,λ z3) = λ
2 j+1P(z1,z2z3).

Thus one of the variables (doesn’t matter which one) can be removed by
scaling.

2.4.2. The spectrum of the general rigid body of angular momentum j is
determined by a complex projective curve of degree 2 j + 1. The equation
being homogenous of degree 2 j + 1, it can be viewed as a curve in two
dimensional projective space P2.

2.4.3. For small values of j = 0, 1
2 ,1, 3

2 ,2, 5
2 , · · · this polynomial can be split

as a product each of degree < 5.. The significance of degree being less
than five is that then we can solve the polynomials “explictly” in terms of
radicals. In splitting the polynomials several partial symmetries are useful.
For example, L2

1,L
2
2 only change the value of L3 two units:

L2
1 +L2

2 = L−L+ +L3
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L2
1−L2

2 =
L2

+ +L2
−

2

L2
1 =

1
2

[L−L+ +L3]+
L2

+ +L2
−

4
etc.
Thus (considering only integer j for simplicity) even and odd values of

m do not mix with each other. The polynomial splits into a piece that is the
determinant of the matrix in each subspace. Further reductions are possible
as well. See Landau and Lifshitz.

Exercise 1. What is the largest value of jfor which you can split this poly-
nomials down to a solvable one?

2.4.4. I conjecture that the spectral curve of the rigid body Pj(z1,z2,z3) = 0
can be solved in parametric form using the elliptic modular form ∆(τ) for
any integer j.. This is motivated by the fact that the classical solution can
be expressed in terms of elliptic functions. More precisely, the action of the
rigid body can be expressed in terms of complete elliptic integrals which in
turn are related to ∆.


