
Lecture 8

1. ROTATIONS THROUGH 2π

Recall that the the rotation group is SO(3) , the set of orthogonal matrices
of positive determinant. Closely related is the group SU(2) of unitary matri-
ces of determinant one. We saw that infinitesimally they are the same: they
have isomorphic Lie algebras. But they are not the same for finite rotations.
The difference has to do with rotations through 2π .

1.1. There is a homomorphism R : SU(2)→ SO(3). That is, an element
in SU(2) determines a rotation in a way that preserved multiplication laws.
The connection is through 2× 2 matrices. Recall that there is a one-one
correspondence between vectors in three dimensional space and traceless
hermitean matrices:

a↔
(

a3 a1− ia2
a1 + ia2 −a3

)
We will denote vectors in R3 by boldface in this section; a is the matrix

corresponding to a.

a = σ1a1 +σ2a2 +σ3a3

Conversely

ai =
1
2

trσia

Any traceless hermitean matrix determines three real numbers which then
can be grouped into vector in R3. The scalar (dot) product of vectors be-
comes the trace of products of matrices:

a ⋅b =
1
2

tr
(

a3 a1− ia2
a1 + ia2 −a3

)(
b3 b1− ib2

b1 + ib2 −b3

)
Let us denote the quantity on the r.h.s. (the inner product) by ⟨a,b⟩. It is

clear that the inner product is unchanged under unitary transformations:

< gag†,gbg† >=< a,b >

So unitary transformations on matrices must induce rotations on vectors:

gag† = σ ⋅ [R(g)a]
But notice that g and −g both determine the same rotation. For example

1and −1 both go over to the identity. More detail follows from considering
rotations around some direction (say third axis). Recall that any rotation
can around the third axis can be written as
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⎛⎝ cosθ −sinθ 0
sinθ cosθ 0

0 0 1

⎞⎠= eθS3, S3 =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠
In particular, a rotation through 2π is the same as the identity. This comes

from the unitary matrix

g(θ) = ei σ3
2 θ =

(
ei θ

2 0
0 e−i θ

2

)
through the map Rdefined above.

Exercise 1. Prove that R(g(θ)) =

⎛⎝ cosθ −sinθ 0
sinθ cosθ 0

0 0 0

⎞⎠ .

Because of the factor of 1
2 in the exponent we see that a rotation through

2π does not correspond to the identity

g(2π) =−1.

The above g(θ) for 0≤ θ ≤ 2π is a closed curve in SO(3) that starts and
ends at the identity is an open curve that starts at the identity and ends at
−1. But there is a deeper topological fact we cannot prove here

1.2. g(θ) for 0 ≤ θ ≤ 2π is a curve that cannot be continuously de-
formed to a constant. That is, there is no continous function g̃(θ ,s) such
that g̃(θ ,0) = 1, g̃(θ ,1) = g(θ). But if we traverse this same curve twice, by
letting θ vary through 0≤ θ ≤ 4π we do get one that can be deformed to the
identity! We say that the fundamental group ( the set of equivalence classes
of curves that can be deformed into each other) of SO(3) is Z2 : any closed
curve traversed twice is deformable to a constant. But in SU(2), all closed
curves can indeed be deformed to the constant. The non-deformable closed
cuves in SO(3) start and end at some g and −g in SU(2). In opological
lanuage we say that SU(2) is the universal cover of SO(3).

1.3. The map R : SU(2)→ SO(3) is a double covering. This has profound
consequences for physics.

1.4. Representations of SU(2)of integer spin are also representations
of SO(3). Once we have a set of three matrices J1,J2,J3 that satisfy the
commutation relations of angular momentum, eiJaθa will representations of
finite rotations. The tricky point here is that for half-integer spins a rotation
through 2π is not represented by the identity, but by −1.
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1.5. Half-integer spin representations of SU(2) are not representations
of SO(3). So why is half-integer spin allowed in nature? It was a surprise
when first discovered. It is because of a quirk of quantum mechanics:

1.6. States of a quantum system correspond to rays in complex Hilbert
space. If we multiply a vector in Hilbert space by a scalar, it does not
change the state it represents. Since a vector and its negative describe the
same state, a rotation through 2π does not have to be represented by the
identity: it can also be represented by −1.

2. BOSONS

2.1. The state of a quantum system must remain unchanged when a
pair of identical particles are interchanged. Identical means they must
have the same characteristics such as spin,mass,angular momentum. Al-
though the remains unchanged, the vector representing it in Hilbert space
can change by a scalar multiple. When space is three dimensional, it is pos-
sible to interchange two particles by a rotation through π around a perpen-
dicular bisector of the line that connects them. If the particles are identical,
the physical effect is the same as rotating a single particle around a circle
by 2π radians. Thus there is a deep connection between the behavior of a
system under rotations and interchange of identical particles.

2.2. When a pair identical particles of integer spin are interchanged
the state vector is unchanged; for half integer spin it changes by a sign.

2.3. Particles whose state vectors are symmetric (anti-symmetric) un-
der interchange are called bosons (fermions). It is a profound fact of
nature that spin and statistics are so intimately related. There could have
been other possibilities: the state vector could have changed by some other
scalar multiple than just a sign, thus producing more general kinds of sta-
tistics (anyons). They are allowed in two space dimensions. It is one of the
rare situations that get more complicated in lower dimensions.

2.4. If the space of states of a single boson is V , that of a pair of bosons
is S2(V ), the space of symmetric matrices. In some orthonormal basis,
single particle states are given by vectors ψ = (ψ1, ⋅ ⋅ ⋅ψM)

while two boson states are

ψi j = ψ ji.

For fermions we would have anti-symmetric matrices. Suppose i= 1, ⋅ ⋅ ⋅M
: the single boson has some finite number M of states available to it. Then
there are M(M+1)

2 independent two-boson states. More generally



4

2.5. The space of states of n bosons is Sn(V ) the space of symmetric
tensors.

ψi1⋅⋅⋅in = ψi1⋅⋅⋅ia⋅⋅⋅ib⋅⋅⋅in
invariant under any interchange. For fermions we would get anti-symmetric

tensors that change sign under odd permutations.

2.6. The total state space of bosons is S(V ) =
⊕

∞
n=0 Sn(V ). S0(V ) =C is

the vacuum or empty state, represented by a tensor of rank zero: a scalar.

2.7. We can also think of S(V ) as the space of polynomials.

ψ(z) =
∞

∑
n=0

ψi1⋅⋅⋅inzi1 ⋅ ⋅ ⋅zin

The degree of the polynomial is the total number of bosons. In any given
state this is a finite number, but we allow it to be as large as needed. Be-
cause the components of the complex numbers commute the coefficients
are symmetric tensors.

2.7.1. In the special case dimV = 1 there is a correspondence between free
bosonic states and the states of a simple harmonic oscillator.

ψ(z) =
∞

∑
n=0

ψn
zn
√

n!

We can associate

zn
√

n!
= ∣n >, n = 0,1, ⋅ ⋅ ⋅

If the single boson has energy ω , a system of n free bosons will have en-
ergy nω : exactly the energy of the state ∣n⟩ of a simple harmonic oscillator.
(We add a constant to the hamiltonian so that the lowest energy state has
energy zero.)

Recall that for a simple harmonic oscillator

H = ωa†a, [a,a†] = 1
A representation is given by

a∣n⟩=
√

n∣n−1⟩, a†∣n⟩=
√

n+1∣n+1⟩
where

∣n⟩, n = 0,1, ⋅ ⋅ ⋅
is an orthonormal basis. Indeed,

a†a∣n⟩= n∣n⟩.
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2.7.2. The creation operator is just multiplication by z; destruction is dif-
ferentiation.

a† = z, a =
∂

∂ z
satisfies the relation. Since

∂

∂ z
zn = nzn−1

and

a∣n⟩=
√

n∣n−1⟩
the correspondence is

∣n⟩= zn
√

n!
.

Thus the number of bosons occupying the state corresponds to the prin-
cipal quantum number or to the degree of the polynomial.

2.7.3. The hamiltonian is a differential operator.

H = ωz
∂

∂ z

2.7.4. The inner product is given by integration with a Gaussian measure.

∣∣ψ(z)∣∣2 =
ˆ

e−∣z∣
2
ψ
∗(z)ψ(z)

d2z
π

Here
´

d2z denotes integration over the whole complex plane.

Exercise 2. Prove that

ˆ
e−∣z∣

2 z∗m√
m!

zn
√

n!
d2z
π

= δmn

Now we can consider the more general case where the single particle has
many states available to it.

2.8. The space of polynomials S(V ) carries a representation of the canon-
ical commutation relations.

[ai,a
†
j ] = δi j, [ai,a j] = 0 = [a†

i ,a
†
j ]

a†
i = zi, ai =

∂

∂ zi
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∣n1,n2 ⋅ ⋅ ⋅ ⟩=
zn1
√

n1!
zn2
√

n2!
⋅ ⋅ ⋅

ψ(z) =
∞

∑
ni=0

ψn1n2⋅⋅⋅∣n1,n2 ⋅ ⋅ ⋅ ⟩

∣∣ψ(z)∣∣2 =
ˆ

e−∑i ∣z∣2ψ
∗(z)ψ(z)

d2z1d2z2

π

2.9. A system for free bosons is the same as a harmonic oscillator. If
the energies of the single bosons are ωi,the energy of a collection of free
bosons is just the sum n1ω1 +n2ω2 + ⋅ ⋅ ⋅of individual energies.

H = ∑
i

ωia
†
i ai.

This is called the “coherent state description” of bosons and harmonic
oscillators. See Quantum Optics by Klauder and Sudarshan for details.

3. FERMIONS

The description of bosonic states as polynomials is so compelling that
Berezin developed its analogue for fermions. But for this he had to in-
vent a new number system, called Grassmann numbers. Grassmann is a
pioneer in algebra and geomery in the nineteenth century and anticipated
much modern mathematics. The reason why the coefficients of polynomi-
als are symmetric is that complex numbers zicommute with each other. To
get anti-symmetric states we must think of polynomials in anti-commuting
variables.

3.1. Grassmann variables satisfy the relations.

ζiζ j +ζ jζi = 0, i = 1, ⋅ ⋅ ⋅M

In particular when i = j we get

ζ
2
1 = ζ

2
2 = 0

etc.



7

3.1.1. Suppose there is only one such variable satisfying ζ 2 = 0. The only
polynomial is then

ψ(ζ ) = ψ0 +ψ1ζ

The coefficients ψ0,ψ1 are complex numbers. On the other hand a state
eithe empty or it is occupied by one fermion (exclusion principle). This
corresponds exactly to the polynomial: the vacuum is the first term and the
one-particle state is the second.

3.2. The most general polynomial in Grassmann variables is.

ψ(ζ ) =
M

∑
n=0

ψi1⋅⋅⋅inζi1⋅⋅⋅ζin, ψi1⋅⋅⋅in = (−1)P
ψiP1 ⋅⋅⋅iPn

Here P is a permutation and (−1)P is one if an even number of indices
are switched and −1 for an odd number.

Note that there cannot be more than M indices: we cannot satisfy the
anti-symmetry condition.

Exercise 3. Show that he number of independent components of a com-

pletely anti-symmetric tensor of order n is
(

M
n

)
= M(M−1)⋅⋅⋅(M−n+1)

n! . Ex-

plain the meaning of the identity ∑
M
n=0

(
M
n

)
= 2M in terms of Pauli’s

exclusion principle.


