
PHY 407 QUANTUM MECHANICS Fall 05
Midterm Examination Nov 3 12:30 to 1:45 pm

1. Use a Gaussian variational ansatz to estimate the
ground state energy of the hamiltonian

H = − h̄2

2m

∂2

∂x2 + λ|x|k, λ > 0, k > 0. (1)

Compare with the exact answer when k = 2.

Hint
∫∞
0 e−ttz−1dt = Γ(z),Γ(z + 1) = zΓ(z).

1 Solution

1.1 Dimensional Analysis

The hamiltonian can be written as

H =
h̄2

2m
H̃, H̃ = − ∂2

∂x2 + λ̃|x|k, λ̃ =
2m

h̄2 λ. (2)

H̃ has dimension of L−2, so [λ̃]Lk = L−2 so that [λ̃] =
L−2−k. Thus the ground state eigenvalue of H̃ should be
proportional to λ̃

2
2+k and that of H should be

E0 =

 h̄2

2m

  h̄2

2m

−
2

2+k

λ
2

2+kC

=

 h̄2

2m


k

2+k

λ
2

2+kC (1)

for some dimensionless constant C which will depend
only on k. This will provide a check on our calculations.
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1.2 Variational Ansatz

Let us choose a Gaussian variational ansatz:

ψ = e−
1
2a

2x2

. (3)

We need to find

< H >=
h̄2

2m
∫ [dψ

dx

]2
dx+ λ

∫ |x|k|ψ(x)|2dx∫ |ψ(x)|2dx
(4)

Now, ∫
|ψ(x)|2dx =

∫ ∞
−∞

e−a
2x2

dx

= a−1
∫ ∞
−∞

e−x
2

dx. (2)

dψ

dx
= −a2xψ, (5)

∫ [
dψ

dx

]2
dx =

∫
a4x2e−a

2x2

dx

= a
∫ ∞
−∞

x2e−x
2

dx. (3)

∫
|x|ke−a2x2

dx = a−1−k
∫ ∞
−∞
|x|ke−x2

dx. (4)

If we let
I(k) =

∫ ∞
−∞
|x|ke−x2

dx, (6)

we get

< H > =
h̄2

2maI(2) + λa−1−kI(k)

a−1I(0)

=
1

I(0)

 h̄2

2m
I(2)a2 + λI(k)a−k

 (5)
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1.3 Minimization

Minimizing in a gives

2
h̄2

2m
I(2)a2 − kλI(k)a−k = 0 (7)

so at the minimum

< H >=

{
1 +

2

k

}
1

I(0)

h̄2

2m
I(2)a2 (8)

where

a2+k =
2mλ

h̄2
kI(k)

2I(2)
(9)

so that

< H >=

{
k + 2

k

}
1

I(0)

h̄2

2m
I(2)

[
2mλ

h̄2

] 2
2+k

kI(k)
2I(2)

 2
2+k

(10)
Simplifying this we get

E0 ≤
 h̄2

2m


k

2+k

λ
2

2+k

{
k + 2

k

}
I(2)

I(0)

kI(k)
2I(2)

 2
2+k

(11)

This agrees with the form we got from dimensional anal-
ysis.

1.4 Evaluation of Integrals

I(k) =
∫ ∞
−∞
|x|ke−x2

dx = 2
∫ ∞
0
xke−x

2

dx

=
∫ ∞
0
t

k
2e−tt−

1
2dt =

∫ ∞
0
t(

k
2+ 1

2 )−1e−tdt

= Γ

(
k + 1

2

)
. (6)
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Thus
I(2)

I(0)
=

Γ(3
2)

Γ(1
2)

=
1

2
. (12)

kI(k)

2I(2)
=
kΓ(k+1

2 )

2Γ(3
2)

. (13)

E0 ≤
 h̄2

2m


k

2+k

λ
2

2+k

{
k + 2

2k

} kΓ(k+1
2 )

2Γ(3
2)


2

2+k

(14)

1.5 The special case k = 2

This corresponds to the harmonic oscillator:

H = − h̄2

2m

∂2

∂x2 + λx2 (15)

has ground state energy 1
2h̄ω where λ = 1

2mω
2.

If we put k = 2 in the above variatioan estimate,

E0 ≤
 h̄2

2m


1
2

λ
1
2 =

1

2
h̄ω. (7)

Thus we get the exact answer in this case, which is be-
cause the Gaussian is the true ground state wave function
of the harmonic oscillator.
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2. A metal contains electrons trapped in a potential
barrier of height V0 > 0 (“Work Function”). An external
electric field F > 0 is applied to strip electrons out of the
metal. The potential seen by the electron can be taken
to be

V (x) = −V0, for x < 0, V (x) = −qFx for x > 0.
(16)

where q is the magnitude of the charge of the electron.
Using the WKB approximation, calculate the probability
that an electron will be emitted, assuming it is in the
ground state inside the metal.

2 Solution

2.1 Dimensional Analysis

The probability can depend only on dimensionless ra-
tios of the parameters h̄,m, q, F, V0 of the problem. The
wavelength of the electron in its ground state will be
given by

h̄2

2m
λ−2 = V0,⇒ λ =

 h̄2

2mV0


1
2

(17)

the distance over which the electron will have to tunnel
is another length parameter (potential energy divided by
force)

V0

qF
. (18)
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The probability can only depend on the ratio of these
two lengths: 2mV 3

0

h̄2

 1
2 1

qF
. (19)

2.2 Tunnelling amplitude

Let the electron have energy E; in the ground state E =
−V0. It has to tunnel through a potential barrier to
escape to infinity when E < 0.

The tunneling amplitude is

e
− 1

h̄

∫ x2
x1

√
2m[V (x)−E]dx (20)

where x1, x2 are the points where E = V (x). In our case
x1 = 0, and

−qFx2 = E. (21)

The integral is∫ x2

x1

√
2m[V (x)− E]dx =

√
2m

∫ x2

0

√
−E − qFxdx

=
√

2m|E|
1
2

∫ x2

0

1− qFx

|E|

 1
2

dx

=
√

2m|E|
1
2

 qF
|E|

−1 ∫ 1

0
[1− y]

1
2 dy

=
√

2m|E|
3
2

1

qF

2

3
. (8)

The tunneling aomplitude is

exp

(
−1

h̄

√
2m|E|

3
2

1

qF

2

3

)
(22)
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and the tunneling probabiity is its square:

exp

− 4

3qF

√√√√2m

h̄2 |E|
3
2

 (23)

In the ground state E = −V0 so that we have

exp

− 4

3qF

√√√√2m

h̄2 V
3
2

0

 (24)

This agrees with our dimensional analysis.
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