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Lecture 10

1. Curvature

1.1. If the metric gµν is a constant, the Christoffel symbols vanish and

the geodesics are straightlines. Thus the geometry is locally that of Euclidean
space.

1.1.1. But just because gµν depends on co-ordinates it does not follow that the space
is curved: we could be using a curvilinear co-ordinate system. How can we tell if a
change of co-ordinates can bring the metric to a constant? If there is a tensor that
vanishes in flat space but not in curved space, we would have such a criterion. The
Christoffel symbols do not transform as a tensor so they won’t do the job. The
correct quantity was discovered by Riemann.

1.1.2. Recall that the commutator of partial derivatives is zero.

∂µ∂νv
ρ − ∂ν∂µv

ρ = 0

1.1.3. The commutator of covariant derivatives of a vector field is not always zero.

1.2. The curvature tensor is defined in terms of the commutator of co-

variant derivatives.

DµDνv
ρ −DνDµv

ρ = Rρ
µνσv

σ

The important observation is that the commutator does not involve derivatives
of v: they all cancel out.

1.2.1. By direct calculation.

Rρ
µνσ = ∂µΓ

ρ
νσ − ∂µΓ

ρ
νσ + Γρ

µαΓ
α
νσ − Γρ

ναΓ
α
µσ

We already know Γ in terms of derivatives of gµν . Thus Rρ
µνσ is completely

determined by the metric tensor and its derivatives up to second order.

Remark 1. There are many different conventions on where to place the indices of
the curvature tensor. Especially if you are using formulas from different sources,
you should check carefully the definitions of the curvature tensor they use. Our
convention here is the same as in Landau-Lifshitz, but to see that they agree you
have to use the symmetry properties of the curvatute tensor given below.
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1.2.2. We will also find it convenient to define a version of the curvature tensor
with all covariant indices.

Rµνρσ = gραR
α
µνρ

By explicit, but tedious, calculation

Rµνρσ =
1

2
[∂ν∂ρgµσ − ∂µ∂ρgνσ − ∂ν∂σgµρ + ∂µ∂σgνρ] + gαβΓ

α
νρΓ

β
µσ − gαβΓ

α
µρΓ

β
νσ

1.3. If there is a co-ordinate system in which the metric tensor is a con-

stant, the curvature tensor will vanish in any co-ordinate system. If the
metric tensor is a constant in some system, the curvature vanishes in that system.
But Rµ

νρσ is a tensor: if it is vanishes in one system it vanishes in any system.If
you transform to a different system in which the metric is no longer a constant, the
various terms involving derivatives above can be non-zero. But they will all cancel
out.

The converse is true as well. To see this, we first define

1.4. A vector field is covariantly constant if.

Dµv
ν = 0

Such vector fields may not exist. By taking second derivatives and taking the
anti-symmetric part we get an integrabilty condition:

Rν
µρσv

σ = 0

Thus a covariantly constant vector fields is a sort of zero eigenvector of the
curvature tensor: there are metrics for which the curvature tensor does not vanish
in direction, so such a vector field may not exist. Conversely, if the curvature
tensor is zero, there are as many linearly independently solutions as the dimension
of the space. In this situation, we can form a co-ordinate system where each axis is
tangential to a covariantly constant vector field. But in such a system, the metric
tensor (inner product of vectors along the axes) will be a constant.

1.5. If the curvature tensor vanishes, there is a co-ordinate system in

which the metric tensor is a constant. Thus every point has a neighborhood
in which the space would look Euclidean.

2. Properties of the Curvature Tensor

2.1. The curvature tensor has many symmetries under the interchange

of indices. The first is obvious from the definition

Rσ
µνρ = −Rσ

νµρ

The explicit formula in terms of the second derivatives of the metric for covariant
form of the curvature gives

Rµνρσ = −Rµνσρ

and also

Rµνρσ = Rρσµν

Milnor found a convenient way to summarize them.
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2.1.1. The curvature tensor defines a biquadratic form.
R(u, v) = Rµνρσu

µvνuρvσ

A biquadratic is a function of two vectors satisfying

Q(u, v) = Q(v, u), Q(λu, v) = λ2Q(u, v), Q(u, u) = 0

The curvature form satsifies these conditions.

2.2. In addition it satisfies the differential identities of Bianchi.

DµR
α
νρσ +DνR

α
ρµσ +DρR

α
µνσ = 0

2.2.1. These identities are similar to those satisfied by the Maxwell tensor.
∂µFνρ + ∂νFρµ + ∂ρFµν = 0

which follow from its definition

Fµν = ∂µAν − ∂νAµ.

Ironically, the much more complicated case (e.g., non-linear) of the curvature
tensor was discovered first.

3. Geodesic Deviation

An infinitesimal change of a curve ( a deviation) is given by a vectir field along it:
connect the two points on each of the curves corresponding to the same parameter
value. Suppose we change a geodesic slightly so that the new curve is also a geodesic;
i.e., to infinitesimally close geodesics. The vector field describing the deviation
satisfies a differential equation involving curvature. It helps us to understand the
geometric meaning of curvature.

3.1. Infinitesimal deviations of geodesics are measured by curvature.

D2vµ

dτ2
+Rµ

νρσv
ν ẋρẋσ = 0

Here D2 denotes the second co-variant derivative along the geodesic:

Dvµ

dτ
≡ dvµ

dτ
+ Γµ

ρσẋ
ρvσ

D2vµ

dτ2
≡ d

dτ

�
dvµ

dτ
+ Γµ

ρσẋ
ρvσ

�
+ Γµ

αν ẋ
α

�
dvν

dτ
+ Γν

ρσẋ
ρvσ

�

vµ is a vector field that at each point describes how the geodesic is changed.
In the hands of Jacobi this equation became a powerful tool to extract geometric
information about a metric. If the metric is a constant, the curvature is zero and
geodesics that start out parallel remain parallel: the distance between points with
the same parameter remains constant.

3.2. If the curvature is zero, nearby geodesics remain parallel. Two nearby
freely falling observers will continue to move at constant velocity relative to each
other as long as the curvature is zero.


