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1. The Wave Equation

1.1. The amplitude of a small wave propagating with speed c satisfies.

1

c2
∂2�

∂t2
−∇2� = 0

1.1.1. Plane waves are solutions

�(x) = ei[!t−k⋅x],
!2

c2
− k2 = 0

.

1.2. In Lorentz invariant form the wave equation is.

���∂�∂�� = 0

Remember that all wave equations are invariant under Lorentz transformations;
even sound. But there is something special about light: the speed is the same for all
observers. Relativity is much more than invariance under Lorentz transformations.

1.3. The wave equation follows from a variational principle.

S =
1

2

ˆ
���∂��∂��dx

1.3.1. Here dx stands for the volume measure of space-time dx0dx1dx2dx3. Just
like in mechanics, except that the function depends on several variables.

�S =

ˆ
���∂��∂���dx =

ˆ
∂� [���∂����] dx−

ˆ
[���∂�∂��] ��dx

By using Gauss’ theorem (that the integral of the divergence of a vector field is
equal to flux through the boundary) the first term depends only on the boundary.
We assume that the variation �� = 0 at the boundary; this is analogous to requiring
that the variation should vanish at the initial and final points in mechanics. Thus
the condition that �S = 0 is the wave equation.
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1.4. Under nonlinear change of co-ordinates the volume measure changes
by the Jacobian determinant. Recall that the Jacobi matrix appears in the
infinitesimal change of co-ordinates

dx′� =
∂x

′�

∂x�
dx� ≡ J��dx�

and that the change in volume measure involves the Jacobian

dx′ ≡ dx0dx1dx2dx3 = det Jdx

1.5. The determinant of the metric tensor transforms with the square of
the Jacobian.

g′�� =
∂x�

∂x′�

∂x�

∂x′�
g��, g′ = J−1gJ−1T

det[g′] = [det J ]
−2

det g

1.5.1. The metric tensor of space-time has negative determinant. There are three
negative eigenvalues (space) and one positive eigenvalue (time).

1.6. The combination
√
−det gdx is invariant under co-ordinate transfor-

mations. The determinants cancel out. If the metric is positive we would not put
in the negative sign.

1.6.1. In spherical polar co-ordinates.

ds2 = dr2 + r2
[
d�2 + sin2 �d�2

]
√
gdx = r2 sin �drd�d�

1.7. The generally covariant version of the action for the wave equation
is.

S =
1

2

ˆ
g��∂��∂��

√
−det g dx

The combination g��∂��∂�� is a scalar: is invariant under co-ordinate changes.
The last part

√
−det g dx is invariant as well.

1.8. The generally covariant version of the wave equation is.

∂�

[√
− det gg��∂��

]
= 0

As above

�S =

ˆ
g��∂��∂���

√
−det g dx =

ˆ
∂�

[
g��∂����

√
−det g

]
dx−
ˆ
∂�

[
g��∂��

√
−det g

]
��dx

Again the first term is zero because �� = 0 on the boundary.

1.8.1. But we could have obtained a generally covariant wave equation by replacing
partial derivatives by covariant derivatives.

g��D�D�� = 0
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1.8.2. This happens to be equivalent to the one above.

1√
−det g

∂�

[√
− det gg��∂��

]
= g��D�D��

Proof. First, recall that the covariant derivative and partial derivative are the same
for a scalar. Thus

g��D�D�� = g��∂�∂��− g��Γ���∂��

Now,

g��Γ��� =
1

2
g��g�� [∂�g�� + ∂�g�� − ∂�g�� ]

= g��∂�g��g
�� − 1

2
g�� [g��∂�g�� ]

Next, recall that the infinitesimal variation of the inverse of a matrix is related
to its own variation by

d[A−1] = −A−1[dA]A−1

Thus

g��∂�g��g
�� = −∂�g��

and

g��∂�g��g
�� = −∂�g��

On the other hand the variation of the determinant of a matrix can be calculated
using

log detA = tr logA

∂� detA

detA
= trA−1∂�A

Thus

g��∂�g�� = ∂� log[−det g]

(Switching the sign only shifts the log by a constant.) and

1

2
[g��∂�g�� ] = ∂� log

√
− det g =

∂�
√
−det g√
−det g

.

Pulling all this together

g��D�D�� = g��∂�∂��+ [∂�g
��] ∂��+

1√
−det g

[
∂�
√
−det g

]
g��∂��.

The r.h.s. is the same as

1√
− det g

∂�

[√
−det gg��∂��

]
expanded out. □
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1.9. The wave equation in curved space time is.

g��D�D�� = 0

For calculations the equivalent form 1√
− det g

∂�
[√
−det gg��∂��

]
=0 is more con-

venient.

2. Maxwell’s Equations in Curved Space-Time

2.1. Recall that Maxwell equations in Lorentz covariant form are.

∂�F
�� = j� , F�� = ∂�A� − ∂�A�.

2.2. They follow from the variational principle.

S =
1

4

ˆ
F��F��dx+

ˆ
j�A�dx

First,

�S =

ˆ
F��∂��A�dx+

ˆ
j��A�dx

Now integrate by parts the first term.

2.3. This leads to a wave equation with source for the electromagnetic
potential.

∂�∂
�A� − ∂� [∂�A

�] = j�

It is common to impose the condition ∂�A
� = 0,(the Lorentz gauge) taking

advantage of the gauge invariance A� 7→ A� + ∂�Λ. Then each component of A�
satisfies the wave equation

∂�∂
�A� = j�

2.4. The generally covariant form of Maxwel’s equations is.

D�F
�� = j� , F�� = ∂�A� − ∂�A�

Recall that the Christoffel symbols cancel out in the antisymmetric derivative of
a covariant vector.

2.5. In terms of potentials.

D�D
�A� −D�D

�A� = j�

We cannot interchange the derivatives in the second term without introducing
some terms involving curvature.

2.6. An equivalent form of the curved space Maxwell’s equations is.

1√
−det g

∂�

[√
− det gg��g��F��

]
= j�

2.7. This follows from the covariant variational principle.

S =
1

4

ˆ
F��F��g

��g��
√
−det gdx+

ˆ
j�A�

√
−det gdx
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2.8. These equations tell us how the gravitational field affects the propa-
gation of light. For example it can tell us how light is diffracted and refracted by
a gravitational field. Spectacular phenomena such as gravitational lensing follow
from this. More later.


