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1. The Vacuum Einstein’s Equation

1.1. The metric tensor of space-time satisfies a nonlinear Partial Differ-

ential Equation which determines it given initial conditions. The metric

tensor describes the gravitational field. In the case of the electromagnetic field,

Maxwell’s equations along with the initial value of E and B determine the field for

all future. There must be an analogous set of equations for the gravitational field

as well. They were discovered by Einstein. We will study them first in the case

without sources, then introduce sources.

The most important complication we must deal with is that the Einstein equa-

tions are non-linear. Physically this is because the source of gravity is mass-energy;

but the gravitational field carries potential energy. Thus gravity can be its own

source: nonlinearity.

Mathematically also this is clear because there is no meaning to adding metric

tensors, unlike say electromagnetic fields. A linear combination of two electric fields

can be an elecric field. But a linear combination of two metric tensors may not be

a metric tensor: it may not have one positive and three negative eigenvalues. Thus

the space of allowed values of the field is already not a linear space in the case of

gravity: it does not even make sense to require that the equations be linear.

1.2. These equations have to be generally covariant; i.e., tensor equa-

tions. The whole basis of General Relativity is its covariant under arbitrary changes

of co-ordinates. The equations that determine the metric must hold in any co-

ordinate system or reference frame.

There is no tensor that can be constucted from the first derivatives of the met-

ric tensor; e.g., the Christoffel symbols are not tensors. The only tensors made

of the second derivatives of the metric are the curvature tensor and its various

contractions.

1.3. The equations must involve second derivatives of the metric. Maxwell’s

equations involve second order derivatives of the e.m. potential. It seems reason-

able that the gravitational field also satisfy an analogous, but nonlinear, equation.

A static solution can then yield Newton’s inverse square law just as the Coulomb

solution follows from Maxwell’s equation.

1.4. It is too strong a condition to impose that the curvature tensor

vanish. Although this is a econd order PDE, it is not the right choice. If the

curvature tensor is zero, there is a co-ordinate system in which the metric tensor is

constant, so that geodesics are straightlines. But then there is no gravitational field.

The problem is that the curvature tensor has many more independent components
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than the metric tensor. (Twenty vs ten). So we seek a contraction of the curvature

tensor with as many independent components as the metric tensor.

1.5. The Ricci tensor is defined as the contraction of the Riemann tensor.

Rµρ = Rν
µνρ

It is symmetric because the Riemann tensor satisfies

Rµνρσ = Rρσµν

If we look up the formula for the Riemann tensor in terms of the metric tensor

we can see that

Rµρ =
1

2
gσν [∂ν∂ρgµσ − ∂µ∂ρgνσ − ∂ν∂σgµρ + ∂µ∂σgνρ]+

�
gσνgαβΓ

α
νρΓ

β
µσ − gαβΓ

α
µρΓ

β
νσ

�

Thus upto nonlinear terms it involves some kind of wave operator acting on the

metric tensor. To make this clearer let us assume that the deviation from Minkowski

metric is small:

gµν = ηµν + hµν , |hµν | << 1

Then

gµν ≈ ηµν − hµν , hµν = ηµρηνσhρσ

and the terms involving Γ2
in Rµν are second order. Thus to first order

Rµρ ≈ 1

2
ησν [∂ν∂ρhµσ − ∂µ∂ρhνσ − ∂ν∂σhµρ + ∂µ∂σhνρ]

=
1

2

�
−�hµρ + ∂ρ∂νh

ν
µ + ∂µ∂νh

ν
ρ − ∂µ∂ρh

ν
ν

�

This is similar to the wave operator that arises from Maxwell’s equations

∂µFµν = �Aν − ∂ν∂µA
µ

If we impose the gauge condition ∂µAµ = 0 this is the usual wave operator. In

the same way of if we could impose ∂νhν
µ = 0 and hν

ν = 0 (may be by a choice of

co-ordinate system) the Ricci tensor would be just the wave operator acting on the

metric petrurbation hµν . Thus we come around to the idea that imposing that the

Ricci tensor be zero in the vacuum is a reasonable field equation for gravity.

1.6. Einstein’s equation in the vacuum is the vanishing of the Ricci ten-

sor.

Rµν = 0.

We will see later how the presence of sources (such as matter fields or a cosmo-

logical constant) modifies this equation.

1.7. Minkowski space is a solution. In the absence of all sources, there must

be a solution that simply describes flat space, without any gravitational field.
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1.8. There are solutions that are small perturbations from Minkowski

space propagating as gravitational waves.

�hµρ − ∂ρ∂νh
ν
µ − ∂µ∂νh

ν
ρ + ∂µ∂ρh

ν
ν = 0

Here we already see a far reaching prediction of General Relativity: gravity can

propagate as a wave just like light. The gravitational waves are described by a

tensor and not a vector field. If they are of small amplitude they will move at the

velocity of light.


