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1. Gravitational Waves

1.1. There are exact solutions to Einstein’s equations that describe grav-
itational waves. Could it be that gravitational waves are only approximate solu-
tions to Einstein’s equations, and not of the complete theory? To be sure that it is
a true prediction, we must verify that such exact solutions exist.

1.1.1. Start with an ansatz that describes the propagation of a wave along a co-
ordinate axis.

ds2 = dt2 − dx2 − �abdxadxb + f(t− x, y, z)(dt− dx)2

Here a = 2, 3 label the remaining directions of space, transversal to the direction
of the wave. Simultaneous translation in t, x is an isometry. This is a sort of plane
wave. If we could solve Einstein’s equations to determine f we would have found
gravitational plane wave solutions. It is convenient to use as co-ordinates

u =
t− x√

2
, v =

t+ x√
2
, xa

ds2 = 2dudv + 2f(u, y, z)du2 − �abdxadxb

Note that the metric tensor is not diagonal in these “light-cone” co-ordinates.

1.1.2. To calculate the Christoffel symbols we can use the variational principle for
the geodesics. It is useful to understand the geodesic equations in any case. So this
way of calculating it gives us some extra insight into the geometry.

S =
1

2

ˆ [
2u̇v̇ + 2fu̇2 − ẋaẋb�ab

]
d�

Varying,

ü = 0, ẍa + ∂afu̇
2 = 0.

d

d�
[v̇ + 2fu̇]− f ′u̇2 = 0 =⇒ v̈ + f ′u̇2 + 2∂afu̇ẋ

a = 0

Comparing with the geodesic equation we see that the only non-zero components
of the Christofel symbol are

Γv
uu = f ′, Γa

uu = ∂af Γv
au = ∂af

1
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1.1.3. Now we calculate the curvature. The only non-zero components are

Ra
buu = ∂bΓ

a
uu = ∂a∂bf

and their permutations.
Lowering the index and remembering the sign of the spatial components of the

metric

Rauub = −∂a∂bf =⇒ Raubu = ∂a∂bf

Thus the Ricci tensor is identically zero except for the component Ruu which is

Ruu = ∂a∂af.

We get a solution to Einstein’s equations if f satisfies the Laplace equation in
the two transverse variables x2 ≡ y, x3 ≡ z. The simplest solutions, which are
constants or linear functions of y, z are just flat space in disguise: a co-ordinate
transformation will reduce them to Minkowski space. (The curvature vanishes for
them.)The next simplest are quadratic functions

f(u, y, z) = yzf1(u) +
1

2

[
y2 − z2

]
f2(u)

This describes a plane wave with two polarization states. The functions f1(u), f2(u)
describe the shape of the wave front: the wave dependence on t − x. They could
for example be periodic (continuos wave), or a wave pulse (like a gaussian). We
shouldthink of this as the gravitatinal field created by a very distant source, so far
away that the sphere of constant distance from it can be approximated by a plane.

1.2. Gravitational waves have not yet been detected. The difficulty is two
fold, both ultimately because gravity is such a weak force. Only the most massive
bodies moving violently can produce gravitational waves of appreciable magnitude.
Only the largest and most sensitive detectors have any hope of seeing their effect.
The sources are distant (collapsing stars, blackholes orbiting each other) and rare.
Several experimental groups are trying to detect these gravitational waves. Some
of the cleverest ideas in engineering and physics go into building these detectors.
Supplementing these efforts are massive computer simulations that calculate the
wave profiles (for example the functions f1 and f2 ) that woud be seen on Earth.

1.3. Geodesic Equations in a Gravitational Wave. Now we can go back and
get solutions of the geodesic equations. We see that u̇ is a constant, say k. It is
useful to change variables and think of the transverse components as functions of u
instead of �.(They only differ by a factor of k anyway.) The transverse components
satisfy

x′′a + ∂af = 0(
y′′

z′′

)
+A(u)

(
y
z

)
= 0, A(u) =

(
f2 f1
f1 −f2

)
We are familiar with equations of this type from quantum mechanics , solid state

physics or optics. ( Bloch waves, Floquet’s theorem etc.) There is a solution with
initial velocity zero and some position y(u0) = y0, z(u0) = z0. Suppose the wave
starts at flat space (f2(u1) = 0) and ends there after a time u1: (so that f2(u1) = 0).
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Then the final position y1 = y(u1), z1 = z(u1) is not in general the same as the
initial position: it can be computed knowing the profile of f1,2(u) in the interval
[u0, u1] in terms of a matrix P , a kind of scattering matrix:(

y1
z1

)
= P

(
y0
z0

)
Thus, freely falling particles initially at rest will have a small displacement in

their co-ordinates as the wave passes through. In practice the departure of P (u)
from the identity is very small: 10−18 or so for astronomical sources.

The principle behind the gigantic detectors that have been built is to use two
arms of an optical inteferometer to detect this small displacement. The larger the
range of y0, x0, the larger the displacement: this is why the detectors are several
kilometers long. Some day we hope to have satellites orbiting the Earth or the Sun
and measure their relative displacement as a way to detect gravitational radiation.
Then we can have hundreds of kilometers for y0, which will allow us to detect fainter
waves caused by more distant sources. There has been a great deal of progress in
the theoretical prediction (by numerical solution of Einstein’s equations) of the
wave shapes f1,2(u) for realistic astronomical sources: a pair of blackholes falling
into each other, or a star being swallowed by a blackhole.

1.4. Perhaps the atom interferometers now made possible using Bose
condensates provide new tools to detect small displacements. New ideas
are sorely needed in experimental gravity.


