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1. Sources of Gravity

1.1. The stress tensor is the source of gravity. Recall that the source of
electromagnetism is the electric current density. This is a four-vector whose time
component is the charge density and the space components are the current density.
It is conserved

∂µ
�√

−gjµ
�
= 0 =⇒ ∂0

ˆ
j0
√
−gd3x = 0

The analogous quantity for gravity is the stress tensor.(See Lect 12). It is a
symmetric tensor which is also conserved

DµT
µν = 0

The conserved quantity is now the vector representing momentum

Pµ =

ˆ
Tµ0√−gd3x

In particular

P 0 =

ˆ
T 00d3x

is the total energy.

1.1.1. We should expect from the Newtonian theory that mass density is a source
for gravity. But mass can be converted to energy. So it must be the total energy
density that plays this role. Moreover, only if we combine energy and momentum
do we get a Lorentz invariant quantity Pµ. Being a vector, its density is the zeroth
component of a tensor.

1.2. The stress tensor of matter is the variation of its action with respect
to the metric. More precisely

√
−gTµν =

δSm

δgµν

Thus for a scalar field satisfying the wave equation

Dµ∂µφ = 0

the action of this matter field is
1
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Sm =
1

2

ˆ
∂µφ∂νφg

µν√−gd4x

Variations with respect to gµν gives

Tµν =
1

2
∂µφ∂νφ− 1

4
∂ρφ∂σφg

ρσgµν

The second term arises from the identity

δ
√
−g

δgµν
= −1

2
gµν

√
−g.

The conservation of Tµν follows from the wave equation

DµTµν =
1

2
[Dµ∂µφ]∂νφ+

1

2
∂µφD

µ∂νφ− 1

4
× 2Dν∂ρφ∂σφg

ρσ

The last two terms cancel if we use

Dν∂ρφ = Dρ∂νφ

which is true for scalars. The remaining term is zero by the wave equation.

1.2.1. The stress tensor for the electromagnetic field also follows from its action.
We saw in Lect 12 that

Tµν = −1

2
FµρFνσg

ρσ +
1

8
FρσF

ρσgµν

1.2.2. The stress tensor of a fluid depends on its equation of state. The stress tensor
of a relativistic fluid is

Tµν = [ρ+ p]uµuν − pgµν

Here, uµ is the velocity field of the fluid. Conservation of Tµν implies the equation
of motion for the fluid.

The equation of state of the matter in the fluid gives the pressure p as a func-
tion of the mass and energy density ρ. We are ignoring dissipative effects like
viscosity. Also we are assuming the temperature of the fluid to be a constant.More
realistic models of a relativistic fluid have been developed, which have important
applications in astrophysics.

1.3. The Einstein tensor is a divergenceless combination of Ricci tensor
and Ricci scalar. The Einsein tensor is

Gµν = Rµν − 1

2
gµνR, R = Rρ

ρ.

The Bianchi identity implies that

DµRµν =
1

2
DνR.

All other divergenceless combinations are constant multiples of Gµν .
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1.4. The Einstein tensor is proportional to the stress tensor. These are the
equations that determine the gravitational field, analogous to the Maxwell equations
for the electromagnetic field.

Gµν = kTµν

By taking traces we can also write this as

Rµν = k[Tµν − 1

2
gµνT ], T = T ρ

ρ .

1.4.1. The constant of proportionality can be determined by comparison with the
Newtonian theory. It involves Newton’s constant and c. Recall that in the Newto-
nian approximation

ds2 ≈ c2dt2 − dxidxi + 2φ(x)dt2

with |φ| << c2. It is independent of time for a static source. The inverse square
law of the gravitational force implies the Poisson equation for the potential:

∂i∂iφ = 4πGNρ

where GN is Newton’s constant. On the other hand the Ricci tensor is the
newtonian approximation (time derivatives are lower order in c−1)

Rtt ≈
1

c2
∂i∂iφ

All other components are even smaller for large c. On the other hand, Ttt ≈ ρc2

and all other components of the stress tensor are negligible. Thus

1

c2
∂i∂iφ =

1

2
kc2ρ

By comparsion we get

k = 8π
GN

c4

Thus Einstein’s equations do not depend on any new constant of nature: we
need only the speed of light and the Newton’s constant. But,

1.5. It is possible to add a term proportional to the metric to the equation
of motion: the cosmological constant. The principle of General Covariance as
well as the conservation of energy-momentum are still satisfied if the equation of
motion were slightly modified:

Gµν + Λgµν = kTµν

The cosmological constant Λ was believed to be zero for a long time. Recent
measurements of acceleration of distant supernovas seem to indicate that it has a
small positive value. It is called “Dark Energy” by popular writers of science.
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2. The Hilbert Variational Principle

2.1. Hilbert showed that Einstein’s equations follow from a variational
principle. We might suspect that there is a scalar function built out of the metric
and its derivatives

S =

ˆ
L[g, ∂g]

√
−gdx

such that

δS

δgµν
=

√
−gGµν

The only obvious candidate is the Ricci scalar. We can show (see Landau-
Lifshitz) that indeed,

δ

ˆ
R
√
−gdx =

ˆ
Gµνδg

µν√−gdx

for variations δgµν that vanish on the boundary.Thus, we can regard the Ein-
stein’s equations as following from the variational principle

S = −1

k

ˆ
R
√
−gdx+ Sm

where Smis the action of the source (matter).

2.2. The Hilbert action can be written in terms of the square of the
first derivatives of the metric up to a boundary term. The Ricci scalar
involves second derivatives of the metric. Analogy with other field equations (scalar,
Maxwell) suggest that the action should only depend on the metric and its first
derivative. Why is there a discrepancy?

Explicitly

R = gµρRσ
µσρ

Rσ
µνρ = ∂νΓ

σ
µρ − ∂ρΓ

σ
µν + Γσ

ναΓ
α
ρµ − Γσ

ραΓ
α
νµ

so that

√
−gR =

√
−ggµρ

�
∂σΓ

σ
µρ − ∂ρΓ

σ
µσ + Γσ

σαΓ
α
ρµ − Γσ

ραΓ
α
σµ

�

This can be written as

√
−gR = ∂σ

�√
−ggµρΓσ

µρ −
√
−ggµσΓρ

µρ

�

−∂σ
�√

−ggµρ
�
Γσ
µρ + ∂σ

�√
−ggµσ

�
Γρ
µρ

+
√
−ggµρ

�
Γσ
σαΓ

α
ρµ − Γσ

ραΓ
α
σµ

�

Now we see the point:
√
−gR involves only the square of the first derivatives

of g plus a total serivative. A total derivative can always be written as a surface
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integral (Gauss’ theorem) and hence won’t affect the variation of S: the variation
δgµν is required to vanish at the boundary.

2.2.1. The lagrangian of gravity can be expressed in terms of the Christoffel symbols
using standard identities. Here the point is that we can express any first derivative
of the metric in terms of the Christoffel symbols:

∂µg
νρ = −Γν

σµg
σρ − Γρ

σµg
σν

There are also identities like

Γσ
ρσ =

1√
−g

∂ρ
√
−g

and

gµρΓσ
µρ = − 1√

−g
∂µ

�√
−ggµσ

�

which help. Therefore

−∂σ
�√

−ggµρ
�
Γσ
µρ = 2

√
−gΓµ

σαg
αρΓσ

µρ −
√
−gΓα

σαg
µρΓσ

µρ

∂σ
�√

−ggµσ
�
Γρ
µρ = −

√
−gΓµ

ναg
ναΓρ

µρ

√
−gR = 2

√
−gΓµ

σαg
αρΓσ

µρ − 2
√
−gΓα

σαg
µρΓσ

µρ +
√
−ggµρ

�
Γσ
σαΓ

α
ρµ − Γσ

ραΓ
α
σµ

�

and finally that

ˆ √
−gRdx =

ˆ √
−ggµν

�
Γρ
σµΓ

σ
ρν − Γρ

µνΓ
σ
ρσ

�
dx+ boundary terms

This is useful in calculating the Einstein’s equations for various geometries (e.g.,
spherically symmetric).


