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1. The Principle of Equivalence

1.1. All particles have the same acceleration in a gravitational field. By

a particle we mean here a body whose mass and size are small. Thus, the Earth

is a particle compared to the Sun: we are ignoring tidal forces that depend on the

finite size of the Earth. At first you might think that a feather and a baseball fall

at different rates in a gravitational field. But if we were to eliminate friction and

buoyancy forces, they will drop at the same rate. The fact that all particles react in

the same way to the gravitational field make it very different from all other forces

of nature; e.g., electromagnetic acceleration depends on the ratio of electric charge

to mass.

1.1.1. This is called the (weak) principle of equivalence.

1.1.2. Thus two observers at infinitesimally close points will move at constant ve-
locity relative to each other if subjected only to gravity.

1.2. It is not possible to distinguish the effect of gravity from that of an

accelerated reference frame, using local observations.

1.2.1. This is called the strong principle of equivalence. Imagine that you are in

a spaceship with no windows. From the fact that you feel no weight you cannot

conclude that you are not in a gravitational field. If you turn on the rocket engine

you will feel that you are pushed back in your seat: that does not mean you turned

on a gravitational field either. If you open the windows, and made measurements

of positions of distant stars for a long enough time, you can tell if you are orbiting

a planet or star. Or , you might have another spaceship not too far away and you

will see that over time your relative velocity has changed.

1.3. The equivalence principle has been tested with increasing precision

over the years. According to legend, it was Galieleo that first demostrated this

property of gravity by dropping an iron ball and a brass ball from the leaning tower

of Pisa. Very precise tests were performed in the nineteenth century by Eotvos. So

tests of the equivalence principle are still called Eotvos experiments. People have

been looking in vain for small discrepancies for more than a century. Every time a

deviation is discovered, it has disappered on closer inspection.

1.4. A theory of gravity must be invariant under changes of reference

frames that are accelerated relative to each other.
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1.4.1. This is the principle of general relativity. The theory of relativity originally

only allowed inertial observers: those moving at constant velocity relative to distant

stars. We say that the laws of electromagnetism and mechanics are covariant (both

sides of the equation change the same way) under Lorentz transformations, which

change from one inertial observer to another. We now postulate covariance under

arbitrary changes of reference frames.

1.5. A reference frame is a co-ordinate system in space-time. Each observer

assigns a value of time and position for a point in space-time: mathematically, this is

a co-ordinate system in space-time. Inertial observers are related by linear changes

of co-ordinates.

1.5.1. Lorentz transformations are linear transformations among co-ordinates in
space-time. They can be represented by matrices

y = Λx, yµ = Λµ
νx

ν

In addition to being linear they must satisfy

ΛT ηΛ = η.

2. Constant Acceleration

2.1. Accelerated reference frames are related to each other by non-linear

co-ordinate transformations. We will now look at the simplest case of an ob-

server moving at constant acceleration.

2.2. The trajectory of a particle moving with constant acceleration is a

hyperbola. Consider just one direction of space and time: only two dimensions

of space-time for simplicity. Think of the velocity as a function of proper time of

an electric charge moving in a constant electric field. It satisfies the differential

equation

du0

dτ
= au1,

du1

ds
= au0

where a is the constant acceleration. The solution is

u0 = cosh aτ, u1 = sinh aτ

We choose the origin of τ so that the particle is at rest when τ = 0. Also, since

τ is the time measured by the observer following this trajectory, the velocity is the

same as the unit tangent vector:

uµ =
dxµ

dτ
Solving again

x0 = X0 +
1

a
sinh aτ, x1 = X1 +

1

a
cosh aτ

This is the equation for a hyperbola:

(x1 −X1)2 − (x0 −X0)2 = a−2.
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Analogous to the equation for a circle, but with a sign flipped: the acceleration

is like the inverse of the radius.

2.3. As τ → ∞ the trajectory is asymptotic to a null line. The velocity

tends to the velocity of light

dx1

dx0
= tanh aτ → 1

2.4. The observer moving at constant acceleration cannot recieve signals

from the points to the future of this asymptote. A signal recieved by the

observer at some instant will come from within the past light cone at that point

on its trajectory. These light cones tilt as the velocity increases, so that they never

includes points on the other side of the asymptote.

2.4.1. This is an example of a horizon. Unruh showed that in the quantum theory,
the accelerated observer will see thermal radiation coming from the horizon. Since
he cannot make observations on the other side, he will observe that space-time has
entropy. Sadly, these deep ideas are outside the scope of this course.

Problem 1. Are there points in space-time to which the observer at constant

acceleration cannot send signals?

3. Polar Co-ordinates

3.1. Polar co-ordinates on the Euclidean plane are given by.

x1 = r cosφ, x2 = r sinφ

3.1.1. The co-ordinate axes are circles (r = constant) and half-lines (φ =constant).

3.1.2. They break down along the half-line x2 = 0, x1 > 0: it is where φ jumps from
0 to 2π.

3.1.3. The distance between two neighboring points is.
ds2 = (dx1)2 + (dx2)2 = dr2 + r2dθ2.

3.2. The analogue of polar co-ordinates in Minkowski space is.

x0 = ρ sinh θ, x1 = ρ cosh θ

The distance between infinitesially close points in space-time is

ds2 =
�
dx0

�2 −
�
dx1

�2
= ρ2dθ2 − dρ2

The co-ordinate axis with ρ =constant is a hyperbola: the trajectory of an

observer with acceleration ρ−1. The case ρ = 0 gives the light cones. This co-

ordinate system only covers the region of Minkowski space with

�
x1

�2 ≥
�
x0

�2
.

Problem 2. Why?

This family of observers with constant accelerations cannot see outside of this

region bounded by a light cone. To cover all of space-time we will need several such

co-ordinate systems covering overlapping regions.


