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Lecture 7

1. The Sphere

1.1. The geometry of the sphere was studied by the ancients. There were

two spheres of interest to astronomers: the surface of the Earth and the celestial

sphere, upon which we see the stars. Eratosthenes (3rd century BC) is said to have

invented the use of the latitude and longitude as co-ordinates on the sphere. The

(6th century AD) Sanskrit treatise Aryabhatiya, uses this co-ordinate system for

the sphere as well (with the city of Ujjaini on the prime meridian) in solving several

problems of spherical geometry. Predicting sunrise and sunset times, eclipses, cal-

culating time based on the length of the shadow of a rod, making tables of positions

of stars, are all intricate geometric problems.

1.2. The metric of a sphere S2
in polar co-ordinates is

ds2 = dθ2 + sin2 θdφ2

. We just have to hold r constant in the expression for distance in R3 in polar

co-ordinates.

1.3. The sphere was the first example of a curved space. There are no

straightlines on a sphere: any straightline of R3 starting at a point in S2 will leave

it. There are other subspaces of R3 such as the cylinder or the cone which contain

some straightlines. The question arises: what is the shortest line that connects two

points on the sphere? Such questions were of much interest to map makers of the

nineteenth century, an era when the whole globe was being explored. In the mid

nineteenth century Gauss took up the study of the geometry of distances on curved

surfaces metrics which was later generalized by Riemann to higher dimensions.

Einstein realized a variant of Riemannian geometry, allowing for ds2to be negative

or zero as well, is the basis of a relativistic theory of gravity. For technical reasons,

we will study a slightly different function than the length of a curve.

1.4. The action of a curve on the sphere is defined to be.

S =
1

2

ˆ �
θ̇2 + sin2 θφ̇2

�
dτ

Note that this is not quite the same thing as the length of the curve:

l =

ˆ �
θ̇2 + sin2 θφ̇2

� 1
2
dτ

It turns out that S is a simpler function on the space of curves than l . This is

similar to the fact that x2 is a differentiable function while |x| is not.(Its derivative
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has a jump discontinuity at the origin.) But the same curves minimize S and l .

(Again, both x2 and |x| are minimized at x = 0. )

1.4.1. Some mathematicians, making a confused analogy with mechanics, call S the

‘energy’ of the curve instead of its action.

1.5. A geodesic is an extremum of the action. This definition of a geodesic

does not require it to be a minimum of the action or of distance: in fact many

interesting geodesics are saddle points of S .

1.6. The Euler-Lagrange equations of this variational principle give.

δS =

ˆ �
θ̇δθ̇ + sin θ cos θφ̇2δθ + sin2 θφ̇δφ̇

�
dτ

−θ̈ + sin θ cos θφ̇2 = 0

d

dτ

�
sin2 θφ̇

�
= 0

1.6.1. The key to solving any system of ODEs is to identify conserved quantities.

The obvious conserved quantity is

L = sin2 θφ̇

1.6.2. The solution is simplest when L = 0. For these geodesics, φis a constant.

Then θ is a linear function of τ. These are the lines of meridian of constant longitude.

They are also called great circles. Geometrically they are the intersection of a plane

passing through the center of the circle with the circle itself.

1.7. Any pair of points on the circle lie on such a great circle. Thus

geodesics are the same as arcs of great circles. Using the symmetry of the

sphare under rotations, we can always choose a co-ordinate system such that the

two points lie along a longitude. So we don’t actually have to solve the differential

equations to see this fact. But if we have to find the equation of a geodesic with a

given choice of axes,

1.7.1. It is possible to solve the equations for any value of L.

−θ̈ +
cos θL2

sin3 θ
= 0

Multiply by θ̇ and integrate once to get

1

2
θ̇2 +

L2

2 sin2 θ
= E

another constant of motion. Solving

θ̇ =

�
2E − L2

sin2 θ

τ =

ˆ
dθ�

2E − L2

sin2 θ

which can be evaluated in terms of trig functions.
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1.8. The equator is a geodesic.

1.9. We can form a triangle with geodesics as sides, all of whose interior

angles are right angles. Start at the North Pole; go down to the equator along a

meridian; go along the equator for a quarter of the circumference; then move along

the meridian back to the North Pole.

1.10. In Euclidean geometry, the sum of the interior angles must be π.

In spherical geometry, it depends on the area enclosed by the sides. A

small geodesic triangle will have angles adding up to π as in Euclidean geometry.

For small distances, geodesics appear to be straightlines and the sphere looks flat.

This is why people thought the Earth was flat in olden days.

1.11. Gauss found the correct measure of the curvature of a surface whose

metric is given.

ds2 = gµνdx
µdxν .

1.12. The sphere can also be idnetified with the complex plane, with the

point at infinity added. Indetofy the complex plane with the tangent plane to

the sphere at the South plane. Given a point on the sphere, we can draw a straight

line in R3 that connects the North pole to that line: continuing that line, we get a

point on the complex plane. This is the co-ordinate of the point. Thus the South

pole is at the origin and the North point corresponds to infinity.

1.12.1. The metric of S2 is.

ds2 = 4
dz̄dz

(1 + z̄z)2
, z = tan

θ

2
eiφ

1.12.2. The isometries of the sphere are fractional linear transformations by SU(2).

z �→ az + b

cz + d
,

�
a b
c d

��
ā c̄
b̄ d̄

�
=

�
1 0
0 1

�

Problem 1. Verify by direct calculations that these leave the metric unchanged.

This is one way of seeing that SU(2)/ {1,−1} is the group of rotations.

2. Hyperbolic Space

2.1. The metric of hyperbolic geometry is.

ds2 = dθ2 + sinh2 θdφ2

It describes a space of negative curvature. What this means is that two geodesics

that start at the same point in slightly different directions will move apart at a rate

faster than in Euclidean space. On a sphere, they move apart slower than in

Euclidean space so it has positive curvature. Just as the sphere is the set of points

at a unite distance from the center,
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2.2. The hyperboloid is the set of unit time-like vectors in Minkowski

geometry R1.2
. There is the co-ordinate system analogous to the spherical polar

co-ordinate system valid in the time-like interior of the light come:

(x0)2 − (x1)2 − (x2)2 = τ, x0 = τ cosh θ, x1 = τ sinh θ cosφ, x2 = τ sinh θ sinφ

The Minkowski metric becomes

ds2 = dτ2 − τ2
�
dθ2 + sinh2 θdφ2

�

Thus the metric induced on the unit hyperboloid

(x0)2 − (x1)2 − (x2)2 = τ,

is the one above.

2.3. The hyperboloid can also be thought of as the upper half plane with

the metric.

ds2 =
dx2 + dy2

y2
, y > 0

2.3.1. The isometries are fractional linear transformations with real parameters

a, b, c, d:

z �→ az + b

cz + d
, ad− bc = 1

Problem 2. Verify that these are symmetries of the metric.

2.4. The geodesics are circles orthogonal to the real line. If two points have

the same value of x, the geodesic is just the line parallel to the imaginary axis that

contains them. Using the isometry above we can bring any pair of points to this

configuration. It is also possible to solve the geodesic equations to see this fact.

2.5. The hyperboloid can also be thought of as the interior of the unit

disk.

ds2 =
dzdz̄

(1− z̄z)2
, z̄z < 1

Problem 3. What are the geodesics in this description?


