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1. The Geodesic Equation

1.1. Riemann discovered the essential features of metric geometry in ar-

bitrary dimensions. The key idea is that the distance between nearby points

ds
2 = gµνdx

µ
dx

ν

contains all the essential information. In particular it determines the geodesics.
The rate of divergence of nearby geodesics determines the curvature: how much the
space differs from Euclidean space locally.

1.2. A geodesic is an extremum of the action on the set of curves.

S =
1

2

ˆ
gµν

dxµ

dτ

dxν

dτ
dτ

Again we stress that a geodesic is not always a minimum; also S is a convenient
proxy for the more intuitive concept of distance. It can be shown that the extrema
of and of the length are the same.

1.3. This leads to a differential equation.

d

dτ

�
gµν

dxν

dτ

�
− 1

2
∂µgρν

dxρ

dτ

dxν

dτ
= 0.

Straightforward application of the Euler-Lagrange equation

d

dτ

∂L

∂ẋµ
− ∂L

∂xµ
= 0

with Lagrangian

L =
1

2
gµν ẋ

µ
ẋ
ν

∂L

∂ẋµ
= gµν ẋ

ν

1
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1.4. An equivalent formulation is.

d2xσ

dτ2
+ Γσ

ρν
dxρ

dτ

dxν

dτ
= 0, Γσ

ρν =
1

2
g
σµ [∂ρgµν + ∂νgµρ − ∂µgρν ]

The Γµ
ρν are called Christoffel symbols. Calculating them for some given metric

is one of the joys of Riemannian geometry; an even greater joy is to get someone
else to do the calculation.

Proof. Rewrite the geodesic equation as

gµν
d2xν

dτ2
+ ∂ρgµν

dxρ

dτ

dxν

dτ
− 1

2
∂µgρν

dxρ

dτ

dxν

dτ
= 0

where we use the chain rule to calculate dgµν

dτ = ∂ρgµν
dxρ

dτ . Now, by averaging
over the interchange of ρ, ν we get

∂ρgµν
dxρ

dτ

dxν

dτ
=

1

2
[∂ρgµν + ∂νgµρ]

dxρ

dτ

dxν

dτ

and

gµν
d2xν

dτ2
+

1

2
[∂ρgµν + ∂νgµρ − ∂µgρν ]

dxρ

dτ

dxν

dτ
= 0

Now we get rid of the gµν by multiplying throughout by its inverse, using
gσµgµν = δσν :

d2xσ

dτ2
+

1

2
g
σµ [∂ρgµν + ∂νgµρ − ∂µgρν ]

dxρ

dτ

dxν

dτ
= 0

�
1.5. Given an initial point P and a vector V at that point, there is a

geodesic that starts at P with V as tangent. This just follows from standard
theorems about the local existence of solutions of ODEs. The behavior for large τ

can be complicated: geodesics are chaotic except for metrics with a high degree of
symmetry.

Remark 1. The following are more advanced points that you will understand only
during a second reading , after you have already learned some Riemannian geometry.

1.6. On a connected manifold, any pair of points are connected by at least

one geodesic. Connected means that there is a continuous curve connecting any
pair of points.( To define these ideas precisely we wil need first a definition of a
manifold, which we will postpone for the moment.) Typically there are several
geodesics connecting a pair of points. For example of the sphere, there are at least
two for every (unequal) pair of points: one direct route and that goes around the
world.

1.7. Curves minimizing the action and the length are the same. This can
be proved using a trick using Lagrange multipliers. First of all, we note that the
length can be thought of the minimum of

S1 =
1

2

�ˆ
gµν

dxµ

dτ

dxν

dτ
λ
−1

dτ +

ˆ
λdτ

�

over all non-zero functions λ. Minimizing gives λ−2ẋ|2 = 1 =⇒ λ = |ẋ|. At this
minimum S1[x] = l[x]. Now S1 is invariant under changes of parameters
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τ → τ
�(τ), λ� = λ

dτ

dτ �

Choosing this parameter to be the arc length, S1 reduces to the action. Thus
they describe equivalent variational problems. Moreover, at the minimum S, S1, l

all agree.

1.8. The shortest length of all the geodesics connecting a pair of points is

the distance between them. It is a deep result that such a minimizing geodesic
exists. Most geodesics are extrema.

1.9. Gauss and Riemann realized that only experiments can determine

whether space is Euclidean. They commissioned an experinent to look for de-
partures from Euclidean geometry; and found none. The correct idea turned out
to be to include time as well.

2. Gravitational Field Is the Metric of Space-Time

2.1. The metric of space-time is Lorentzian.

ds
2 = gµνdx

µ
dx

ν

Lorentzian means that the symmetric matrix has one positive eigenvalue and
three negative eigenvalues.

If gµν = ηµν is constant (in some co-ordinate system) there is no gravitational
field. Gravitation is the effect of the departture of the metric from the Minkowski
metric. That is the central idea of Einstein’s theory. Even when there is a no
gravitational field, gµνmight be not a constant because we are in an accelerated
reference frame ( curvilinear co-ordinate system). This means we feel pseudo-forces
such as the centrifugal force.

2.2. A point particle moves along a time-like geodesic of the space-time

metric; light moves along a null geodesic. Here a particle is a small object,
whose mass and size is small: a planet is a particle when its orbit around the Sun
is considered.

2.3. In the Newtonian approxmation, the metric is.

ds
2 ≈

�
1 +

2φ(x)

c2

�
c
2
dt

2 − (dx1)2 − (dx2)2 − (dx3)2

We put back the factors of c to consider the situation where all particle veloci-
ties are small compared to that of light. The departure from Minkowski space in
all except the g00 components is even smaller. Remember that the gravitational
potential φ of Newton’s theory has the dimensions of the square of velocity: energy
per unit mass.

2.4. If we ignore all higher order terms in
1
c , the geodesic equation should

reduce to Newton’s equations of motion. Let us check that this is true. The
action principle gives

S =
1

2

ˆ �
c
2
ṫ
2 − (ẋ1)2 − (ẋ2)2−(ẋ3)2

�
dτ +

ˆ
φ(x)ṫ2dτ

The EL equations are
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d

dt

�
c
2 dt

dτ
+ 2φ(x)

dt

dτ

�
− 1

2

∂φ

∂t
ṫ
2 = 0

− d

dt

�
dxi

dτ

�
− ∂φ

∂xi
ṫ
2 = 0

Now from the first equation

dt

dτ
≈ 1 +O(c−1)

and the second equation becomes

d2xi

dt2
≈ − ∂φ

∂xi
.

Thus the newtonian potential can be thought of as changing the time component
of the metric of space-time.

2.5. Clocks tick slower in a gravitation field. This identification has an im-
mediate consequence: time is affected by a graviational field. A clock sitting in the
field measures time evolving slower than one at infinity, far away from all sources
of gravity. If a photon is emitted within the field and escapes to infinity, it will
have a lower frequency than a similar one produced at infinity. This is the Grav-
itational Red Shift. Spectral lines of hydrogen at the surface of the Sun are red
shifted compared to those at Earth: the gravitational field is much stronger on the
Sun. This was one of the first predictions of General Relativity to be confirmed
experimentally.

2.6. Even the path of light is affected by gravity. This was one of the first
questions that puzzled Einstein. In Newtonian gravity, the force on a particle is
proportional to its mass. The particles of light have zero mass. Are they not
affected by gravity? If they are not, it can lead to a violation of the conservation of
momentum: you can bounce a photon off a source of gravity. The only solution is
that the path of light, null geodesics, are also affected by gravity. We can use the
same Lagrangian as above, to calculate this effect, but an approach based on the
eikonal equation is more convenient. We wil return to this point.


