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CHAPTER 1

Convergent vs Asymptotic Expansions

The prototype of a convergent in�nite series is the geometric series

1 + z + z2 + z3 · · ·
If |z| < 1 each successive term is smaller than the previous one and the sum

tends to a �nite value. To prove this, consider the partial sums

Sn(z) = 1 + z + · · · zn

Since

zSn(z) = z + z2 + · · · zn+1 = Sn(z)− 1 + zn+1

it follows that

Sn(z) =
1− zn+1

1− z
.

The di�erence

|Sn(z)− 1

1− z
| = |z|

n+1

|1− z|
<
|z|n+1

(1− |z|)
.

As n → ∞ this tends to zero. Thus the geometric series converges inside the
unit circle

lim
n→∞

Sn(z) =
1

1− z
, |z| < 1.

More generally consider the power series∑
n

anz
n

If

|an| < λn

whenever n > N for some λ, we can compare this series to the geometric series
term by term

|anzn| < |(λz)n|
So it will converge if

|z| < λ−1.

In fact f(z) =
∑
n anz

n is an analytic function of z within this circle of convergence.
The most elementary situation is when |an| tends to zero faster than an exponential;
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1. CONVERGENT VS ASYMPTOTIC EXPANSIONS 7

i.e., |an| < |λ|n for every λ. In this case the series converges for any z and f(z) is
an entire function. Familiar examples are

exp(z) =

∞∑
n=0

1

n!
zn

sin(z) =

∞∑
n=0

(−1)n+1

(2n+ 1)!
z2n+1

In�nite power series with �nite radius of convergence include other familiar
examples

log[1− z) =

∞∑
n=1

1

n
zn, |z| < 1

arctanh z =

∞∑
n=0

z2n+1

2n+ 1
, |z| < 1.

A series like

∞∑
n=0

(−1)nn!zn

does not converge for any value of z (expect the trivial case z = 0). Many of
the standard approximation methods of physics give series of this type or worse.
We will see why they work in spite of the lack of convergence. It will turn out that
the usual de�nition of a convergent in�nite series is too restrictive: there is a larger
class of asymptotic series that include these cases of physical interest. Unlike
for convergent series, some additional information (usually from the physics or
geometry represented by the function) is necessary to make sense of the sum. The
lack of convergence can be traced to certain essential singularities (�instantons�)
at z = 0 . Yet these singularities have a physical origin: e.g., tunneling in the
application to quantum mechanics. By the technique of Borel summation, the
divergenet series above can be represented as an integral

∞∑
n=0

(−1)nn!zn ≡ f(z) =

ˆ ∞
0

1

1 + zt
e−tdt

which converges for z > 0 and has a branch cut along the negative real axis.This
way we can �nd a meaning for the function represented by the power series. For
example

f(2) ≈ 0.461455

A plot of this interpretation of the function is given in the �gure.
Even when a convergent series is available, an asymptotic series can provide

a better alternative approximation. We will see an example of this in the Stirling
approximation to the Gamma function.

A much more recent development (since the 1940s) is the theory of renormal-
ization. Each term in the series is itself a divergent integral, and yet we are able to
make sense of the expansion. The most accurate predictions in the history of sci-
ence (e.g., the magnetic moment of the electron to �fteen decimal place accuracy)
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Figure 1.0.1.

are made this way. The mathematical basis of this is as yet unknown. 't Hooft has
related this phenomenon also to certain essential singularities (�renormalons�). We
will take a look at this mysterious theory towards the end of the course.



CHAPTER 2

The Factorial

Euler is the �Master of Us All� mathematical physicists. He was adept at ma-
nipulations that are, in the modern mathematical sense, illegal, yet gave physically
correct answers. One of his favorite functions was the Gamma function, an exten-
sion to complex values of the factorial. It turns out that this function has an integral
representation which is a prototype for the integrals that appear all over physics:
quantum mechanics, wave optics, quantum �eld theory, statistical mechanics, all
can be formulated in terms if integrals over many (sometimes in�nite number of )
variables. Learning how to calculate the factorial accurately is a good way to learn
how to understand these theories.

2.1. An Integral Representation

Recall that

n! = n(n− 1) · · · 3× 2× 1.

for any positive integer. It is not hard to see that its value grows rapidly with
n:

n n!
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800

Many problems in probability require us to estimate the value of n! for large
n. How fast does it grow? It is useful to note that

Proposition 1. The factorial has an integral representation

n! =

ˆ ∞
0

tne−tdt

Proof. To prove this identity, start with the de�nition

In =

ˆ ∞
0

tne−tdt.

Note �rst of all that
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2.2. STIRLING'S APPROXIMATION 10

I0 =

ˆ ∞
0

e−tdt = 1

Moreover

ˆ ∞
0

tne−tdt = −
ˆ ∞

0

d

dt

[
tne−t

]
dt+ n

ˆ ∞
0

tn−1e−tdt

Thus

In = nIn−1.

Iterating this

In = n(n− 1) · · · 2× 1× I0 = n!

�

Why bring in an integral to study a quantity that is de�ned using just the
idea of multiplication? By looking at the integrand we can see where most of the
contribution to the integral comes from; and this gives as an approximation method
for large values of n which would otherwise take a large number of multiplications.
A side bene�t is that it allows us to extend the de�nition of the factorial to fractional
values of n. We already have reason to believe that

0! = I0 = 1.

We wll see soon that (
1

2

)
! =

√
π

2

2.2. Stirling's Approximation

Let us plot the integrand for some moderately large value of n:
We see that the integrand is peaked around t = n; in fact the the width of the

peak decreases as ngrows. So it should be possible to get a good approximation by
expanding arounding this value.

If we write the integral as

ˆ ∞
0

tne−tdt =

ˆ ∞
0

exp [−t+ n log t] dt

=

ˆ ∞
0

exp

[
n

{
log t− t

n

}]
dt

Since we expect the region near t = n to be important, let us make a change
of variable that centers the graph around this value:

s =
t

n

In = n exp[n log n]

ˆ ∞
0

exp [n {log s− s}] ds

Or
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Figure 2.2.1.

Figure 2.2.2.

In = nn+1

ˆ ∞
0

exp [n {log s− s}] ds

The maximum of log s−s occurs at s = 1, as we expected. If we expand around
this point,
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Figure 2.2.3.

log s− s = −1− 1

2
(s− 1)2 +

1

3
(s− 1)3 − 1

4
(s− 1)4 +O

(
(s− 1)5

)
In = nn+1e−n

ˆ ∞
0

exp

[
n{−1

2
(s− 1)2 +

1

3
(s− 1)3 − 1

4
(s− 1)4 · · · }

]
ds

This suggests yet another change of variable

n(s− 1)2 = u2

s = 1 +
u√
n

In = nn+ 1
2 e−n

ˆ ∞
−
√
n

exp

[
−1

2
u2 +

1

3
√
n
u3 − 1

4n
u4 · · · }

]
du

The point is that we now have n where we want it: the successive terms get
smaller as s grows. If we boldly keep just the leading term we get an approximation

In ≈ nn+ 1
2 e−n

ˆ ∞
−∞

exp

[
−1

2
u2

]
du

The latter integral can be evaluated to be

ˆ ∞
−∞

exp

[
−1

2
u2

]
du =

√
2π.

Thus

In ≈ nn+ 1
2 e−n

√
2π

How good is this approximation?
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n n! Approx %Error
1 1 0.922137 7.7863
2 2 1.919 4.04978
3 6 5.83621 2.72984
4 24 23.5062 2.0576
5 120 118.019 1.65069
6 720 710.078 1.37803
7 5040 4980.4 1.18262
8 40320 39902.4 1.03573
9 362880 359537. 0.921276
10 3628800 3.5987× 106 0.829596

It is pretty good: the error is only about 1% for n = 10. Our method gets more
accurate just when the brute force multiplication gets harder : when n gets larger.

n Approx %Error
2 1.919 4.04978
12 4.75687× 108 0.691879
22 1.11975× 1021 0.378045
32 2.62447× 1035 0.260069
42 1.40222× 1051 0.198212
52 8.0529× 1067 0.160126
62 3.14277× 1085 0.134317
72 6.11636× 10103 0.115673
82 4.74881× 10122 0.101574
92 1.24272× 10142 0.0905383

Exercise 2. Show that the binomial distribution(
n
r

)
pr(1− p)n−r

tends to the Gaussian the limit n→∞, p→ 0 keeping r
n and np �xed.

2.3. The Second Order

Can we improve the Stirling approxmation?

In = nn+ 1
2 e−n

ˆ ∞
−
√
n

exp

[
−1

2
u2 +

1

3
√
n
u3 − 1

4n
u4 · · ·

]
du

Our approximation was to drop the higher order terms in the series, and also
to replace the lower limit of the integration by in�nity. It easy that the errors due
to the latter are very small indeed:

ˆ ∞
−
√
n

exp

[
−1

2
u2

]
du =

ˆ ∞
−∞

exp

[
−1

2
u2

]
du−

ˆ −√n
−∞

exp

[
−1

2
u2

]
du

The relative error is

1√
2π

ˆ −√n
−∞

exp

[
−1

2
u2

]
du <

1√
2π

ˆ ∞
1

exp
[
−n

2
v
] √ndv√

2v
<

√
n√
2π
e−

n
2
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which decreases exponentilally. The error due to ignoring higher order terms
in the series decreases like a power of n instead:

In = nn+ 1
2 e−n

(ˆ ∞
−∞

exp

[
−1

2
u2 +

1

3
√
n
u3 − 1

4n
u4 · · ·

]
du+ O

(
e−n

))

= nn+ 1
2 e−n

(ˆ ∞
−∞

exp

[
−1

2
u2

]{
1 +

1

3
√
n
u3 +

1

2!

[
1

3
√
n
u3

]2

− 1

4n
u4

}
du+ O

(
e−n

))

In = nn+ 1
2 e−n

√
2π

(
1 +

1

n

[
1

2!

1

32
< u6 > −1

4
< u4 >

]
+ O

(
n−2

)
+ O(e−n)

)
We encounter averages such as

< un >≡
´∞
−∞ un exp

[
− 1

2u
2
]
du´∞

−∞ exp
[
− 1

2u
2
]
du

The odd powers average to zero by symmetry. The even powers can be evalu-
ated to

< u2n >= (2n− 1)!!

For example,

< u4 >= 3, < u6 >= 15

In = nn+ 1
2 e−n

√
2π

(
1 +

1

n

[
1

2!

1

32
15− 1

4
3

]
+ O

(
n−2

)
+ O(e−n)

)
Simplifying

In =
√

2πe−nnn+ 1
2

(
1 +

1

12n
+ O

(
n−2

)
+ O(e−n)

)
We can see that the errors are substantially smaller:

n n! Approx1 %Error1 Approx2 %Error2
1 1 0.922137 7.7863 0.998982 0.101824
2 2 1.919 4.04978 1.99896 0.0518567
3 6 5.83621 2.72984 5.99833 0.0278913
4 24 23.5062 2.0576 23.9959 0.017137
5 120 118.019 1.65069 119.986 0.0115383
6 720 710.078 1.37803 719.94 0.00828033
7 5040 4980.4 1.18262 5039.69 0.00622504
8 40320 39902.4 1.03573 40318. 0.00484771
9 362880 359537. 0.921276 362866. 0.00388063
10 3628800 3.5987× 106 0.829596 3.62868× 106 0.00317601

Even in the worst case, n = 1, the error is about one part in a thousand. It
looks as though we can do better and better by going to higher orders. What is to
prevent us from calculating the answer to as much accuracy as we need?
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It turns out that this Stirling expansion is divergent: we are expanding around
an essentially singularity (the point at in�nity). Although the answer gets better
for the �rst few orders, it will eventually get worse. The larger n is, the smaller
the higher orders are and moreover, the later the onset of the divergence. This is
typical of all the approximation methods of physics.

Another important lesson is that a method that was supposed to work only for
large n is actualy giving excellent answers even when n is of order one. The validity
of many of the expansions in physics has little to do with the actual value of the
expansion parameter. It is a myth that the smallness of the coupling constant is
what justi�es perturbation theory in quantum mechanics, for example.

2.4. Some Integrals

We need often the constant

C =

ˆ ∞
−∞

e−
1
2x

2

dx

and averages such as

< xn >=

´∞
−∞ e−

1
2x

2

xndx´∞
−∞ e−

1
2x

2
dx

.

Let us start with the evaluation of C. The trick is to look instead at C2

C2 =

[ˆ ∞
−∞

e−
1
2x

2

dx

] [ˆ ∞
−∞

e−
1
2y

2

dy

]
Then we combine the two integrals into an integration on the plane

C2 =

ˆ ∞
−∞

e−
1
2 (x2+y2)dxdy

and note that the integrand only depends on r =
√
x2 + y2. So we can pass to

polar co-ordinates

C2 =

ˆ ∞
0

e−
1
2 r

2

2πrdr

Setting s = 1
2r

2

C2 = 2π

ˆ ∞
0

e−sds = 2π.

Thus

C =
√

2π

as promised.
To get the moments < xn >it is useful to introduce the generating function

Z[J ] =< eJx >=

∞∑
n=0

Jn

n!
< xn >

Now,



2.4. SOME INTEGRALS 16

ˆ ∞
−∞

e−
1
2x

2

eJxdx = e
1
2J

2

ˆ
e−

1
2 [x−J]2dx

By shifting the variable x→ x+ J we get

ˆ ∞
−∞

e−
1
2x

2

eJxdx = e
1
2J

2

ˆ
e−

1
2x

2

dx = Ce
1
2J

2

Thus

Z[J ] = e
1
2J

2

.

Expanding

Z[J ] =

∞∑
n=0

1

2nn!
J2n

Thus

< xn >= 0, for n odd

which anyway is obvious by the symmetry x→ −x.
Comparing the even terms,

∞∑
n=0

J2n

(2n)!
< x2n >=

∞∑
n=0

1

2nn!
J2n

so that

< x2n >=
(2n)!

2nn!
=

(2n)(2n− 1)(2n− 2)(2n− 3) . . . 3× 2× 1

(2n)(2n− 2)(2n− 4) · · · 4× 2
The denominator is the product of all the even numbers from 2 to 2n. Thus

< x2n >= (2n− 1)!!

which is the product of all the odd numbers from 1 to 2n− 1.
This number has an interesting combinatorial meaning. Put down a set of 2n

points. Pair them up by drawing a line connecting any pair of points. < x2n > is
the number of such pairings. For, there are 2n− 1 ways of choosing the �rst pair,
2n− 3 ways to choose the next and so on.

There is no way to pair up all of them if the total number of points is odd.
So the number of pairings is zero in that case, so that < xn > is always equal to
the number of pairings . Such graphical interpretations of Gaussian integrals have
turned out to be very useful. Feynman turned this into a �ne art.



CHAPTER 3

Laplace's Method

Many problems of physics can be reduced to the evaluation of integrals such as

Y (g) =

ˆ
e

1
gS(φ)dφ

In the simplest cases (such as the factorial) the integral is over a single real
variable. More generally it may be a multiple integral. Even the deepest physical
theories (quantum mechanics, quantum �eld theory, statistical mechanics) involve
integrals such these, but over an in�nite number of variables. The parameter g
has di�erent physical meanings in each sub�eld of physics: in combinatorics (such
as the factorial) it is g = 1

n . In quantum mechanics it is the Plank's constant,
which measures the size of quantum e�ects. In wave optics, it is the wavelength
of light, which is small when di�raction (interference) e�ects can be ignored. In
statistical mechanics g = kT is proportional to temperature: it is small when
thermal �uctuations are small. Thus it is of geat physical interest to understand
an expansion of f(g) around the point g = 0. This is despite the fact that this
point is an essential singularity! We will generalize the ideas of the last chapter
to develop a graphical method for calculating this expansion to as high an order
as we need, in the case of a single variable of integration. The graphical method
is a reinterpretation due to Feynman of this venerable method. As in many other
cases, such a graphical user interface (gui) radically expanded the number of users.
It made the method available to large numbers of people .

To be speci�c, we will consider the integral

Y (g) =

ˆ b

a

e
1
gS(φ)dφ

where the function S : R→ R has a unique maximum in the interval [a, b] and
g is a real positive variable.

Y (g) =

ˆ b

a

e
1
gS(φ)dφ.

The basic idea is that for small positive g, most of the contribution to the
integral comes from the neighborhood of the maximum of S, so that by expanding
around it we get a power series in g. This is an asymptotic series which, although
divergent, gives excellent approximations to the integral.

In the example we saw earlier,

n! = nn+1

ˆ ∞
0

exp [n {log φ− φ}] dφ

17



3.1. EXPANDING AROUND THE MAXIMUM 18

so that we can identify

n! = nn+1Y (
1

n
).

g =
1

n
, S(φ) = −φ+ log φ.

The case where the maximum is at one of the endpoints of integration intro-
duces interesting new e�ects which we will study later. If the interval contains
several minima of S, we should split it up into smaller intervals, each with one
minimum. Examples where g is complex (purely imaginary) also appear in physics:
the maxima of S also must be take into account in that case.

3.1. Expanding Around The Maximum

Let the maximum of S occur at some point a < c < b. Expand

S(φ) = S0 −
1

2G
(φ− c)2 +

∑
k=3

Sk(φ− c)rk

where

S0 = S(c), − 1

G
=

[
d2S

dφ2

]
φ=c

,

and

S3 =
1

3!

[
d3S

dφ3

]
φ=c

, S4 =
1

4!

[
d4S

dφ4

]
φ=c

etc.
Here, the �rst order contribution is zero because a is an extremum. Since it is

a maximum

G > 0.

Thus

Y (g) =

ˆ
e

1
gS(φ)dφ = e

1
gS0

ˆ
e

1
g [− 1

2G (φ−c)2+S3(φ−c)3+··· ]dφ

By changing variables to

χ =
1
√
g

[φ− c]

Y (g) =
√
ge

1
gS0

ˆ
e[−

1
2Gχ

2+
√
gS3χ

3+gS4χ
4··· ]dχ

We now use the fact that

ˆ
e−

1
2Gχ

2

dχ =
√

2πG

Thus

Y (g) = e
1
gS0
√

2πgG〈e
√
gS3χ

3+gS4χ
4···〉

where we de�ne, for any function f(χ)
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〈f(χ)〉 =

´
f(φ)e−

1
2Gχdχ√

2πG
It is convenient to set

Y (g) = e
1
gS0
√

2πgGy(g), y(g) = 〈e
√
gS3χ

3+gS4χ
4···〉

We expand the exponential in a power series to get

y(g) = 1 + 〈√gS3χ
3 + gS4χ

4 +
1

2!

[√
gS3χ

3
]2〉+ O(g2)

It is obvious that the term of order
√
g is zero since < χ3 >= 0.More generally,

all the odd powers have zero expectation value, so that all the frcational powers of
g will disappear. The even powers have expectation values

< χ2n >= (2n− 1)!!Gn

so that to �rst order

y(g) = 1 + g

{
3!!S4G

2 +
1

2!
5!!S2

3G
3

}
+ O(g2)

3.2. Higher Orders

In the second order term in g we will have contributions proportional to S4
3 , S

2
3S4, S3S5, S

2
4 , S6.:

y2(g) = g2

{
(11!!)G6S

4
3

4!
+ (9!!)G5S

2
3

2!
S4 + (7!!)G4S3S5 + (7!!)G4S

2
4

2!
+ (5!!)S6G

3

}
In general,

Y (g) =
√
ge

1
gS0

ˆ
e

[
− 1

2Gχ
2+
∑
k=3 g

k
2
−1Skχ

k

]
dχ

=
√
ge

1
gS0

ˆ
e−

1
2Gχ

2 ∏
k=3

eg
k
2
−1Skχ

k

dχ

Expand each factor in a series, and calling the index of summation in the kth
factor nk,

eg
k
2
−1Skχ

k

=

∞∑
nk=0

g( k2−1)nk
Snkk
nk!

χknk

to get

Y (g) =
√
ge

1
gS0

∞∑
nk=0

g
∑
k=3( k2−1)nk

∏
k=3

Snkk
nk!

ˆ
e−

1
2Gχ

2

χ
∑
k=3 knkdχ

Evaluating the integral term by term,

Y (g) ≡
ˆ b

a

e
1
gS(φ)dφ ≈
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(3.2.1) e
1
g
S0
√

2πgG
∞∑

n3,n4···=0

g
1
2

∑
k knk−

∑
k nk

∑
k

knk − 1

!! G
1
2

∑
k knk

∏
k=3

S
nk
k

nk!

It is to be understood here that m!! = 0 for even values of m; beware that
this is an unsual use of the notation!!

Laplace's original method was �re�ned� by several mathematicians (e.g., Wat-
son's Lemma), but they do not produce formulas that are any more useful in prac-
tical computations. Also, they do not generalize to higher dimensional integrals.
So we have avoided them.

3.3. Symbolic Computation

This rather complicated formula has a graphical interpretation which helps us
to visualize it (see below). This was useful in the days when �nding combiantorial
factors and adding fractions had to be done by the human brain. But with the
easy availability of symbolic computation, it is a better strategy to translate the
above formula directly into a program that can expand it out to any order desired.
At order l, we have to �nd the of non-negative integer solutions n3,, n4, · · · to the
equation ∑

k=3

(
k

2
− 1

)
nk = l

This is a variation on the ancient problem of �ndings partitions of l: the ways
in which it can be written as a sum of natural numbers. The variation is that
each nk appears with a weight k

2 − 1. Mathematica has a built-in command called
IntegerPartitions that calculates these weighted partitions as well. In any case,
they can be found recursively.

There are only a �nite number of solutions because the weights are positive
numbers.The largest value of kthat can appear is given by setting nkmax

= 1 and
all the others equal to zero. Then

kmax = 2l + 2

Next we would have a term involving Skmax−1S3 and so on.

3.4. Graphical Interpretation

A graph is simply a set of points with lines connecting them.At any point (also
called vertex) a certain number of lines will meet. This is the co-ordination
number of that point. We allow for co-ordination numbers to be 2, 3, · · · We can
translate each graph into an algebraic expression by the following Feynman rules:

• For each edge we put down a factor of G
• For each vertex of co-ordination number k we put a factor of Sk
• We multiply by the number of ways of contracting edges, (

∑
k knk − 1)!!

• We divide by the factor 1
nk! which takes account of the permutations of

vertices of the same co-ordination number.
• Multiply by gto the power of the number of edges minus the number of
vertices.

Note that

• Graphs can be disconnected.
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• Co-ordination numbers are at least 3; this rules out �external legs� in
particular.

The last rules need some explanation. Since there are nkvertices of co-ordination
number k, there are E = 1

2

∑
k knk edges .(Each edge is shared by a pair of points.

In particular,
∑
k knk is always even.) And there are V =

∑
k nk vertices. Thus

we have a factor of gE−V . This quantity has an interesting topological meaning.By
a theorem of Euler, it is related to the number of faces (or �loops�) of the graph.

Example 3. Let us take the case of the Stirling expansion for the factorial.

n! = nn+1Y

(
1

n

)
, g =

1

n

S = −φ+ log φ

so that the maximum occurs at φ = 1.

S0 = −1, G = 1

and

Sk =
(−1)k

k
, k = 3, 4, · · ·

Then to second order,

n! = n
n+ 1

2 e
−n√

2π[1 +
1

n

{
3!!S4G

2
+

1

2!
5!!S

2
3G

3
}

+
1

n2

{
(11!!)G

6 S
4
3

4!
+ (9!!)G

5 S
2
3

2!
S4 + (7!!)G

4
S3S5 + (7!!)G

4 S
2
4

2!
+ (5!!)S6G

3

}
+ O(n

−3
)]

which simpli�es to

n! = nn+ 1
2 e−n

√
2π

[
1 +

1

12n
+

1

288n2
+ O

(
1

n3

)]
Here is a table of the errors expressed as a percentage, for small values of n.

You can see how the second order correction improves the answer as soon as n is
moderately large.

n %Error1 %Error2 %Error3
1 7.7863 0.101824 −0.218362
2 4.04978 0.0518567 −0.0314334
3 2.72984 0.0278913 −0.00963581
4 2.0576 0.017137 −0.00411784
5 1.65069 0.0115383 −0.00212137
6 1.37803 0.00828033 −0.00123182
7 1.18262 0.00622504 −0.000777329
8 1.03573 0.00484771 −0.00052145
9 0.921276 0.00388063 −0.000366569
10 0.829596 0.00317601 −0.000267405

Exercise 4. Calculate the next order term in the above expansion. Make a
table of errors.
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Exercise 5. Find the �rst few terms in the asymptotic expansion for large
positive x of the Bessel function Kν(x) =

´∞
0
e−x cosh t cosh νt dt.

3.5. A Slight Generalization

Often we encounter a slight generalization of the integral in the previous section:

F (g) =

ˆ b

a

f(φ)e
1
gS(φ)dφ

where f(φ) is a function with �nite derivatives at the maximum of S, which we
again assume to in the interior of the interval a < c < b.

f(φ) ∼
∞∑
r=0

fr(φ− c)r

Earlier we had f = 1. Exactly the same argument allows us an expansion of
this in powers of g as well. The graphs that appear will now have r external legs.

F (g) ≡
ˆ b

a

f(g)e
1
gS(φ)dφ ≈

e
1
g
S0
√

2πgG

∞∑
n1,n3,n4···=0

g
1
2
n1+ 1

2

∑
k=3 knk−

∑
k nk

n1 +
∑
k=3

knk − 1

!! G
1
2 {n1+

∑
k=3 knk}

∏
k=3

S
nk
k

nk!

again with the understanding that m!! = 0 for even m.

Exercise 6. Find the �rst few terms in the asymptotic expansion for large
positive x of the Bessel function Kν(x) =

´∞
0
e−x cosh t cosh νt dt.

Exercise 7. Write a symbolic program in Mathematica, Maple or Sage which
implements Laplace's method, given functions S and fand the desired order of g.



CHAPTER 4

The Gamma Function

The integral

n! =

ˆ ∞
0

tne−tdt

converges even for complex values of n , provided that Ren > −1. So we can
extend the de�nition of the factorial to complex values. This extension is called the
Gamma function, apart from an awkward shift in the argument by one:

n! = Γ(n+ 1)

The reason for this notation is obscure: many formulas would have been simpler
if we had simply used z! to represent the complex extension of the factorial. Thus

Γ(z) =

ˆ ∞
0

tz−1e−tdt

is an analytic function for Re z > 0. Note that Γ(1) = 0! = 1.
Using the recursion relation

Γ(z + 1) = zΓ(z)

obtained by integration by parts, we can extend the de�nition to the region
with negative Re z. Then Γ(z) has poles at non-positive integers:

Γ(z) =
Γ(z + 1)

z
∼ 1

z
, z → 0

and more generally

Γ(z) =
Γ(z + k + 1)

z(z + 1)(z + 2) · · · (z + k)
∼ (−1)k

k!(z + k)

4.1. The Product Formula

The logarithmic derivative of the Gamma function is useful to establish many
of its properties:

ψ(z) =
d

dz
log Γ(z)

It satis�es the recursion

ψ(z + 1) =
1

z
+ ψ(z)

By iterating

23
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ψ(z) = −1

z
− 1

z + 1
· · · − 1

z + k
+ ψ(z + k)

We cant take the limit k →∞ because the sum would diverge. But we can do
that for the derivative of ψ:

ψ′(z) =
1

z2
+

1

(z + 1)2
+ · · ·+ ψ′(z + k)

From the Stirling formula we can deduce that ψ′(z) ∼ 1
z for large |z| so we can

take the limit

ψ′(z) =
1

z2
+

∞∑
k=1

1

(z + k)2

By adding a constant to each term we can write this as the derivative of a
convergent series:

ψ′(z) =
d

dz

{
−1

z
+

∞∑
k=1

[
1

k
− 1

(z + k)

]}
so there must be a constant such that

ψ(z) = −γ − 1

z
+

∞∑
k=1

[
1

k
− 1

(z + k)

]
Here γ ≈ 0.577215 is the Euler constant. Many useful results can be deduced

from this series. Since

ψ(z) =
d

dz

{
−γz − log z +

∞∑
k=1

[ z
k
− log

(
1 +

z

k

)]}
we can conclude that

log Γ(z) = −γz − log z +

∞∑
k=1

[ z
k
− log

(
1 +

z

k

)]
+ constant

By looking at the Laurent expansion around z = 0 we can conclude that the
constant is zero.

This way we get Euler's product formula

1

Γ(z)
= eγzz

∞∏
k=1

[(
1 +

z

k

)
e−

z
k

]
This remarkable result shows that 1

Γ(z) is an entire function: it is a uniformly

convergent product of entire functions. So there must be a convergent expansion
such that

1

Γ(z)
=

∞∑
n=1

anz
n
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4.2. Power Series in z

The coe�cients can be determined by going back to ψ and expanding it in a
power series:

1

z + k
=

1

k

1

1 + z
k

=
1

k

∞∑
r=0

(−1)rzr

kr

ψ(z) = −γ − 1

z
+

∞∑
k=1

1

k

[
1−

∞∑
r=0

(−1)rzr

kr

]

= −γ − 1

z
+

∞∑
k=1

1

k

[
−
∞∑
r=1

(−1)rzr

kr

]

= −γ − 1

z
−
∞∑
r=1

(−1)rzr
∞∑
k=1

1

kr+1

Recall the celebrated Riemann zeta:

ζ(s) =

∞∑
k=1

1

ks

so that

ψ(z) = −γ − 1

z
−
∞∑
r=1

(−1)rζ(r + 1)zr.

We can derive a recursion for the Taylor coe�cients of the Gamma function in
terms of those of ψ.

ψ(z) = − d

dz
log

1

Γ(z)
= −

(
1

Γ(z)

)′
1

Γ(z)

so that

1

Γ(z)
ψ(z) = −

(
1

Γ(z)

)′
or

∞∑
n=1

anz
n

[
γ +

1

z
+

∞∑
r=1

(−1)rζ(r + 1)zr

]
=

∞∑
n=1

nanz
n−1

∞∑
n=1

anz
n

[
γ +

∞∑
r=1

(−1)rζ(r + 1)zr

]
=

∞∑
n=1

(n− 1)anz
n−1

∞∑
m=1

amz
m

[
γ +

∞∑
r=1

(−1)rζ(r + 1)zr

]
=

∞∑
n=2

(n− 1)anz
n−1

∞∑
n=1

zn

[
γan +

n−1∑
r=1

(−1)rζ(r + 1)an−r

]
=

∞∑
n=1

nan+1z
n

Thus
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an+1 =
γ

n
an +

1

n

n−1∑
r=1

(−1)rζ(r + 1)an−r

which determines each an in terms of lower elements in the sequence. Since
a1 = 1 we get

a2 = γ, a3 =
γ2

2
− π2

12
,

a4 =
1

3
γ

(
γ2

2
− π2

12

)
a5 =

1

3

(
−γπ

2

6
+ ζ(3)

)
etc.

4.3. Series in Inverse Powers

Suppose we expand

n! ∼ nn+ 1
2 e−n

√
2π

[
1 +

∞∑
k=1

Ak
nk

]
We already know the �rst few terms

A1 =
1

12
, A2 =

1

288
etc. By taking the Laplace method to higher order we can calculate the higher

order terms:

n!

nn+ 1
2 e−n

√
2π
∼ 1.+

0.0833333

n
+

0.00347222

n2
− 0.00268133

n3
− 0.000229472

n4
+

0.000784039

n5
+

0.0000697281

n6
−0.000592166

n7
−0.0000517179

n8
+

0.000839499

n9
+

0.000072049

n10
+O

((
1

n

)11
)

Everything looks �ne: the coe�cients are getting smaller. But they will eventu-
ally grow to in�nity. It is possible to relate these coe�cients to Bernoulli numbers
and use that to get their asymptotic behavior:

A2j ∼ (−1)j+1 (2j − 2)!

6(2π)2j
, j →∞

A2j+1 ∼ (−1)j
(2j)!

(2π)2(j+1)
, j →∞

The Stirling formula itself shows that these diverge faster then any exponential
of n.(See the book by Bender and Orszag for a proof). Or you can use Mathematica
to calculate higher orders:

n!

n
n+ 1

2 e−n
√
2π

∼

1. +
0.0833333

n
+

0.00347222

n2
−

0.00268133

n3
−

0.000229472

n4
+

0.000784039

n5
+

0.0000697281

n6
−

0.000592166

n7
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−
0.0000517179

n8
+

0.000839499

n9
+

0.000072049

n10
−

0.00191444

n11
−

0.000162516

n12
+

0.00640336

n13
+

0.000540165

n14

−
0.0295279

n15
−

0.00248174

n16
+

0.17954

n17
+

0.0150561

n18
−

1.3918

n19
−

0.116546

n20
+

13.398

n21
+

1.1208

n22
−

156.801

n23
−

13.1079

n24

+
2192.56

n25
+

183.191

n26
−

36101.1

n27
−

3015.08

n28
+

691346.

n29
+

57721.3

n30
−

1.52358× 107

n31
−

1.27174× 106

n32

+
3.82848× 108

n33
+

3.19498× 107

n34
−

1.08809× 1010

n35
−

9.07895× 108

n36
+

3.47282× 1011

n37
+

2.89728× 1010

n38

−
1.23684× 1013

n39
−

1.03174× 1012

n40
+ O

((
1

n

)41)

4.3.1. Comparison of Asymptotic to Convergent Expansions. Now we
can compare the two schemes for approximating the factorial: the Stirling series
we had before and the (reciprocal of the ) convergent series we just obtained.

n! ≈ nn+ 1
2 e−n

√
2π

[
1 +

1

12n
+

1

288n2 + · · ·

]
vs

1∑∞
r=1 ar(n+ 1)r

n convergent 2 convergent 7 convergent 12 convergent 17 convergent 22 n!
0.25 0.464706 0.93482 0.9064 0.906402 0.906402 0.906402
0.5 0.357304 1.00796 0.886231 0.886226 0.886227 0.886227
0.75 0.284275 1.54701 0.919265 0.919043 0.919062 0.919063
1. 0.23208 −4.68964 1.00239 0.999747 0.999994 1.

1.25 0.193343 −0.48646 1.15287 1.13038 1.13292 1.133
1.5 0.16373 −0.175665 1.47506 1.30629 1.3283 1.32934
1.75 0.140544 −0.0804508 3.11156 1.44182 1.59752 1.60836
2. 0.122027 −0.0412329 −1.81959 1.1982 1.90351 2.

2.25 0.106988 −0.0227033 −0.348258 0.56579 1.90909 2.54926
2.5 0.0945994 −0.0131819 −0.112141 0.185839 1.10643 3.32335
2.75 0.0842666 −0.00798623 −0.0420393 0.0576534 0.369141 4.42299
3. 0.0755547 −0.00501388 −0.0171793 0.0187194 0.10546 6.

3.25 0.0681387 −0.00324559 −0.00748784 0.00647034 0.0309338 8.28509
3.5 0.0617718 −0.0021578 −0.00344359 0.00237564 0.00964716 11.6317
3.75 0.0562638 −0.0014688 −0.00165916 0.00092149 0.00320174 16.5862
4. 0.0514658 −0.001021 −0.000832988 0.000375588 0.00112531 24.

4.25 0.0472601 −0.000723193 −0.000433861 0.000160086 0.00041663 35.2116
4.5 0.0435525 −0.000521003 −0.00023357 0.0000710563 0.000161708 52.3428
4.75 0.0402671 −0.000381146 −0.00012956 0.0000327248 0.0000655217 78.7845
5. 0.0373416 −0.000282755 −0.0000738467 0.0000155884 0.0000276124 120.
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n n! asymptotic 0 asymptotic 1 asymptotic 2
0.25 0.906402 0.690194 0.920259 0.958603
0.5 0.886227 0.760173 0.886869 0.897427
0.75 0.919063 0.82641 0.918234 0.923335
1. 1. 0.922137 0.998982 1.00218

1.25 1.133 1.06124 1.13199 1.13435
1.5 1.32934 1.25843 1.32835 1.33029
1.75 1.60836 1.5343 1.60736 1.6091
2. 2. 1.919 1.99896 2.00063

2.25 2.54926 2.45714 2.54814 2.54983
2.5 3.32335 3.21495 3.32211 3.3239
2.75 4.42299 4.29152 4.42157 4.42354
3. 6. 5.83621 5.99833 6.00058

3.25 8.28509 8.07598 8.28306 8.28572
3.5 11.6317 11.3588 11.6292 11.6324
3.75 16.5862 16.2225 16.583 16.587
4. 24. 23.5062 23.9959 24.001

4.25 35.2116 34.5291 35.2062 35.2128
4.5 52.3428 51.3839 52.3355 52.3443
4.75 78.7845 77.4163 78.7745 78.7864
5. 120. 118.019 119.986 120.003

Although the series eventually converges to the right value, the number of terms
to be kept grows very rapidly with n. The �rst few terms can be misleading: we
even get negative values. The asymptotic series on the other hand, gives good
answers for the �rst few terms but will diverge away if we keep too many terms.
Convergent series are the way to prove theorems; but they are often lousy at cal-
culating approximate numerical answers. So theoretical physics is mostly based on
asymptotic expansions: convergent expansions are rarely available in interesting
situations. Even when they are, they may not be the best approximation methods.

Exercise 8. De�ne F (g) =
´
e−

1
2φ

2−gφ4 dφ√
2π
. Find the coe�cients in the ex-

pansion in powers of g. Does it converge? By a change of variables, show that

g
1
4F (g) =

´
e
− 1

2
√
gχ

2−χ4
dχ√
2π

.Obtain the coe�cients in its expansion in powers of

z = g−
1
2 . Does this converge in some region in the z− plane?By numerically eval-

uating the integral as well as the leading terms of the two approximation methods,
determine the region of validity of each.



CHAPTER 5

Generating Functions And Their Approximations

A sequence is a map a : N ∪{0} → C that assigns to any non-negative integer
a complex number. It is possible to add them termwise and multiply them by a
complex number;

(a+ b)n = an + bn, [λa]n = λan

i.e., the set of sequences form a vector space.
If we think of the terms of a sequnce as the coe�cients of a power series

a(z) =

∞∑
n=0

anz
n

we say that a(z) is the generating function of the sequence a.

Example 9. Suppose Pn is the number of ways in which a positive integer can
be written as a sum of other positive integers; i.e., the number of solutions to the
equation

n =

∞∑
k=1

kmk

where mk = 0, 1, · · · is the number of times k appears in that partition of n.
For example, 3 = 1 + 1 + 1 = 1 + 2 so that Pn = 2. Similarly P3 = 5,

P4 = 5, P5 = 7, P6 = 11, P98 = 50198136 etc. The generating function P (q) =∑∞
n=1 Pnq

n =
∑∞
n1,n2,=0 q

n1q2n2q3n3 · · ·

P (q) =

∞∑
n=1

Pnq
n =

∞∑
n1,n2,=0

qn1+2n2+3n3+···

=

∞∑
n1=0

qn1

∞∑
n2=0

q2n2

∞∑
n3=0

q2n3 · · ·

P (q) =

∞∏
k=1

1

1− qk
.

The fact that this product converges when ,|q| < 1 shows that the power series∑
n Pnq

n converges as well, when |q| < 1. This by itself shows that Pn has to grow
for large n slower than an exponential. More precisely, the radius of convergence
of the power series

lim sup
n
|Pn|

1
n < 1.

29
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Hardy and Ramanujan developed a deep theory of the asymptotic behavior of
Pn for large n by studying the singularities of this function P (q). In the leading
order

Pn ∼ eπ
√

2n
3

in agreement with the sub-exponential growth we noted earlier.

Example 10. The generating function for partitions into odd numbers is∏∞
r=1

1
1−q2r+1 . That for distinct parts is

∏
k=1(1 + qk). From the identity

∞∏
r=1

(
1− q2r+1

)∏
k=1

(1 + qk) = 1

(Prove it!) it follows that the number of ways of writing nas a sum of distinct
parts and the number of ways of splitting it into odd parts are the same. This
means that the partition function of a system of fermions with energies 1, 2, 3, · · ·
is the same as that of a system of bosons of energies 1, 3, 5, 7, · · ·

There is a natural notion of multiplication for sequences that is induced by the
pointwise product of the functons a(z):

a(z)b(z) =
∑
p=0

apz
p
∑
q=0

bqz
q

(ab)n =
∑

p+q=n

apbq.

Since p and q are ≥ 0 this is always a �nite sum. Thus it makes sense to
multiply power series term by term even if the series itself does not converge! We
say in this case that

∑
n anz

n

is a formal power series : it is merely a convenient notation for the sequence
a. Thus we can do algebra with formal power series: they form a ring, which
contains the ring of polynomials.

Using the notation of a power series, even when z cannot be assigned a complex
value, allows us to manipulate them using th efamiliar rules for functions. Thus, it
makes sense to say that derivative of a sequence is

[a′]n = (n+ 1)an+1

since

d

dz

∑
n=0

anz
n =

∑
n=0

(n+ 1)an+1z
n

For example,

d

dz

∞∑
n=0

n!zn =

∞∑
n=0

(n+ 1)× (n+ 1)!zn

makes sense for formal power series even if the series converges only at the one
point z = 0.When is it possible to divide a formal power series by another?

a(z)b(z) = 1 =⇒
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a0b0 = 1, a0b1 + a1b0 = 0, a0b2 + a1b1 + a2b0 = 0 · · ·
Thus, as long as a0 6= 0, we can solve these equations recursively:

b0 =
1

a0
, bn = − 1

a0

n−1∑
p=1

apbn−p, n > 0

More generally, we can form a ratio f(z)
g(z) provided that g0 6= 0. The coe�cients

of h(z) = f(z)
g(z) are determined by solving

fn =
∑

p+q=n

hpgq

i.e.,

fn = g0hn +

n−1∑
p=1

hpgn−p

from which we get the recursion relation

h0 =
f0

g0

hn =
1

g0
fn −

1

g0

n−1∑
p=1

hpgn−p

This is how we found the coe�cients of the expansion of 1
Γ(z) in the last chapter.

Without convergence it also makes sense to compose formal power series

h(z) ≡ f ◦ g(z) = f(g(z)) =

∞∑
r=0

fr [g(z)]
r

If g0 = 0, (this is the opposite of the condition needed to divide by g(z)) we
can write

h0 = f0

hn =
∑
r

fr
∑

p1+p2+···pr=n

gp1gp2 · · · gpr , n > 0

For any given n there are only a �nite number of terms in this sum: each term
corresponds to a partition of n. Sometimes we may need to �nd the compositonal
inverse of f(z). It exists as long as f0 = 0 and f1 6= 0:

f(g(z)) = z

Setting g0 = 0 we get

f1g1z +
[
f2g

2
1 + f1g2

]
z2 +

[
f1g

3
1 + f2g1+

]
z3 + · · · = 0

g1 =
1

f1
, g2 = −f2

f1
g2

1 ,

etc.
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There is a formula of Lagrange that expresses the general term of the inversion
of a formal power series.

5.1. Euler Summation

Can we actually calculate the value of the generating function for some value z,
even if the sum diverges?We might be able to give it a meaning if we have additional
physical information about the quantity it represents.

For example, if

f(z) =
∑
n

fnz
n

converges for |z| < 1, and the function f(z) has a limit as z → 1 we can assign
that as the value of the series. This is Euler summation. For example∑

n=0

(−1)n := lim
z→1

1

1 + z
=

1

2
.

Such cheap tricks have to be justi�ed independently based on the physical
application, however.

5.2. Borel Summation

Suppose fn grows faster than a power of n so that

f(z) =
∑
n

fnz
n

is not a convergent series. This is the case for perturbation theory in quantum
mechanics, for example. But it may be that the Borel transform

B(z) =

∞∑
n=0

an
n!
zn

converges for some k. Then we can recover f(z) by inverting the Borel transform

f(z) =

ˆ ∞
0

B(tz)e−tdt.

Sometimes we may need to iterate this several times

Bk(z) =

∞∑
n=0

an
(n!)k

zn

to get a convergent answer. The inversion is

f(z) =

ˆ ∞
0

Bk(t1 · · · tkz)e−t1−t2···−tkdt1 · · · dtk

Often such series arise as asymptotic expansion of some integral by Laplace's
method. Then we know that the physical quantity it represents is meaningful, the
series being divergent is only the fault of the approximation method. This is the
case for perturbation theory in quantum mechanics, for example. The integral is
hard to calculate, but makes perfect sense; the expansion can be caluclated term
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by term, but diverges. By combining the two pieces of information we can calculate
the value needed.

Example 11. Suppose b(z) =
∑
n
an
n! z

n converges. Since

n! =

ˆ ∞
0

tne−tdt

∑
n

anz
n =

∑
n=0

n!
an
n!
zn =

ˆ ∞
0

b(tz)e−tdt

If you can calculate the integral, you can sum the series.

Example 12. Suppose µn =
´∞
−∞ φnp(φ)dφ are the moments of a random

variable with probability density p(φ)dφ. Then the generating function of moments∑
n

µnJ
n :=

ˆ
1

1− φJ
p(φ)dφ

might make sense as an integral. This can be used to give a meaning to the
sum. For the exponential distribution,

∑
n=0

n!(−1)n := lim
J→−1

ˆ ∞
0

1

1− φJ
e−φdφ ≈ 0.596347

5.3. Pade' Approximants

But what if we only know a few terms of a divergent series? Can we still �nd a
good approximation for its value? This is the situation confronting us in physical
calculations. The best answer is not necessarily just to add the �rst few terms of
the series. For example,

log[1− z] = −
∑
n

zn

n

has a branch cut starting at z = 1. The polynomial −
∑M
n=1

zn

n has no such
singularity.So it will be a bad approximation. We can do better by approximating
the function by a ratio of polynomials

f(z) ≈
∑M
n=1Anz

n∑N
n=1Bnz

n

The particular case N = 0 is the power series terminated at order M . When
N > 0, this has poles along the zeros of the denominator. Many such zeros packed
close together can approximate a branch cut. With M = N = 5,

log[1− z] ≈
− 137z5

7560 + 11z4

36 −
47z3

36 + 2z2 − z
− z5

252 + 5z4

42 −
5z3

6 + 20z2

9 − 5z
2 + 1

with poles at

1.04922, 1.29999, 2., 4.33341, 21.3174

and residues
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0.130412, 0.404437, 1.13778, 4.49394, 53.8334

Even when the function being approximated is entire, a ratio of polynomials
can be a better approximation than a polynomial.

The coe�cients An, Bn can be determined from the power series

f(z) =
∑
n

fnz
n

matching the two:

M∑
n=0

Anz
n =

[
M+N∑
p=0

fpz
p

][
N∑
q=0

Bqz
q

]
+ O

(
zM+N+1

)
.

to the desired order. We can write these as a system of linear equations (setting
B0 = 1 with no loss of generality) which determine the numerator and denominator.
The Bqare determined by solving the N ×N system

fM+N−1 fM+N−2 fM+N−3 · · · fM
fM+N−2 fM+N−3 fM+N−4 · · · fM−1

fM+N−3 fM+N−4 fM+N−5 · · · fM−2

· · · · · · ·
· · · · · · ·
· · · · · · ·
fM fM−1 fM−2 · · · f1





B1

B2

B3

·
·
·
BN


=



−fM+N

−fM+N−1

−fM+N−2

·
·
·

−fM+1


and then the A coe�cents are simply given by

An =

n∑
q=0

fn−qBq

If the series
∑
n fnz

n diverges, or converges only slowly, this trick can give quite
good answers. Even for convergent series, it can improve the rate of convergence.

Example 13. f(J) =
´∞

0
1

1+φJ e
−φdφ

As we saw before, this function has the asymptotic series

f(J) =

∞∑
n=0

(−1)nn!Jn

Suppose we terminate this series a few terms and calculate the values.We get
good answers for small J but the answers do not get better by including higher
order terms as J grows. But using the same information repackaged as Pade'
approximants does get better answers, as we can see in the �gure.

The blue line is exact (from the integral); the solid green and solid red are
sums of 2 and 4 terms respectively; and the dashed green and dashed red are the
Pade' diagonal approximants of order 1 and 2, which use the same coe�cients as
the corresponding power series.

We can see how well the combination of asymptotic series with Pade' approxi-
mants works for large values of J , by extending the range of the plot . As J becomes
large, the error in the low Pade' approximants of order 1 and 2 grow; but by go-
ing to a higher order we again get good approximations. How do we choose the
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Figure 5.3.1.

Figure 5.3.2.

orders of the numerator and the denominator in the Pade' fraction? By looking at
the behavior of the integral, we see that

´∞
0

1
1+φJ e

−φdφ ∼ J
log J for large J . (Prove

this!).So we should expect the answer to be somewhere between PNN (J) (which goes

as J0 for large J) and PN−1
N (J), which goes as J−1). See the plot to see that this

is indeed true.The error in the power series itself is intolerable in this range.



CHAPTER 6

Continued Fractions

6.1. Continued fractions provide the best rational approximations to
real numbers

The decimal expansions of a positive real number is a kind of power series:
x =

∑
n xn10−n where the coe�cients xnare integers between 0 and 9. If we ter-

minate this series at some point (keep some �nite number of decimal places) we
get a rational approximation to the number. But this is not necessarily the best
approximation to that number with that denominator. The best approximations
are given by continued fractions.

Given a real number x, de�ne a0 = bxc to be the largest integer smaller than
x. For example, b2.1c = 2 = b2.8c. Then [x] = x − bxc is a positive number
smaller than one, its fractional part. If it is non-zero, the reciprocal x1 = 1

[x] is

greater than one. In the same spirit, de�ne the reciprocal of its fractional part:
x2 = 1

[x1] , a2 = bx2c and so on

xn+1 =
1

[xn]
, an+1 = bxn+1c

unless any of the fractional parts vanish, in which the the sequence terminates.
This expresses the real number as a simple continued fraction

x = a0 +
1

a1 + 1
a2+ 1

a3
···

This sequence a0, a1a2 · · · terminates if and only if x is rational. Otherwise, it
gives the most rapidly converging rational approximation to x. A more convenient
notation is x = [a0, a1, a2, · · · ]

6.1.1. Celebrated examples are.
√

2 = 1 +
1

2 + 1
2+ 1

2+··

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...]

6.1.2. Quadratic Equations. It is possible to solve a quadratic equation
in terms of a simple continued fraction, giving a series of approximations to the
solution in terms of rational functions of the coe�cient. Euler improved even this
elementary fact, although it was known centuries before (for example to Indian
mathematicians).

Any quadratic equation

ax2 + bx+ c = 0

36
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can be brought to the form

y2 = ∆

by rational transformations

x =
−b+ y

2a
, ∆ = b2 − 4ac

The combination ∆ = b2 − 4ac is the discriminant of the quadratic: if it is
zero, the solutions coincide and the equation is trivial to solve. If it is negative, the
solution is complex. If it is positive, �nd a rational number y0 such that

y2
0 < ∆

This is the starting point of an approximation method to solving the quadratic:

y2 − y2
0 = ∆− y2

0

(y + y0)(y − y0) = ∆− y2
0

Thus any quadratic equation can be brought to the form

y = y0 +
∆− y2

0

y0 + y
This leads to the continued fraction

y = y0 +
∆− y2

0

2y0 +
∆−y2

0

2y0+
∆−y2

0
y0+···

As long as ∆ − p2 > 0 , this converges to a positive real number which solves
the quadratic. With

∆ = 2, y0 = 1

we get the continued fraction we mentioned earlier

√
2 = 1 +

1

2 + 1
2+ 1

2+··

6.2. General Continued Fractions

More generally, we encounter fractions which may not have unity as numerator:

x = b0 +
a1

b1 + a2

b2+
a3
b3
···

which we denote by something easier to type:

b0 +
a1

b1+

a2

b2+

a3

b3+
· · ·

or by

x = b0 + K∞n=1

an
bn
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A moment's thought will show that the transformation

an → rn−1rnan, bn → rnbn

for rn 6= 0, r0 = 1 leaves the value of the fraction unchanged:

b0 +
a1

b1 + a2

b2+
a3
b3
···

= b0 +
r1a1

r1b1 + r1r2a2

r2b2+
r2r3a3
r3b3

···

Such equivalence transformations are sometimes used to bring a continued frac-
tion to some convenient form; e.g., an = 1 or bn = 1.

6.3. Second Order Linear Di�erence Equations

The recurrence relation (linear di�erence equation)

un = bnun−1 + anun−2

plays an important role in the theory of c.f. Such equations arise often as
discrete approximations to di�erential equations.

Example 14. Suppose we have a Schrodinger equation in one dimension

(6.3.1) −ψ′′ + [V (x)− E]ψ = 0, x ∈ [a, b].

A standard approach to solving it numericlly is to approximate the real line by
a discrete set of points

xn = a+
(b− a)

N
n, n = 0, 1, · · ·N

un = ψ (xn)

ψ′′(xn) ≈ un+1 − 2un + un−1

N−2(b− a)2

Exercise 15. Find an, bn for the discrete version of the Schrodinger equation
above.

(6.3.1)has two linearly independent solutions. Let An, Bn be the solutions with
initial conditions

A0 = b0, A−1 = 1

B0 = 1, B−1 = 0

respectively. They turn out to be the numerator and denominator of the con-
tinuant

b0 +
a1

b1+

a2

b2+
· · · an

+bn
=
An
Bn

Thus, solving the recusrion relations converts the c.f. into an ordinary frac-
tion.To prove this, note �rst the following result:

Lemma 16. For any ξ,
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b0 +
a1

b1+

a2

b2+
· · · an

+ξ
=
ξAn−1 + anAn−2

ξBn−1 + anBn−2

Proof. Proceed by induction. The case n = 1 is obvious:

b0 +
a1

ξ
=
b0ξ + a1

ξ
=
ξA0 + a1A−1

ξB0 + a1B−1
.

Assume that the identity holds for some m. De�ne η = bm + am+1

ξ . Then,

b0 +
a1

b1+

a2

b2+
· · · am+1

+ξ
= b0 +

a1

b1+

a2

b2+
· · · am

+η
By the inductive hypothesis

b0 +
a1

b1+

a2

b2+
· · · am

+η
=
ηAm−1 + amAm−2

ηBm−1 + amBm−2

=

[
bm + am+1

ξ

]
Am−1 + amAm−2[

bm + am+1

ξ

]
Bm−1 + amBm−2

=
ξ [bmAm−1 + amAm−2] + am+1Am−1

ξ [bmBm−1 + amBm−2] + am+1Bm−1

=
ξAm + am+1Am−1

ξBm + am+1Bm−1

which proves the idntity for n = m+ 1. �

If we now put in ξ = bn and use the recursion relation

b0 +
a1

b1+

a2

b2+
· · · an

+bn
=
An
Bn

as promised.

6.4. Rational Approximation of Analytic Functions Of A Complex
Variable

Polynomials form a ring analogous to the ring of integers. If f(z) is a complex
function which is meromorphic in some neighborhood of the point at in�nity , we
can de�ne a0(z) = bf(z)c to be the unique polynomial such that f(z) − a0(z)
vanishes at in�nity. Also, [f ] = f − bfc be the �fractional part� of f .Then f1 = 1

[f ]

has a pole at in�nity (unless f = a0 identically in which case we stop ) and we
can de�ne a1(z) = bf1(z)c, and continue with f2 = 1

[f1] , a2 = bf2c and so on unless

fr − ar vanishes identically. Thus we can express such a function as a continued
fraction

f = a0 +
1

a1 + 1
a2+ 1

a3
+···

If the function is analytic in some neighborhood of the origin, (it could have a
pole of �nite order at the origin) it can be represented by a power series

f(z) =
∑

fnz
n
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The power series represenation of an analytic function is like the decimal expan-
sion of a number. Knowing the �rst N coe�cients will give an accuracy of |z|N+1

in the calculation of f(z). But the same coe�cients can be used to construct a
fraction of polynomials that gives a more accurate estimate of f(z), if we know
something about the asymptotic behavior of f .This can work well even when f(z)
has an essential singularity at the origin, for example from the Laplace method
applied to an integral.

Example 17. An ancient example: rational approximation of sin

Converting to modern units, Bhaskara's formula is

sin
π

n
≈ 16(n− 1)

5n2 + 4n− 4
which works well in the useful range 0 < π

n <
π
2 : the error is less than a percent

or so.

Example 18. Another ancient example: tan(x)
Being the ratio of two entire functions, it is intuitive that tan should have a nice

continued fraction expansion. The power series expansion has coe�cients for which
there is no simple formula (Bernoulli numbers) and moreover diverges at |x| = π.
A continued fraction is

tanx = − 1

− 1
x− 3

x− 5
x···

with negative odd integer coe�cients.

6.5. An Example

The example f(z) = z+
√

1 + z2 is useful to understand how fractions approx-
imate a function with a branch cut.There is a branch cut which we can choose to
be the line connecting −i to i. The two branches

f+(z) = z +
√

1 + z2, f−(z) = z −
√

1 + z2

are related by

f−(z) = − 1

f+(z)
.

Also,

f+(z) = 2z +
1

f+(z)

leading to the continued fractions

f+(z) = 2z +
1

2z + 1
2z+···

f−(z) = − 1

2z + 1
2z+ 1

2z+···

.

The even order continuants of the �rst cf are rational functions with a zero
at the origin and poles placed along the line connecting −i to +i. The odd order
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Figure 6.5.1.

contiuants of f+ also have poles along this line, but have a pole at the origin. Away
from the origin, either of these give a good �t to f+(x) for real x. But those with a
zero at the origin provide a an approximation that is smooth on the real axis. At
order 8, we have

R8(z) = 2z +
8
(
z + 10z3 + 24z5 + 16z7

)
1 + 40z2 + 240z4 + 448z6 + 256z8

The poles along the imaginary axis can be found.
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Similarly, the negative of the reciprocals of the odd continuants of f+ provide
smooth approximations to f−(x).
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6.6. Pade' Approximants as Continued Fractions

Suppose the Pade' approximant PMM (z) is expressed as a continued fraction

PMM (z) =
c0
1+

c1z

1+

c2z

1+
· · · c2M−1z

1 + c2Mz
,

and that cn are all nonzero. (It is said to be normal c.f. in this case.) Then
the next Pade' approximant is the same, except that a new term is added at the
end:

PMM+1(z) =
c0
1+

c1z

1+

c2z

1+
· · · c2M−1z

1+

c2Mz

1 + c2M+1z

Again,

PM+1
M+1 (z) =

c0
1+

c1z

1+

c2z

1+
· · · c2M−1z

1+

c2Mz

1+

c2M+1z

1 + c2M+2z

So if we arrange them as a ste-ladder P 0
0 , P

0
1 , P

1
1 , P

1
2 , P

2
2 , · · · only one new

coe�cient needs to be computed at each step(as long as it is non-zero, so that the
c.f. is normal).That is, they are the even and odd terms of the partial sums of the
c.f. So

PMM (z) =
A2M (z)

B2M (z)
, PMM+1(z) =

A2M+1(z)

B2M+1(z)

satisfy the recursion

An(z) = An−1(z) + cnzAn−2(z), Bn(z) = Bn−1(z) + cnzBn−2(z)

A0 = c0, A−1 = 0, B0 = 1, B−1 = 1
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This can be proved inductively as before(See BenderOrszag). In most situa-
tions, the hard work is in calculating the coe�cients of a formal power series (e.g.,
by Laplace's method on multiple or in�nite dimensional integrals). Converting it
into Pade' fractions is relatively easy, as it is a problem in a single variable. So we
will not elaborate on this point.



CHAPTER 7

Eigenvalues of a Tridiagonal Matrix

Finding the eigenvalue of a square matrix (more generally, singular values of a
rectangular matrix) is a problem that arises in every kind of applied mathematics,
from quantum mechanics to graph theory. A particular case is a tridiagonal ma-
trix, for which only the diagonal terms and the next-to-diagonal terms are non-zero.
Continued fractions can be used to solve these problems. Moreover, many matrices
can be reduced to tridiagonal form e�ciently by a succesion of linear transforma-
tions.

7.1. 2× 2 Matrix

Let us start with the simplest case of a two by two matrix. This is always
tridiagonal

T =

(
α β
γ δ

)
The eigenvalues are obtained by solving a quadratic equation

λ± =
(α+ δ)±

√
∆

2
, ∆ = (α− δ)2 + 4γβ

The quantity ∆ is the discriminant of the matrix. If it is zero, the eigenvalues
coincide. In fact

∆ = (λ+ − λ−)2.

Exercise 19. Prove that a hermitean 2× 2 matrix has coincident eigenvalues
only if it is a multiple of the identity.

Solution: γ = β∗, α = α∗, δ = δ∗ =⇒ ∆ = |α − δ|2 + 4|β|2. Thus if ∆ = 0,
we get α = δ, β = 0.

Since the solution only involves a square root, we can �nd a continued fraction
approximation for it.There is no loss of generality in choosing α = −δ, as it only
involves adding a multiple of the identity to the matrix, shifting both eigenvalues
by the same amount. Thus the characteristic equation

det

(
α− λ β
γ −α− λ

)
= 0

which can be turned into

λ = α+
γβ

α+ λ
giving the continued fraction for one of the eigenvalues:

45
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λ+ = α+
γβ

α+

γβ

α+
· · ·

Since the trace of the matrix is zero, the other eigenvalue is just the negative
of this one.

Example 20. The matrix

(
2z −i
i 0

)
has eigenvalues z±

√
z2 + 1 , for which

we constructed the rational approximations in the last chapter.

7.2. The Spectrum of a Tridiagonal Matrix

Consider the tridiagonal matrix

T =


α0 β1 0 0 ·
γ1 α1 β2 0 ·
0 γ2 α2 α3 ·
0 0 γ3 α3 ·
· · · · ·


Let Ak = detTk be the determinant of the (k+ 1)× (k+ 1) submatrix Tk of T

starting with α0 and ending with αk. Thus

A0 = α0, A1 = α0α1 − β1γ1

Applying Kramer's rule to the last row and column, we get

Ak = αkAk−1 − βkγkAk−2.

To agree with the above special case, we impose initial conditions

A0 = α0, A−1 = 1.

Now we see the close relation between tridiagonal matrices and continued frac-
tions: these are exactly the numerators of the c.f.

Fk = α0 +
−β1γ1

α1+

−β2γ2

α2+
· · · −βkγk

αk
=
Ak
Bk

Just compare with the earlier section with bk = α0, ak = −βkγk. The denomi-
nators satisfy the same recursion but with the initial conditions

B0 = 1, B−1 = 0

Another fraction with the same numerator is useful in �nding the eigenvalues
of T .By replacing αk → αk − λ we �nd that the characteristic function of the
submatrix

Ak(λ) = det[Tk − λ]

satis�es

Ak(λ) = [αk − λ]Ak−1(λ)− βkγkAk−2.

A0(λ) = α0 − λ, A−1 = 1.

Then the ratio



7.2. THE SPECTRUM OF A TRIDIAGONAL MATRIX 47

Rk(λ) =
Ak(λ)

Ak−1(λ)

satis�es

Rk(λ) = (αk − λ)− βkγk
Rk−1(λ)

which gives a kind of �transpose� of the earlier c.f. The rational functions
Rk(λ) are better to use than the polynomials Ak(λ) because they grow only like
λ for large λ while Ak(λ) ∼ λk. Thus for large k, the evaluation of Ak(λ) will be
prone to numerical over�ow even for modest values of λ and k. (e.g., λ ∼ 2, k = 100,
λk ∼ 1030).

7.2.1. Numerical Approximation of the Spectrum of a Hermitean
Tridiagonal Matrix. In many applications (e.g., quantum mechanics) T is her-
mitean (i.e., αk are real and βk = γ∗k ) so that the eigenvalues of Tk are real.
We can �nd an approximation to the spectrum of T by �nding the roots of Rk(λ)
for successive values of k. Assume that all the βk are non-zero, as otherwise the
problem breaks up into matrices which can be solved separately.

We start with the observation that α0 is the root of R0(λ). Next we �nd the

roots of the degree two rational function R1(λ) = (α1 − λ)− |β1|2
α0−λ . For λ = α0 + ε

,for small positive ε, this function has a large positive value; yet as λ → ∞ it has
a large negative value. So for some λ > α0 it must vanish. Since the function is
monotonically decreasing in this range, it is easy to �nd this root by bisecting the
interval.

Example 21. Suppose f : [a, b]→ R has positive derivative and f(a) < 0 and
f(b) > 0 . So there is a unique solution for the equation f(x) = 0 in this interval.
To �nd it within some tolerance ε, we use the iteration

If f
(
ak+bk

2

)
> 0,set bk+1 = ak+bk

2 else ak+1 = ak+bk
2 .

starting with

a0 = a, b0 = b

and stopping when |ak − bk| < ε .

Similarly,for a root < α0 as well.
More generally, in between two roots of Rk−1(λ), there will lie a root of Rk(λ)

; which can be found as above . In addition, there could be a new eigenvalue added
at the upper or lower end of the spectrum. Thus, we get a controlled sequence of
approximations to the eigenvalues of a tridiagonal matrix.

Exercise 22. Write a program to �nd numerically the eigenvalues of the tridi-
agonal matrix with αn = n+s(−1)n, βn = γn = g

√
n . Plot the �rst few eigenvalues

as a function of g for the case s ≈ 0 and then also close to resonance s ≈ 1
2 . This

is the parity even sector of the celebrated Rabi model of an atom interacting with
a laser.
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7.2.2. Rational Approximation to Eigenvalues. This is a new idea
and how useful it is remains to be seen.

Sometimes it is useful to analytically continue the spectrum to complex values
of some parameter on which T depends. In such cases we would like to have an
analytic rather than numerical approximation method. The problem is, of course,
that polynomials of degree larger than four do not have a solution in terms of
radicals. But this does not prevent us from �nding roots by the iteration of rational
functions. MacMullen has shown that a quintic can be solved by iterating rational
functions of one variable; McMullen and Doyle have shown that a sextic can be
solved by iterating rational functions of two variables, and so on. So we should
be able to �nd the spectrum of Tk as the iteration of functions such as φk, which
depends on α's and β's. For example, we can �nd the eigenvalues of Tk by iterating
the function φk : C2 → C2

φk : {y1, y2} 7→
{
y1 −Rk(y1)

y1 − y2

Rk(y1)−Rk(y2)
, y1

}
We choose the initial condition close to an eigenvalue of Tk−1 (which we assume

have already been found) . Once the desired accuracy has been achieved (|y1 − y2|
is small enough) we move to the next interval eigenvalue of Tk−1 and so on.This
iteration of φk amounts to �nding roots by the section method, a variant of Newton-
Raphson. It should converge because the eigenvalues of Tk−1 are close to those of
Tk.

As the memory available for symbolic computation grows exponentially with
time, more interesting problems will become accessible by this method.

7.3. The Lanczos Algorithm Makes Any Matrix Tridiagonal

Apply Gram-Shmidt orthogonalization to the sequence of vectors Ak|ψ0> for
any starting vector: it produces a basis (for the Krylov subspace, which is the
subspace spanned by this sequence) in which A is tridiagonal. More precisely,

Start with any state |ψ0 > of unit norm and let b0 = 0 . De�ne recursively

|ψn+1 >= A|ψn > −αn|ψn > −βn|ψn−1 >, n = 0, 1, 2, · · ·
where

αn =
< ψn|A|ψn >
< ψn|ψn >

, βn =
< ψn−1|A|ψn>
< ψn−1|ψn−1 >

We continue this recursion until |ψK+1 >= 0 for some K; or continue indef-
initely, in which case we set K = ∞.Then it can be proved by induction that
|ψn >,n = 0, 1, · · ·K is an orthogonal sequence. But they are not necessarily of
length one. In the subspace spanned by the |ψn > for n = 0, 1, ·K the operator A
is represented by a tridiagonal matrix:

< ψm|A|ψn >
< ψm|ψm >

=


α0 β1 0 0 ·
1 α1 β2 0 ·
0 1 α2 β3 ·
0 0 1 α3 ·
· · · · ·





7.4. APPENDIX: THE DISCRIMINANT OF A MATRIX 49

Now we apply the earlier methods for tridiagonal matrix. This method works
best when the eigenvalues of A have a large gap (so that the vectors Ak|ψ >
converges to the ground state quickly) and when Ais a sparse matrix (so that it is
easy to calculate H|ψ > repeatedly).There could be an alternative to pertrurbation
theory in terms of continued fractions.

7.4. Appendix: The Discriminant of a Matrix

This section is put in for completeness and is not required for the rest of the
course.

Let f(λ) and g(λ) be two polynomials in sme complex variable λ of degreesm,n
respectively. What is the condition that they have a common zero (equivalently, a
common factor h)? In this case there would exist polynomials a, b of degree n− 1
and m− 1 such that

a(λ)f(λ) + b(λ)g(λ) = 0

(simply set a = g
h , b = − fh ). This equation can be recast as a homogenous

linear equation for the coe�cients of a, b,

S

(
a
b

)
= 0

where S is an (m+ n)× (m+ n) matrix

S =



fm fm−1 · · · f0 0 · · · 0
0 fm · · · f1 f0 · · · 0
· · · · · · ·
0 · · · · f1 f0

gn gn−1 · · g0 0 · · ·
· · · · · · ·
· · · · · g1 g0


The determinant of this Sylvester matrix is a polynomial of degree mn in the

coe�cients of f, g, called the resultant. Its vanishing is the condition for the two
polynomials to have a common root. Of particular interest is the case where g = f ′.
The resultant of f and its derivative is called its discriminant. The discriminant
vanishes precisely when two roots of f coincide.

The discriminant of a matrix is the discriminant of its charactersitic poly-
nomial. It is a polynomial of degree n(n−1) in its matrix elements. Its vanishing is
the condition that one of its characteristic values is degenerate. The discriminant
of a real symmetric matrix is non-negative. A moment's thought shows that (up to
a constant multiple) it is equal to

∆(A) ∝
∏
i<j

(λi − λj)2

in terms of the eigenvalues.

7.4.1. van der Monde Determinant. There is another way to think of the
discriminant as a determinant. Note �rst that
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∏
i<j

(λi − λj) ∝ det


1 λ1 λ2

1 · · · λN−1
1

1 λ2 λ2
2 · · · λN−1

2

1 λ3 λ2
3 · · · λN−1

3

· · · · · · ·
1 λN λ2

N · · · λN−1
N


The point is that if any pair of λ′sare equal, two columns will become identical

and the determinant vanishes. Moreover, by counting powers we see that the r.h.s.

is a homogenous polynomial of degree 1 + 2 + · · ·N − 1 = N(N−1)
2 in the λ's. So it

cannot have any other zeros. (There is a constant multiple that is undetermined).
If we now take the matrix on the rhs and multiply with its transpose we get

∆(A) ∝ det


1 G1 G2 · · · GN−1

G1 G2 G3 · · · GN
G2 G3 G4 · · · GN+2

· · · · · · · · ·
GN−1 GN GN+1 · · · G2N


where the moments of A are de�ned by

Gn =
1

N

∑
k

λnk =
1

N
tr An

Remark 23. It would be interesting to derive a recursion relation for the
discriminants of tridiagonal matrices, analogous to that for the determinants.

Remark 24. The discriminant of a hermitean matrix is positive. It can be
written as the sum of squares of polynomials of degree

(
n
2

)
. It is not known how

many such terms are needed, but n! is su�cient. There are interesting papers by
P.D. Lax and by N. V. Ilyushechkin on this topic. Each of these terms would have
to vanish separately if a hermitean matrix is to have degeneracies. An example of
such a quantity is the determinant of the linear transformation u → [A, u] on the
space of anti-symmetric matrices.



CHAPTER 8

Sturm-Liouville Problems

It is worthwhile to solve eigenvalue problems in one dimension, as they are
models for more complicated situations. To be speci�c, let us consider the problem
of solving the di�erential equation

(8.0.1) ψ′′ + [λ− v(x)]ψ = 0

with the Dirichlet

ψ(a) = 0 = ψ(b)

or Neumann boundary conditions

ψ′(a) = 0 = ψ′(b)

.
More generally we have some linear combinations

α1ψ(a) + α2ψ
′(a) = 0

β1ψ(b) + β2ψ
′(b) = 0

These are called Sturm-Liouville problems; many interesting problems can
be reduced to this form. They are the continuous analogues of tridiagonal eigenvalue
problems.

8.1. Variational principle

The SL equation is the condition for an extremum of
´ b
a

[
ψ′2 + v(x)ψ2

]
dx sub-

ject to the condition that
´ b
a
ψ2(x)dx = 1; in fact, λ is the Lagrange multiplier

enforcing this constraint. Equivalently we can extremize

´ [
ψ′2 + v(x)ψ2(x)

]
dx´

ψ2(x)dx

This fact, �rst studied in accoustics, is called the Rayleigh-Ritz variational
principle.

51
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8.2. Picard Iteration

There is a unique solution to the ODE (8.0.1) with the initial condition ψ′(a) =
−α1, ψ(a) = α2 and any complex value of λ.

d

dx

(
ψ(x)
ψ′(x)

)
= Q(λ, x)

(
ψ(x)
ψ′(x)

)
, Q(λ, x) =

(
0 1

v(x)− λ 0

)
.

We can write this as an integral equation (with Neumann b.c.. The others are
similar) (

ψ(x)
ψ′(x)

)
=

(
α2

−α1

)
+

ˆ x

a

Q(λ, x1)

(
ψ(x1)
ψ′(x1)

)
dx1

By iterating this, the solution can be expressed as an in�nite series (called the
Dyson series by physicists, or Picard iteration by mathematicians)

(
ψ(λ, x)
ψ′(λ, x)

)
=

∞∑
r=1

ˆ
x>xr>xr−1···x1>b

dx1 · · · dxrQ(λ, xr) · · ·Q(λ, x1)

(
α2

−α1

)
This series converges as long as ν(x) is continuous: the integral is on a bounded

region. In particular, it is an analytic function of λ.

8.3. The Characteristic Function

Thus evaluating it at the other boundary point gives an entire function of λ:

∆(λ) = β1ψ(λ, b) + β2ψ
′(λ, b)

The zeros of this function as are the eigenvalues of (8.0.1). Being the zeros
of an entire function, they are isolated points although some of them might be
multiple zeros of �nite order. Thus ∆(λ) can be thought of as proportional to the

characteristic function of the operator d2

dx2 + λ− v(x).

det

[
d2

dx2
+ λ− v

]
= C∆(λ)

Here C might depend on the boundary conditions, but not on λ.

Example 25. The most elementay example is v(x) = 10, a = 0, b = π with
Dirichlet boundary conditions

ψ′′ = λψ, ψ(0) = ψ(π) = 0

The solution is

ψ(x) =
sin
√
λx√
λ

,

Despite the square root, this is an entire function of λ. Thus,

∆(λ) =
sin
√
λπ√
λ

which has roots at
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λ = n2.

To understand this better, recall the product formula

sin z = z

∞∏
n=1

(
1− z2

n2π2

)
so that

∆(λ) = π

∞∏
n=1

(
1− λ

n2

)
In order to make sense of

det

[
d2

dx2
+ λ

]
=

∞∏
n=1

(
n2 − λ

)
≡ C∆(λ)

we have to make sense of the in�nite constant

C =
1

π

∞∏
n=1

n2

Recall the Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns

so that

ζ ′(s) = −
∞∑
n=1

log n

ns

Although the series converges only for Res > 1, we can make sense of it by
analytic continuation. The only singularity of ζ(s) is a simple pole at s = 1. In
particular it is regular at s = 0. Thus, ζ ′(0) makes perfect sense:

ζ ′(0) = −1

2
log(2π)

In this sense,

∞∑
n=1

log n ≡ −ζ ′(0) =
1

2
log(2π)

and

∞∏
n=1

n2 ≡ e−2ζ(0) = 2π.

So we conclude that

det

[
d2

dx2
+ λ

]
= 2

sin
√
λπ√
λ

Of course, this answer is speci�c to the boundary conditions chosen.
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Exercise 26. Find det
[
d2

dx2 + λ
]
on the interval [0, π] subject to the mixed

boundary condition ψ(0) = ψ′(π) = 0. It is useful to know that ζ(s, a) =
∑∞
n=1

1
(n+a)s

has the expansion ζ(s, 1
2 ) ∼

[
− 1

2 log 2
]
s+ O(s2).

8.4. The Ricatti Equation

It is possible to rewrite the SL equation as a nonlinear, but �rst order di�erential
equation. Let us consider Neumann b.c., so that ψ(a) 6= 0 .

R =
ψ′

ψ
, ψ(x) = ψ(a)e

´ x
a
R(x1)dx1

Then we get the Ricatti equation

R′ = v(x)− λ−R2

[R+
√
v(x)− λ][R−

√
v(x)− λ] = −R′

Thus

R =
√
v(x)− λ+

−R′

R+
√
v(x)− λ

It is interesting to compare with the WKB method, which is an asymptotic
power series in 1

λ .

Example 27. The Airy function vanishes as x→∞ and satis�es the di�eren-
tial equation

Ai′′ − xAi = 0

Thus

R(x) =
Ai′(x)

Ai(x)

satis�es

R(x) = −
√
x+

−R′

R−
√
x
.

We take the negative root as we expect Ai to decrease for positive x. We can
turn this into a recursion relation to get a sort of continued fraction in

√
x (i.e.,

rational functions of
√
x rather than x):

R0 = −
√
x, Rn = −

√
x+

−R′n−1

Rn−1 −
√
x

This works well for large x, but has spurious singularities for small x.
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8.5. The Resolvent (to be Completed)

A typical problem in physics is to �nd the spectrum of some operator, for
example the hamiltonian of some quantum system. This information is contained
in its resolvent

R(λ) =
1

λ−A
If A is a matrix, this is a rational function of λ. That is, each matrix element

if R(λ) is a rational function of λ. Explicitly,

Rij(λ) =
(−1)i+j det[λ−A]ij

det[λ−A]

where [λ−A]ij is the matrix obtained by omiting the ith row and jth column.
If the characteristic polynomial has no double roots, we can resolve into partial
fractions

R(λ) =
∑
n

1

λ− an
Pn

The poles are at the characteristic values of A. The operatots Pn are the projections
to the eigenspaces of each eigenvalue.



CHAPTER 9

The Method of Steepest Descent

Consider again

ˆ b

a

e
1
gS(φ)dφ

where S(φ) is complex valued. Suppose we can �nd a contour in the complex
so that S(φ) has constant imaginary part. Then that factor can be pulled out of
the integral and it will reduce to a Laplace-type integral we have already studied:
it will be dominate by the maxima of the real part of S(φ) along this contour.Now,
along this curve where the imaginary part of S(φ) is constant, this real part will
change most rapidly. So this is called the path of steepest descent.

Being an analytic function, wherever the real part has vanishing derivative, the
imaginary will also have an extremum. So we must �nd the points in the complex
φ-plane where S′(φ) = 0; then deform our contour of integration so that it passes
through these points along curves with constant imaginry part for S(φ). Applying
the Laplace method to this deformed integral will give us an asymptotic expansion
for the integral.

It is best to look at examples.

Example 28. The Fresnel integral
´∞
−∞ eiz

2

dz =
√
πei

π
4

The integral on the lhs is not absolutely convergent: the integrand has magni-
tude one. It can be given a meaning if the contour of integral is deformed a bit so
that Im z2 > 0 as |z| → ∞. That is, at in�nity the contour must lie within two
wedges

I : 0 < arg z <
π

2

II : π < arg z <
3π

2
.

So if we lower the contour a bit below the negative real axis and a bit above the
positive real axis, the integral will converge. The stationary point of the exponent
is at z = 0.

ˆ
C1

eiz
2

dz =

ˆ 0

−∞
ei(x−ia)2

dx+

ˆ ia

−ia
eiz

2

dz +

ˆ ∞
0

ei(x+ia)2

dx, a > 0

The rhs is independent of a as long as it is positive.
The curve passing through this saddle point, on which the imaginary part of

the exponent is constant is given

Imiz2 = 0, x2 − y2 = 0, z = x+ iy

56
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Figure 9.0.1.

This is a pair of straightlines. One of these connects the region II to region I.

C2 : x = y

So we can deform out contour into this one:

z = (1 + i)x, −∞ < x <∞
ˆ
C1

eiz
2

dz =

ˆ
C2

eiz
2

dz = (1 + i)

ˆ ∞
−∞

e−2x2

dx

since

iz2 = −2x2, dz = (1 + i)dx

We can easily evaluate the Gaussian integral

ˆ ∞
−∞

e−2x2

dx =

√
π

2
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In summary

ˆ ∞
−∞

eiz
2

dz =
√
π

1 + i√
2

=
√
πei

π
4 .

See M. Born and E. Wolfe Principles of Optics for the optical applications of
this integrals.

9.1. The Airy Function

Airy's di�erential equation is

ψ′′ = xψ

The Fourier transform

ψ̃(k) =

ˆ
ψ(x)e−ikxdx

satis�es the �rst order equation

k2ψ̃ = −i d
dk
ψ̃

Thus a solution is

ψ(x) =

ˆ
ei

1
3k

3+ikx dk

2π
More generally,

ˆ
C

ei
1
3k

3+ikx dk

2π

over some contour C in the complex k-plane (for which it converges) is a solu-
tion. To converge, the contour C must tend to in�nity along an angle θ such that
Im e3iθ > 0. That is, along one of the three wedges,

I : 0 < θ <
π

3
, II :

2π

3
< θ < π, III :

4π

3
< θ <

5π

3
We de�ne the Airy function by the integral that lies asymptotically within the

�rst two wedges, above the positive real axis:

(9.1.1) Ai(x) =

ˆ ∞+ia

−∞+ia

ei[kx+ 1
3k

3] dk

2π
, a > 0

Because the integrand has no singularities, the integral does not depend on a
(as long as it is positive).A little sloppily, this can also be written as,

Ai(x) =

ˆ ∞
0

cos[kx+
1

3
k3]

dk

π
.

The extrema of

S[k, x] = i[kx+
1

3
k3]

are at

k = ±
√
−x.
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Figure 9.1.1.
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9.1.1. When x is positive. Deform the contour of integration (9.1.1) so that
it passes through one or more of these points along curves of constant imaginary
part for S(φ).

Set

k = k1 + ik2

so that (assuming x is real)

Re(S) = −1

3
k2

(
3k2

1 − k2
2 + 3x

)
Im(S) =

[
k2

1

3
− k2

2 + x

]
k1

If x > 0, the saddle point are on the imaginary axis and Im(S) = 0 there. So
the curve of constant Im(S) passing through the saddles degenerate into the union
of the imaginary axis

k1 = 0

and the hyperbola

k2
1

3
− k2

2 + x = 0.

Thus we deform the original contour C1 to this hyperbola C2 .
We can eliminate k2 in favor of k1 along the contour C2 so that

S = −2

3
x

3
2

[
1 + φ2

] 3
2 , φ =

1√
3x
k1

Ai(x) =

√
3x

2π

ˆ ∞
−∞

e−
2
3x

3
2 [1+φ2]

3
2
dφ

We can apply the Laplace method to this integral by expanding around the
maximum at φ = 0.

he contribution of this saddle point is
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Figure 9.1.2.

Ai(x) ∼ 1

2
√
πx

1
4

e−
2
3x

3
2

Note that the integral along the curve of constant phase through the other
saddle point at −i

√
x diverges: its endpoints are outside the wedge of convergence.

9.1.2. When x is negative. Now the saddle points are on the real axis k =
±
√
|x|. The imaginary parts of the exponent at these points are ∓ 2

3 |x|
3
2 . The

curves on which the imaginary part is constant are the curves

1

3
k1(k2

1 − 3k2
2 − 3|x|) = ∓2

3
|x| 32

There is a branch C2+of these curves that pass connect the asymptotic regions
I and III



9.1. THE AIRY FUNCTION 61

Figure 9.1.3.

k2 =

 −
√

1
3k

2
1 − |x|+ 2

3k1
|x| 32 for 0 < k1 <

√
|x|√

1
3k

2
1 − |x|+ 2

3k1
|x| 32 for k1 >

√
|x|


and its mirror image C2− that connect regions II and III. Together they form

a contour C2 of constant phase that can be deformed into C1.
The real part of the exponent along C2+ is

−1

3
k2

(
3k2

1 − k2
2 + 3x

)
= − 2

9
√

3
|x| 32 (1− φ)2(1 + 2φ)2φ−

3
2

√
2 + φ, k1 =

√
|x|φ,

Thus we get
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Ai(x) =
1

2π
e−i

2
3 |x|

3
2

ˆ ∞
0

e
− 2

9
√

3
|x|

3
2 (1−φ)2(1+2φ)2φ−

3
2
√

2+φ

[
dk1

dφ
+ i

dk2

dφ

]
dφ+ c.c.

Again, the integral can be evaluated by the Laplace method, by expanding
around the maximum at φ = 1.An extra phase ei

π
4 comes from the change in the

measure dk =
[
dk1

dφ + idk2

dφ

]
dφ: note that the angle that the curve C2makes at the

saddle point
√
|x| is π

4 .

Ai(x) ∼ 1√
π
|x|− 1

4 sin

[
2

3
|x| 32 +

π

4

]
, x→ −∞

For more on these matters see Asymptotic Expansions by A. Erdelyi. (Dover
1956).



CHAPTER 10

The WKB Method

Wave equations are at the heart of many problems of physics. In optics,

(10.0.2) ∇2ψ + k2ν2(x)ψ = 0

where ν(x) is the refractive index. In quantum mechanics,

∇2ψ + [λ− v(x)]ψ = 0

where v(x) is the potential. In both cases k =
√
λ is the wavenumber, inversely

proportional to the wavelength. In the limit of k → ∞ (small wavelength) we
have a simplifcation: the wave moves mostly along a well-de�ne path, instead of
spreading out. Interference e�ects become small as well. This path is determined
as the solution of a system of ordinary di�erential equations, Hamilton's equations.
It is possible to go further and solve the wave equation in a power series in 1

k . This
is an asymptotic series, which is usually not convergent.

This method has its origins in the nineteenth century, when it was applied
to sound and light waves. (Airy, Stokes, Rayleigh..) It had a resurgence in the
1920s when W, K and B (who were fortunate enough to be graduate students just
when the Schrodinger equation was discovered) applied it to quantum mechanics.
Kramer went on to apply it to solve many problems in chemical physics. Brillouin
later did seminal work on scattering by crystals.

We can bring the equation being studied in the convenient form

∇2ψ = k2u2(x)ψ

10.1. The Eikonal

The di�culty with letting k →∞ directly is that it is a singular limit. Consider
the simplest case when u(x) = −1. The solution

e±ikx

oscillates wildly as k →∞.This suggests that we seek a solution of the form

ψ(x) = ekS(x)

Although ψ itself will not have a good limit as k → ∞, perhaps S(x) behaves
better. Indeed,

1

k
∇2S + (∇S)2 = u2

allowing for a solution in power series

63
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S =
∑
r=0

k−rSr

In leading we get the eikonal equation

(∇S0)2 = u2

In the next order

∇S0∇S1 +
1

2
∇2S0 = 0

In higher orders,

∇S0 · ∇Sr = −1

2

[
∇2Sr−1 +

r−1∑
n=1

∇Sn · ∇Sr−n

]
The point is that we are now solving �rst order rather than second order equa-

tions. If the number of independent co-ordinates is one, these equations can be
solved by integration

S0(x) = ±
ˆ x

x0

u(q)dq

Sr = −
ˆ x

x0

1

2u(q)

[
r−1∑
n=1

S′n(q)S′r−n(q) + S′′r−1(q)

]
dq

etc.

10.2. The Method of Characteristics

Even when the number of co-ordinates is greater than one, �rst order equations
(even if non-linear) are simpler to solve than second order ones. For more on this
see the second volume of Courant-Hilbert.

But, instead of just evaluating an integral, we have to now solve a system of
ordinary di�erential equations.Just think of H = p2 − u2 as the hamiltonian and
realize that the eikonal equation is just the Hamilton-Jacobi equation, with p = ∇S.
Pass now to Hamilton's equations of mechanics instead.

dqi

dt
= 2pi,

dpi
dt

=
∂u2

∂qi

Given some reference point x0, there is a unique solution starting there and
ending at x

q(0) = x0, q(1) = x

Then the action of this trajectory

S0(x) =

ˆ 1

0

p · q̇(t)dt

solves the eikonal equation. The higher orders become ODEs as well:

dqi

dt

∂Sr
∂qi
≡ dSr

dt
= −1

4

[
r−1∑
n=1

∇Sn · ∇Sr−n +∇2Sr−1

]
which can also be solved
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Sr(x) =
1

4

ˆ 1

0

[
r−1∑
n=1

∇Sn · ∇Sr−n +∇2Sr−1

]
dt

where the integral is taken along the path that satis�es Hamilton's equations.

10.3. WKB for Sturm-Liouville Problems

Recall

ψ′′ + [λ− v(x)]ψ = 0, α1ψ(a) + α2ψ
′(a) = 0 = β1ψ(b) + β2ψ

′(b

With λ = k2, u2(x) = v(x)
k2 − 1 the Sturm-Liouville problem (8.0.1) becomes

ψ′′ = k2u2(x)ψ, )

The leading solution can be either of two signs

S0(x) =

ˆ x

a

u(q)dq

but the next order

S1 = −1

2
log u

and higher order terms

Sr =

ˆ x

a

1

2u(q)

[
−
r−1∑
n=1

S′n(q)S′r−n(q) + S′′r−1(q)

]
dq

are independent of this choice of sign. The solution satisfying the b.c. at a is
some linear combination.

ψ(x) =
1√
u

[
Aek

´ x
a
u(q)dq +Be−k

´ x
a
u(q)dq

]
e
∑
r=2 k

1−rSr

10.3.1. Turning Points. At the turning points at which k2 = v(x) (so
that u = 0) the above expansion breaks down: the higher order terms get to big.
The regions where k2 > v(x) are very di�erent from those where k2 < v(x): in
the former, S0 is imaginary and the solution is oscillatory. In the latter, S0 is
real and it is a linear combination of a term that grows exponentially and another
decreases exponentially. In quantum mechanics, k2 − v(x) > 0 is the classically
allowed region where the kinetic energy is positive. When k2 < v(x) the solution
decays exponentially: the probability of �nding the particle must decrease as we
move away from the turning point into the classically forbidden region.

Suppose x0 is a turning point . Assume for that v′(x0) 6= 0. (This case of
simple turning point is the typical one. ) To be speci�c that v′(x0) > 0. Then
for x > x0 the solution must decrease exponentially:

ψ(x) ≈ C 1√
v(x)
k2 − 1

e
−
´ x
x0

√
v(x)−k2dq

, x > x0

In the oscillatory region
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ψ(x) ≈ C1
1√

1− v(x)
k2

sin

[ˆ x

x0

√
k2 − v(q)dq + η

]
x < x0

for constantsC1, η. To �nd the a relation between the constants, we have to
match these solutions across the turning point x0. It turns out that η = π

4 , C1 = 2C.
The WKB approximation breaks down near the turning point, as u(x0) = 0.

In the immediately vicinity of a turning point, we can use another approximation:
replace the potential by a linear function

v(x) ≈ v(x0) + v′(x0)[x− x0]

The Schrodinger equation for such a potential can be solved exactly in terms
of the Airy function. Then we match the solutions in the three regions x < x0, x ≈
x0, x > x0. See Landau and Lifshitz for more details.

10.3.2. WKB approximation for eigenvalues. In this leading order, we
can get an approximate formula for the spectrum of the Sturm-Liouville problem.
Just consider the oscillatory regions of the wavefunctions (it is exponentially small
in the forbidden regions) and impose the boundary condition on the phases.

ˆ b

a

√
λ− v(x)dx =

[
n+

1

2
µ(λ)

]
π + arctan

α2

α1
− arctan

β2

β1
n = 0, 1, 2 · · ·

where µ(λ) is the number of turning points (assumed to be simple) in the
interval [a, b] for energy λ.

This idea can be generalized to systems with several degrees of freedom as long
the H-J equation is separable: we can reduce it to a collectionof one-dimensional
problems. Gutzwiller has derived a remarkable trace formula that gives the par-
tition function tre−tH as a sum over classical trajectories, in the case of chaotic
systems. This is in the early stages of development.



CHAPTER 11

Symbol Calculus

Observables of classical mechanics are functions on phase space. It is possible
to think of the observables of quantum mechanics as functions on phase space as
well, by translating the usual representation of them as operators in Hilbert space.
The induced rule for multiplying functions is more complicated: it is not commu-
tative. This star product is still associative, however. This point of view allows
a systematic method-an asymptotic expansion- to calculate quantum corrections
to classical theories. The function on phase space R2n associated to to a di�eren-
tial operator on L2(Rn) is called its symbol. There is an extensive mathematical
literature on it, with applications ranging from acoustics to radar.

11.1. Operators and their Kernels

To be speci�c, consider a classical system whose con�guration space is Rn: it
has n degrees of freedom represented by real variables. In the Schrodinger picture
the wave functions are complex-valued function

ψ : Rn → C

with the inner product

< ψ, φ >=

ˆ
ψ∗(q)φ(q)dq

A linear operator can be represented in terms of its integral kernel

Âψ(q) =

ˆ
A(q, q)ψ(q′)dq′

In general A(q, q′) is a distribution. In Dirac's notation

A(q, q′) =< q|Â|q′ >

Example 29. The hamiltonian is usually a di�erential operator

Ĥ =
1

2
p2 + V (q), H(q, q′) = −~

2

2

δ′′(q − q′) + V (q)δ(q − q′)

Example 30. The heat kernel is the solution of the di�erential equation

∂

∂t
ht(q, q

′) =
∂2

∂q2
ht(q, q

′)

subject to the initial condition

lim
t→0+

ht(q, q
′) = δ(q, q′).

67
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We can think of it as an exponential of the laplacian

ĥt = et∂
2

The solution of the above di�erential equation is a gaussian

ht(q, q
′) =

e−
(q−q′)2

2t

[2πt]
n
2

A function of position alone (such as potential energy) has an integral kernel
that is the continuous analogue of a diagonal matrix

V (q)ψ(q) =

ˆ
V (q, q′)ψ(q′)dq′, V (q, q′) = V (q)δ(q − q′)

We can similarly represent a function of momentum alone as a multiplication
operator on the Fourier transform of the wave function

T

(
−i~ ∂

∂q

)
ψ(q) =

ˆ
ei
p·q
~

dp

(2π~)n
T (p)ψ̃(p), ψ̃(p) =

ˆ
ψ(q)e−i

p·q
~ dq

If we invert the Fourier transform we get

T

(
−i~ ∂

∂q

)
ψ(q) =

ˆ
T (q, q′)ψ(q′)dq′

with

T (q, q′) =

ˆ
T (p)e

1
~p·(q−q

′) dp

(2π~)n

Sometimes it is convenient to choose units such that ~ = 1.

Example 31. This is one way to get the above heat kernel

et∂
2

ψ(q) =

ˆ
dp

(2π)n
e−tp

2+ip·qψ̃(p)

=

ˆ
dq′
ˆ

dp

(2π)n
e−tp

2+ip·q−ip·q′ψ(q′)

Thus

ht(q, q
′) =

ˆ
dp

(2π)n
e−tp

2+ip·q−ip·q′

which is a Gaussian integral that can be evaluated by `completing the squares'.

Example 32. Recall the identity

ψ(q + b) = eb
∂
∂qψ(q)

which is just the Taylor series in other words:

ψ(q + b) =

∞∑
n=0

bn
1

n!

∂nψ

∂qn

It follows that
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eibp̂ψ(q) = ψ(q + ~b)
The position operator is just a multiplication

eiaq̂ψ(q) = eiaqψ(q)

Thus

eibp̂eiaq̂ψ(q) = eia(q+~−1b)ψ(q + ~b)
while

eiaq̂eibp̂ψ(q) = eiaqψ(q + ~b)
The Weyl relation follows from this:

eiaq̂eibp̂ = e−i~a·beibp̂eiaq̂

Written more symmetrically this is

e
1
2 i~a·beiaq̂eibp̂ = e−

1
2 i~a·beibp̂eiaq̂

The unitary operator

Û(a, b) = e
1
2 i~a·beiaq̂eibp̂

satis�es the multiplication law

Û(a, b)Û(a′, b′) = e
1
2 i~[a′·b−a·b′]Û(a+ a′, b+ b′)

It is clear that we can associate a function on the classical phase space

T (p) + V (q)

with any operator of the form

T (p̂) + V (q)

Many interesting hamiltonians of quantum mechanics are of this type. Is there a
way to set up a one-one correspondence between operators (or their integral kernels)
and functions on the phase space? If we could do this, we would be able to study
the relation between quantum and classical mechanics much more conveniently. We
will also be able to develop a semi-classical asymptotic expansion systematically.

11.2. From Symbols to Operators

How to convert a function on the phase space into an operator on the quantum
Hilbert space? If it is a function of position alone, or of momentum alone, or even a
sum of two such operators, we jst saw how to set up such a one-one correspondence.
If we have a product of position and momentum there is an ambiguity: the precise
meaning depends on the order in which these operators act on the wavefunction.
Each interpretation has its supporters, but I favor the symmetric ordering, be-
cause it preserves the hermitan character of observables. We should think of the
operator corresponding to pq as 1

2 (p̂q + qp̂) because it is hermitean while p̂q or qp̂
are not. Using the Fourier transform,
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Ã(q, p) =

ˆ
A′(a, b)ei[a·q+b·p]dadb

we can �nd the operator corresponding to any function if we know how to do it for
the basic functions

Ũ(a, b|q, p) = ei[a·q+ib·p]

It can be interpreted to mean as eiaq̂eibp̂, or eibp̂eiaq̂ depending on whether p̂
or q̂ acts �rst. A Solomonic resolution of this would be to go half way, essentially
treating momentum and position on an equal footing. That amounts to the rule

ei[a·q+ib·p] → Û(a, b) = e
1
2 i~a·beiaq̂eibp̂

Now,

Û(a, b) = ei~a·[q+
b
2 ]ψ(q + ~b)

Âψ(q) =

ˆ
dadbA′(a, b)ei~a·[q+

b
2 ]ψ(q + ~b)

=

ˆ
Ã

(
q +

~b
2
, p

)
e−ip·bψ (q + ~b)

dp

(2π~)n
db

=

ˆ [ˆ
Ã

(
q + q′

2
, p

)
e
i
~p·(q−q

′) dp

(2π~)n

]
ψ (q′) dq′

Thus the integral kernel of the operator corresponding to the symbol Ã(q, p) is

A(q, q′) =

ˆ
Ã

(
q + q′

2
, p

)
e
i
~p·(q−q

′) dp

(2π~)n

We can think of this as an integral transform, analogous to the Fourier trans-
form. It is actually half-way between a Fourier transform and a multiplication: If
Ã(q, p) happens to be independent of p it is a multiplication; if it is independent
of q, it is a Fourier transform. It is often called the Weyl transform. It is not
di�cult to work out its inverse

Ã(q, p) =

ˆ
A
(
q +

u

2
, q − u

2

)
e−

i
~p·udu

Thus we can set up a dictionary between functions on phase space and operators
(integral kernels) on wavefunctions.

11.3. The Star Product

It is important to note that the Weyl transform captures all the properties of
the operator in its symbol: it is not just a classical approximation. So it must be
possible to translate the multiplication of operators into some operation on symbols.
As ~ → 0 it must reduce to the usual pointwise multiplication; we should be able
to expand it in powers of ~ to calculate quantum corrections.

The elementary case is the multiplication of the unitary operators

Û(a, b)Û(a′, b′) = e
1
2 i~[a′·b−a·b′]Û(a+ a′, b+ b′)

which leads to
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Ũ(a, b) ∗ Ũ(a′, b′) = e
1
2 i~[a′·b−a·b′]Ũ(a+ a′, b+ b′)

The general case follows by applying a Fourier transform to this basic formula.
A moment's thought will show that the above formula can be rewritten as

Ũ(a, b) ∗ Ũ(a′, b′) = Ũ(a, b)e
− i~2

(←−
∂
∂p

∂
∂q−
←−
∂
∂q

∂
∂p

)
Ũ(a′, b′)

The left arrow is to denote that the di�erentiation acts on the quantity to the
left. Each di�erentiation by ∂

∂p on the left pulls out a factor of b and on the right

pulls out b′ and similarly for ∂
∂q .By applying a Fourier transform we see that this

formula continues to be true for all symbols:

Ã ∗ B̃ = Ãe
− i~2

(←−
∂
∂p

∂
∂q−
←−
∂
∂q

∂
∂p

)
B̃

We can also write it explicitly by expanding the exponential

Ã ∗ B̃(q, p) =

∞∑
n=0

(
− i~

2

)n
1

n!
Ã

(←−
∂

∂p

∂

∂q
−
←−
∂

∂q

∂

∂p

)n
B̃

Expanding the power in a binomial series and rearranging,

Ã ∗ B̃(q, p) =

∞∑
r,s=0

(
− i~

2

)r+s
(−1)s

r!s!
Ãi1···irj1···jsB̃

j1···js
i1···ir

where

Ãj1···jri1···ir =
∂r+sÃ

∂pj1 · · · ∂pjr∂qi1 · · · ∂qis
If you did not know where formula for the star product comes from, you would

be amazed that it is associative:

Ã ∗ (B̃ ∗ C̃) = (Ã ∗ B̃) ∗ C̃.
To zeroth order in ~ this is the usual product. The next order term in the

Poisson bracket. After that is a second order derivative term and so on.

Ã ∗ B̃(q, p) = Ã(q, p)B̃(q, p)− i~
2

{
∂Ã

∂pi

∂B̃

∂qi
− ∂Ã

∂qi
∂B̃

∂pi

}

+

(
− i~

2

)2
1

2

{
∂2Ã

∂pi∂pj

∂2B̃

∂qi∂qj
+

∂2Ã

∂qi∂qj
∂2B̃

∂pi∂pj
− 2

∂2Ã

∂pi∂qj
∂2B̃

∂pj∂qi

}
+ · · ·

The essential example,from which all else follows, is

p ∗ q = pq − i~
2

The canonical commutation relations

p ∗ q − q ∗ p = −i~
can be veri�ed..
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Real functions over to hermitean operators and vice versa. Of course the prod-
uct of hermitean operators is not hermitean always; that is why the star product
of two real functions might have an imaginary part.

11.4. Heisenberg Equation

In this point of view the focus is on observables rather than states. Given the
symbol of the hamiltonian, we can get the equation for the time evolution of any
observable

−i~∂Ã
∂t

= H̃ ∗ Ã− Ã ∗ H̃

The most important are the equations for position and momentum. Because
the second and higher order derivatives vanish, they just reduce to Hamilton's
equations:

dqi

dt
=
∂H̃

∂pi
,

dpi
dt

= −∂H̃
∂qi

More complicate observables will have quantum correctins to their time evolu-
tion.

11.5. The Star Exponential

We can de�ne the exponential of a symbol with respect to the star product by

eÃ∗ =

∞∑
n=0

1

n!
Ã ∗ Ã ∗ · · · Ã( n times)

Or we can de�ne it by the di�erential equation

d

dt
etÃ∗ = Ã ∗ etÃ∗

Example 33. Consider the hamiltonian of the harmonic oscillator

H̃(q, p) =
p2 + q2

2
Suppose

h̃t = e−tH̃∗

To �nd it we have to solve the equation

∂

∂t
h̃t(q, p) = −p

2 + q2

2
h̃t(q, p)−

i~
2

{
−p∂h̃t

∂q
+ q

∂h̃t
∂p

}
−
(
− i~

2

)2
1

2

{
∂2h̃t
∂q2

+
∂2h̃t
∂p2

}
There are no higher order terms because the hamiltonian is a quadratic func-

tion.It is not hard to guess that the solution must be a gaussian. Based on the
rotation symmetry of the system in the p− q plane, we make the ansatz

h̃t(q, p) = eat[p
2+q2]+bt
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The second term in the PDE above is then a Poisson bracket of two terms that
depend only on p2 + q2;so it vanishes.Thus1

ȧt = −1

2
−
(
− i

2

)2
1

2

[
(2at)

2
]

=⇒ at = − tanh
t

2

ḃt = −
(
− i

2

)2
1

2
2× 2at, =⇒ bt = − log cosh

t

2

h̃t(q, p) =
1

cosh t
2

e−[p2+q2] tanh t
2

In particular,the limit t→∞ gives the ground state energy 1
2 :

h̃t(q, p)→ e−
t
2 P̃0(q, p)

and the symbol of the projection operator to the ground state

P̃0(q, p) = 2e−[p2+q2].

11.6. The Trace

The trace of an operator is the sum over all its diagonal elements

tr A =

ˆ
A(q, q)dq

It is easy to check that in terms of symbols

tr A =

ˆ
Ã(q, p)

dpdq

[2π~]n

This is the integral on phase space with respect to the Liouville measure, nor-
malized such that it counts the number of quantum states.

Exercise 34. Find the partition function Z(t) = tr e−tH̃∗ for the harmonic

oscillator. Using its expression in terms of the spectrum tr e−tH̃∗ =
∑
n e
−tEn �nd

the spectrum of the harmonic oscillator.

Solution. Using the above solution,

tr e−tĤ =

ˆ
dpdq

[2π]

1

cosh t
2

e−[p2+q2] tanh t
2

=
1

2 sinh t
2

=

∞∑
n=0

e−(n+ 1
2 )t

which gives the usual spectrum. Note also that 2e−[p2+q2] has trace one, which is
the degeneracy of the ground state:

ˆ
dqdp

2π
2e−[p2+q2] = 1.

1We set ~ = 1 for simplicity.
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11.7. The Resolvent Symbol

The resolvent of an operator is

R(λ) =
1

λ−A
When A is a di�erential operator, the resolvent is its Green's function. It

contains all the information about eigenvalues and eigenvectors of A.If Ais diago-
nalizable with purely discrete spectrum,

R(λ) =
∑
n

1

λ− an
Pn

where Pnis the projection operator to the eigenspace with eigenvalue an.

APn = anPn, P 2
n = Pn

The symbol of the resolvent satis�es

R̃(λ) ∗ (λ− Ã) = 1

If we expand

R̃(λ) =

∞∑
n=0

~nrn(λ)

we can get recursion relations for the coe�cients

r0(λ)[λ− Ã] = 1

r1(λ)− i

2

{
r0, Ã

}
= 0

r2(λ)[λ− Ã]−
(
− i

2

)2
1

2

{
∂2r̃0

∂pi∂pj

∂2Ã

∂qi∂qj
+

∂2r̃0

∂qi∂qj
∂2Ã

∂pi∂pj
− 2

∂2r̃0

∂pi∂qj
∂2Ã

∂pj∂qi

}
= 0

etc.
The solutions are

r0 =
1

λ− Ã

r1 = 0

r2 = −1

8
r0

{
∂2r̃0

∂pi∂pj

∂2Ã

∂qi∂qj
+

∂2r̃0

∂qi∂qj
∂2Ã

∂pi∂pj
− 2

∂2r̃0

∂pi∂qj
∂2Ã

∂pj∂qi

}
etc.
This gives a way to solve a quantum system by an asymptotic expansion even

when exact solutions are not possible.
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11.8. Can you hear the shape of a drum?

An interesting application of this procedure is to the solution of inverse prob-
lems. Knowing the sound produced by a drum, can you deduce its shape (the
boundary conditions on the Laplace operator)? This is a famous problem posed by
M. Kac. More generally, is it possible to deduce the potential (or refractive index in
optics) of a Schrodinger operator knowing the spectrum? Such problems are impor-
tant in applications such as oil exploration and medical imaging. Exact solutions
are impossible in practical situations. Semi-classical asymptotics is usually feasible
and gives a good �rst approximation when the wavelength is small compared to the
features explored.To leading order, this amounts to �ray tracing�. The expansion
we described above allows an expansion in powers of the wavelength.

We can deduce almost immediately the area of the drum from the partition
function of the spectrum. Suppose we have the Laplace operator with some b.c.
The con�guration space is some bounded domain of Rn. The Laplace operator has
symbol

Ã = p2.

Consider the partition function

Z(t) = tre−tÃ

Since p appears only in the combination tp2, in the limit of small t, we can keep
just the leading terms of the expansion above

Z(t) ∼
ˆ
dq

dp

[2π]n
e−tp

2

∼ V 1

(2t)
n
2

as t → 0.Here, V =
´
dx is the size of the domain in Rn. When n = 2, ( the

case of the drum) it is the area .



CHAPTER 12

The Gutzwiller Trace Formula

The WKBmethod, which leads to the Bohr-Sommerfeld quantization rules, was
originally deviced for a system with one degree of freedom. It can be extended to
systems that can be decomposed into independent degrees of freedom by a canonical
transformation. That is, when the Schrodinger equation is separable. But most
systems that occur in nature are not of this type. Their classical limits are chaotic.
There must still be a semi-classicl approximation for such systems.

An example of such a chaotic quantum system is a Sinai billiard. Particles
move freely on the plane until re�ected by a boundary. Equivalently, we can think
of waves re�ected by mirrors at the boundary. If the boundary is a rectangle (as in
the actual billiard table) the Schrodinger equation can be separated in Cartesian co-
ordinates. If the boundary is a union of convex curves (i.e., they bulge inwards) the
classical motion (or the path of rays) is chaotic:. At each re�ection the divergence
between two paths is increased. Yet, the paths have to stay within a �nite area.
These two somewhat incompatible conditions lead to chaos. What are the quantum
energy levels (natural frequencies) of such a system?

The �rst step forward in this direction was taken by A. Selberg, one of the
great number theorists of the twentieth century. He was studying geodesics on a
Riemann surface of genus g greater than two. Such a surface can be thought of as a
hyperboloid, with some additional boundary conditions. The boundary is a union of
4g geodesics with opposite pairs of equal length. A particle that hits a point on the
boundary is instantly transported to the corresponding point on the opposite edge,
with its velocity now pointed inwards. Here again, any small divergence between
trajectories will grow with time. Not because of the boundary, but because of the
negative curvature of the interior.

Chatotic classical systems (such as the billiard or the Riemann surface) have
only a countably in�nite number of closed trajectories. This is very di�erent from
the Kepler problem for example, where there is a closed trajectory for any value of
energy and angular momentum. In an unstable system, most initial conditions will
not lead to closed trajectories. You have to aim the billiard ball just right if it is
to return to the original point with the same velocity after a number of re�ections.
Thus, chaotic classical system have a kind of spectrum: the actions of the closed
trajectories. For geodesics, the action is the same as the length.

The quantization of the problem of geodesics is the solution of the eigenvalue
equation for the Laplace operator. Selberg derived a remarkable formula giving
the eigenvalues of the laplacian in terms of the lengths of the classical geodesics.
The catch is that this is not a one-one correspondence: a sum over a function of
eigenvalues is equal to a over another function ( a kind of �dual�) of the lengths. An
elementary version of this is the Poisson summation formula for sums over integers.
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Selberg's result was an exact result in a speci�c system with a high degree
of symmetry. (The surface has constant curvature). In general we would expect
at least an approximate relation between classical spectrum of actions and the
quantum spectrum of energy eigenvalues . Gutzwiller derived such a formula, which
has become the foundational result on quantum chaos. His original derivation used
path integrals, a kind of Laplace formula for in�nite dimensional integrals. It can
also be derived by usng symbol calculus. Each derivation gives a di�erent physical
insight into this remarkable formula, a gem of twentieth century theoretical physics.

Let us begin with an elementary example, the Poisson summation formula for
functions of the circle.

12.1. The Poisson Summation Formula

Proposition 35. For a positive number L (the period),

∑
a∈LZ

e−
a2

2t

√
2πt

=
1

L

∑
k∈ 2π

L Z

e−k
2t.

This formula is remarkable because the l.h.s. has terms that get smaller for
t → 0 while the r.h..s, has terms that decrease for large t. It is relating the small
time behavior to the large time behavior.

The idea of the proof is to construct the solution of the heat equation (the
Schrodinger equation with imaginary time) on the circle of perimeter L, in two
di�erent ways. Since the solution is unique this will give us a useful identity.

∂

∂t
ht(x) =

∂2

∂x2
ht(x)

ht(x+ a) = ht(x), a = · · · − 2L,−L, 0, L, 2L · · ·

lim
t→0

ht(x) =
∑
a∈LZ

δ(x+ a)

If we look at the problem on the real (i..e, without perdiodicity)

∂

∂t
gt(x) =

1

2

∂2

∂x2
gt(x)

lim
t→0

gt(x) = δ(x)

the solution is a Gaussian:

gt(x) =
e−

x2

2t

√
2πt

One way to get the solution with periodic boundary conditions is to sum over
all points separated by one period:

ht(x) =
∑
a∈LZ

gt(x+ a).

This is the sum on the l.h.s. of the Poisson formula.
Another way is to expand the periodic function in a Fourier series
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ht(x) =
∑

k∈ 2π
L Z

h̃t(k)eikx

to get

∂h̃t(k)

∂t
= −k2h̃t(k)

and

lim
t→0

h̃t(k) =
1

L
.

so that

h̃t(k) =
1

L
e−k

2t.

This solution gives the r.h.s. of the Poisson formula.

12.1.1. Physical Interpretation. This result has a nice physical interpreta-
tion in terms of quantum mechanics (except that the time is imaginary). Consider
a particle moving on the circle with perimeter L. Its classical trajectories are solu-
tions of

ẍ = 0

that is, straight lines in space-time. If we require the positions at time zero and at
time T to be the same modulo a translation a by a multiple of L we will get

x(t) = a
t

T
+ x0

The action of this trajectory is

ˆ T

0

ẋ2(t)dt =
a2

2T
The l.h.s, is the sum over the exponentials of the actions of all the closed tra-

jectories, except for the factor of 1√
2πT

. The r.h.s. is the sum over the exponentials

of the energies multiplied by T ; i.e., tre−Ĥt (again, except for the factor 1
L ). So

what we have here is a formula of the type

tre−Ĥt ∼
∑

closed

e−S

that relates a quantum mechanical quantity to its classical analogue.
Gutzwiller's formula is a generalization of this idea to more general systems for

which also the closed trajectories are countable. The factor 1√
2πt

will be explained

as a kind of Jacobian: the determinant of the derivative of momentum w.r.t. to
position.

Exercise 36. Suppose f is a smooth function rapidly decreasing at in�nity
and f̃(k) =

´
f(x)e−ikxdx its Fourier transform.Then there is a generalization of

the Poisson formula ∑
a∈LZ

f(a) =
∑

k∈ 2π
L Z

f̃(k)
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Exercise 37. Recall the Riemann zeta function ζ(s) =
∑∞
k=1

1
ks . Using

the Poisson formula, we can derive the functional relation

ξ(s) = ξ(1− s)
where

ξ(s) = π−
s
2 Γ
(s

2

)
ζ(s).

Remark 38. It is believed that all the zeros of ξ(s) lie on the axis of symme-
try Res = 1

2 . Proving this Riemann hypothesis is the most famous celebrated
unsolved problem in all of mathematics. It is not part of the above exercise. Sel-
berg's motivation in deriving his trace formula was to �nd a generalization of this
zeta function where the sum over integers is replaced by the sumover a non-abelian
group (the fundamental group of the Riemann surface).

12.2. The Propagator

The kernel of the unitary operator e−
i
~ Ĥt is called the propagator:

U(t, q, q′) =< q|e− i
~ Ĥt|q′ > .

It can be expanded in terms of the eigenvectors of the hamiltonian (when the
spectrum is pure point; i,e., bound states only)

U(t, q, q′) =
∑
n

e−
i
~Entψn(q)∗ψn(q′), Ĥψn = Enψn

Each eigenvector is normalized to have length one. The trace

tre−
i
~ Ĥt =

∑
n

e−
i
~Entρ(En)

contains the information about the energy eigenvalues En and their degenera-
cies ρ(En). More generally, if we have a continuous spectrum as well

tre−
i
~ Ĥt =

ˆ
e−

i
~Etρ(E)dE

where ρ(E)dE is the spectral density ( or density of states in physicist's
jargon). It contains a δ-function for every discrete eigenvalue and a continuous
distribution for the scattering states.

Often it is useful to analytically continue the above quantities into imaginary
time to get the heat kernel

ht(q, q
′) =< q|e− 1

~ Ĥt|q′ >
which satis�es the di�erential equation

~
∂ht(q, q

′)

∂t
= −Ĥht(q, q′)

with the initial condition

ht(q, q
′)→ δ(q, q′), t→ 0.

A closely related operator is the resolvent
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R̂(λ) =
1

Ĥ − λ
=

1

~

ˆ ∞
0

e
1
~λte−

1
~ Ĥtdt

which is well-de�ned (is a bounded operator) if λ is not in the spectrum of Ĥ.
Its kernel is called the Green's function

R(λ; q, q′) =< q| 1

Ĥ − λ
|q′ >=

∑
n

1

En − λ
ψn(q)∗ψn(q′)

Again the traces contain the information about eigenvalues and degeneracies.
The trace

Zt = tre−Ĥt

is the partition function.This contains all the information of statistical me-
chanics where t has the meaning of the inverse of temperature.

for the hamiltonian of some quantum system. It is equal to

Zt =

ˆ
e−Etρ(E)dE

in terms of the density of states. Our aim is to derive a semi-classical ap-
proximation for this partition function. A Schrodinger operator is a second order
di�erental operator on functions ψ : Rn → C

Ĥψ =
1

2
(i~∂)

2
ψ + V (x)ψ

12.2.1. Small Time Approximation. If we ignore all the ~ dependent terms,
the star product reduces to the ordinary product and

h̃t = e−H̃t + O(~)

so that the partition just becomes its classical analogue

Zt,0 =

ˆ
e−H̃(x,p)t dxdp

[2π~]n

The only place where ~ appears is in the normalization of the volume of phase
space.

1

If the hamiltonian has the form

H̃(x, p) =
1

2
p2 + V (x)

we can evaluate this integral to get

Zt,0 =

ˆ
e−V (x)t dx[√

2πt~
]n

For the isotropic harmonic oscillator for example, V (x) = 1
2ω

2x2

Zt,0 =
1

[t~ω]
n

1This is actually an important point: this constant is undetermined in the classical theory. It
can equivalently be thought of as an additive constant in the entropy. Quanum theory determines
this constant in terms of ~: in terms of entropy it is related to the third law of thermodynamics.
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while the exact answer is

Zt =
1[

2 sinh t~ω
2

]n .
Clearly, the small time behavior is captured correctly, but not for large time.

12.2.2. Semiclassical Approximation. We can make the ansatz

ht(q, q
′) = e−

1
~St(q,q

′)

and an expansion

St(q, q
′) =

∞∑
n=0

~nSn(q, q′)

in the heat equation. To leading order we get a Hamilton-Jacobi equation

∂St,0
∂t

=
1

2

[
∂St,0
∂q

]2

− V (q)

with the b.c. that St(q, q
′) → (q−q′)2

2t as t → 0. (Then ht(q, q
′) will tend to

the delta-function).The potential energy has the �wrong� sign because this is the
imaginary time version of the Hamilton-Jacobi equation. The solution is the action
of the (imaginary time) trajectory that connects the two points in time t.

q̈ =
∂V

∂q
.

Again, the sign of the force is the opposite of that in Newton's equations.
If we only want the energy levels, we will need the trace of ht; that is we will

put q = q′ and integrate over all values of q. This means that we will need a sum
over all closed orbits of period t.

The next order term will determine the term S1 in terms of derivatives of St,0:

ht(q, q
′) = e−

1
~St,0(q,q′)

This will work out to involve the determinant of the second derivative of the
action with respect to initial conditions. Thus we get a formula

tre−
1
~ Ĥt =

∑ˆ
dqe−

1
~St(q,q)

√[
det

1

2π

∂2S

∂q∂q′

]
q=q′

the sum being over all orbits of period t starting and ending at q. This is the
Gutzwiller trace formula.

Exercise 39. Work out the �rst order correction to St in the above expansion
to get the

√
det factor in the Gutzwiller formula.

Exercise 40. Verify this formula for the particle on a circle and the simple
harmonic oscillator.



CHAPTER 13

Singular Perturbation Theory for Di�erential

Equations

The semi-classical expansion of the Schrodinger equation

−~2

2
∂2ψ + V ψ = Eψ

is an example of singular perturbation theory: if we simply set ~ = 0 in the
equation, we change its order. In this case, we change from a second order equation
to a zeroth order equation. Physically, it is clear that we should not interpret the
classical limit as simply setting ~ = 0 in the above equation: we would then lose
the kinetic energy and not just quantum e�ects. It is wrong to expand ψ itself in
powers of ~.The point is that the solution has an essential singularity as ~→ 0, so
the correct this is to put

ψ = e
1
~S

and then to expand S =
∑∞
r=0 Sr~r . In the leading order we get the Hamilton-

Jacobi equation.
Such singular perturbations occur in many branches of physics. Perhaps the

deepest is in the Navier-Stokes equation of �uid mechanics

∂v

∂t
= ν∂2v + v · ∂v −∇p, divv = 0

along the with the boundary condition that v = 0 at a spatial boundary.
This is a second order nonlinear system of PDEs. The �rst term on the rhs is

proportional to viscosity. The limit of an ideal �uid ν → 0 is singular because the
order of the equation changes from two to one. It turns out viscosity has the biggest
e�ect near the boundary: there is a boundary layer in which the viscosity cannot
be ignored no matter how small it is.Non-linear PDEs such as this are among the
most di�cult problems in all of mathematics and physics. So we will mostly look
at ODEs in this course.

13.1. Center Manifolds

A basic reference is NEIL FENICHEL, JOURNAL OF DIFFERENTIAL EQUA-
TIONS 31, 53-98 (1979) based on earlier work of Anosov.

We can think of the independent variable as time. Suppose there are two
dependent variables (each of which can be a vector) x ∈ Rm and y ∈ Rn:

ẋ = f(x, y, ε), ε̇y = g(x, y, ε)
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The set of initial conditions (�the phase space�) of the system is Rm+n. When
ε = 0 the system degenerates to

ẋ = f(x, y, 0), 0 = g(x, y, 0).

Thus, in this limit initial conditions cannot be chosen independently: the y
variables are determined by the xvariables through the second equation, in terms
of some function h(x):

y = h(x)

and there is a limiting equation for the x variables

ẋ = f(x, h(x), 0).

How do these solutions change when ε is small but not zero? The tricky part is
that now there could be other solutions, whose y co-ordinate might grow with time,
invalidating the starting approximation above. It turns out that under reasonable
conditions, it is still possible to �nd an m-dimensional submanifold of Rm+n on
which the solution lies.

y = h(x, ε)

The equation of time evolution can be projected on this submanifold (called
the center manifold) and e�ectively replace the original equation.

ẋ = f(x, h(x, ε), ε)

For this to happen, h(x, ε)must satisfy the partial di�erential equation

εfa(x, h(x, ε), ε)
∂hj(x, ε)

∂xa
= gj(x, h(x, ε), ε).

This equation can be solved as an asymptotic expansion in powers of ε, determining
the center manifold. Determining the center manifold is itself part of the solution
of the dynamics of such problems.

There is then an expansion for solutions x(t, ε) that lie on this submanifold
as well, although not for those outside of it. We illustrate the idea with a linear
example.

13.1.1. Expansion Method for the Center Manifold. Determining the
center manifold (the function h(x, ε) ) is essential to understanding systems with
vastly di�erent time scales. We can aproach this by an expansion in powers of ε.

h(x, ε) =
∑
n

hn(x)εn

with h0(x) = h(x) as above. Then

fa(x, h(x), 0)
∂hj(x)

∂xa
=
∂gj

∂ε
(x, h(x), 0) + hk1(x)

∂gj

∂yk
(x, h(x), 0)

If the matrix ∂gj

∂yk
(x, h(x), 0 is invertible, this can be solved for h1. And so on

for higher orders.
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13.2. Cyclotron Radiation

Consider a charged particle moving in a constant magnetic �eld. Its velocity
satis�es the Lorentz equation

dv

dt
=

e

m
v ×B

Consider the special case where the velocity is normal to the magnetic �eld.,
which we can assume to be along the third axis:

dv1

dt
= ωcv2,

dv2

dt
= −ωcv1

where the cyclotron frequency is

ωc =
e

m
B

Introducing the complex variable v = v1 + iv2 our equation becomes

dv

dt
= −iωcv

The solution is obvious

v = v(0)e−iωct

This describes a particle in uniform circular motion with angular frequency ωc.
Devises with electrons in such orbits in a magnetic �eld are called cylcotrons.Typically
the requencies are in the MegaHertz range. These devices satrted as tools for nu-
clear physics research, but now have found applications in medicine as a source of
radiation for cancer treatment.1

Now, every charged particle with an acceleration will radiate. The electrons
in a cyclotron lose energy as well: although the magnitude of velocity is constant,
its direction is changing, so that the particle is accelerating. The only reason
cyclotrons work is that energy is replenished by pumping in microwave radiation.
In the absence of that, the electrons would lose energy slowly and come to rest. The
radiation emitted by the electron is mostly in the forward direction, so it exerts a
recoil force on it which will tend to slow the electron down. This force is notoriously
di�ciult to calculate, being the force exerted on the electron by itself. If we naively
use the formula of electrodynamics, the force is in�nite in the limit of a point
particle. Dirac showed that this in�nity can be aborbed into a rede�nition of the
mass of the electron. The residual e�ects of this renormalization is a self-force
proportional to the derivative of acceleration. We get the Lorentz-Dirac equation

dv

dt
=

e

m
v ×B + εv̈, ε =

2

3

e2

mc3
.

The parameter ε has units of time and is equal (in the case of the electron) to
about

ε ≈ 2× 10−23s

1If we include relativistic e�ects, the frequency has a dependence on the energy (not just the
mass). Such devices are called synchrotrons. We will consider only the non-relativistic case here.
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This is a fantastically small time compared to the other parameter in the prob-
lem, the inverse of the cyclotron frequency:

εωc ∼ 10−17

But simply setting ε equal to zero is not correct as it changes the order of the
equation: the solution is not analytic in ε.Again, restricting the motion to the plane
normal to B we get

v̇ = −iωcv + εv̈

13.2.1. Runaway Solutions. Being linear ODE with constant coe�cients
we can solve it by the ansatz

v = Aeλt

We get a quadratic equation for λ

ελ2 − λ− iωc = 0

with two solutions

λ± =
1±
√

1 + 4iωcε

2ε
So the solution is

v = A+e
λ+t +A−e

λ−t

In the limit of small ε

λ− ≈ −iωc − εω2
c + O(ε2)

λ+ ≈
1

ε
+ iωc + O(ε)

The term A−e
−λ−t ≈ A−e

−iωct−εω2
c t describes a slowly decreasing, periodic

function. This is the physically correct solution for the velocity of the electron.
But there is another solution

A+e
t
ε+iωct+···

which has the non-analytic dependence on ε. This is unphysical, as it grows
with time! The energy of the electron (proportional to the abosolute square of v)
increases with time, and very rapidly at that.Such runaway solutions are a source of
confusion even now in the physics literature (including in some popular textbooks on
electrodynamics). If this term is present in the solution, it will eventually domnate
over the decreasing solution, no matter hwo small the coe�cient A+. So the phase
space must be identi�ed with the subspace on which this term is set exactly to zero.

Conceptually, the equation of motion should not have been second order in
the velocities: in mechanics, we should not have the freedom to choose the initial
accelaration at will. It must somehow be determined by the initial position and
velocity: the physically correct choice must be the one that kills o� the runaway
term in the solution.
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13.2.2. The Landau-Lifshitz Equation. A clue is that the radiation term
is actually small. So we can approximate

v̈ ≈ d

dt
[−iωcv]

so that Lorentz-Dirac equation is replaced by the Landau-Lifshitz equation,
which is �rst order in the velocities:

v̇ = −iωcv − iεωcv̇
The solution is easy

v̇ =
−iωc

1 + iεωc
v, =⇒ v = v0e

−iωc
1+iεωc

t

which is a decreasing function. Does this approximation hold in higher orders?
That is, are the higher order terms smaller, or is there lurking yet another runaway
solution?

13.2.3. The Center Manifold for Cyclotron Motion. The application of
center manifold theory to resolve completely the runaway solutions of the Lorentz-
Dirac equation is the work of Herbert Spohn. We only work out the particular case
of constant magnetic �eld.

By identifying x = (v1, v2) ∈ R2 and

ya = v̇a

we can write the equation as

ẋa = fa(x, y, ε), fa(x, y, ε) = ya

εẏa = ga(x, y, ε), ga(x, y, ε) = ya − ωabxb
The matrix ωab has components

ω12 = −ω21 = ωc, ω11 = ω22 = 0.

In the limit ε = 0

ya = ha(x), ha(x) = ωabxb

The center manifold is given by the function h(x, ε) satisfying the PDE

εhb(x, ε)∂bha(x, ε) = ha(x, ε)− ωabxb
If we set

ha(x, ε) = habxb

this reduces to an algebbraic equation for the 2× 2 matrix h

εhbchab = hac − ωac
or

εh2 = h− ω
This can be solved as a power series in εω. Or, we can write it as
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h =
1−
√

1− 4εω

2ε
where the square root of a matrix is de�ned as the power series

√
1 +A =

∞∑
n=0

(
1
2
n

)
An

etc. Notice that this the branch of the square root that tends to ω as ε→ 0.
If the initial condition lies on the submanifold

ya = hab(ε)xb

the solutions stay on it for ever. On this submanifold, the equation reduces to

ẋa = hab(ε)xb

The solution is (in complex notation x = x1 + ix2

x(0) = eλtx(0)

where

λ = ωc
{
−i
[
1− 2ε2ω2

c

]
+ εωc

(
ε2ω2

c − 1
)}

We can see that this is the decreasing periodic solution, except that the cy-
coltron frequency and damping constant have been corrected slighlty:

Reλ = −εω2
c + ε3ω4

c + · · ·

Imλ = −ωc
[
1− 2ε2ω2

c + · · ·
]

In view of the smallness of εωc ≈ 10−17 there is no practical reason to go
to higher orders. But there is nothing to prevent us from going to as high an
order as we want. Note that although the equations we are solving are linear, the
determination of the center manifold requires us to solve a quadratic equation for
the matrix h.

We conclude that the Landau-Lifshitz equation is the �rst order in an expansion
in powers of ε for the orbits of the radiating electron. That is the important
conceptual point.

13.3. Center-Manifold of the Lorentz-Dirac Equation

We start with

ẍµ =
e

m
Fµν ẋ

ν + ε [δµν − ẋµẋν ]
...
x ν

Here t is proper time an ε = 2
3
e2

mc3 .
De�ne

vµ = ẋµ, =⇒ vµẍµ = 0

yµ = ẍµ = [δµν − ẋµẋν ]ẍν , =⇒ vµẏµ = −y2

to get the system



13.3. CENTER-MANIFOLD OF THE LORENTZ-DIRAC EQUATION 88

ẋµ = vµ,

v̇µ = yµ

εẏµ = −εvµy2 + yµ − e

m
Fµν v

ν

We seek a function h(x, v, ε) such that

ε

[
vν
∂hµ(x, v, ε)

∂xν
+ hν

∂hµ(x, v, ε)

∂vν
+ vµh2(x, v, ε)

]
= hµ(x, v, ε)− e

m
Fµν v

ν .

Then the equation of motion is

ẋµ = vµ

v̇µ = hµ(x, v, ε)

Expanding

h(x, v, ε) =

∞∑
n=0

εnhn(x, v)

we have

hµ0 (x, v) =
e

m
Fµν v

ν

hµ1 = vν
∂hµ0 (x, v, ε)

∂xν
+ hν0

∂hµ0 (x, v, ε)

∂vν
+ vµh2

0

hµ1 = vσ∂σ

[ e
m
Fµν

]
vν +

( e
m

)2

[δµν − vµvν ]
(
F 2
)ν
ρ
vρ

etc. To this order, we get the Landau-Lifshitz equation, proposed (without
proof) in their classic text:

ẍµ =
e

m
Fµν ẋ

ν + ε

{
ẋσ∂σ

[ e
m
Fµν

]
ẋν +

( e
m

)2

[δµν − ẋµẋν ]
(
F 2
)ν
ρ
ẋρ
}

We can calculate higher order corrections, but they are very small. It is worth
doing for conceptual reasons, however. As we carry this out to higher orders, we will
get more and more derivatives and powers of the �eld on the rhs. The important
point is that the rhs will only involve velocities ẋµand not higher derivatives wrt
time such as ẍµ,

...
xµ.

After many years of confusion, the problem of radiation reaction was �nally
settled by Herbert Spohn when he derived this equation using center manifold
theory.
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Remark 41. Idea for Research: Is there a version of center manifold theory for
PDEs? For example, the Skyrme model, or quantum corrections to GR all produce
di�erential equations of higher order. Can we remove the runaway solutions of
those theories this way? The equations obtained this way are dissipative, so dont
have a canonical formalism. Is there a modi�ed version (complex hamiltonian?) of
canonical formalism that works for them?



CHAPTER 14

The Feynman-Kac Formula

Feynman, following some ruminations of Dirac, discovered a formulation of
quantum mchanics in terms of integrals over the paths of particles. This has turned
out to be the most convenient way to think of relativistic quantum theories. The
mathematics needed is the integral calculus on function spaces. At present we have
a rigorous mathematical theory only for he case of functions of a single variable.
The main obstruction to a rigorous theory of integration over functions of several
variables is the appearance of spurious divergences, which have to removed by a
mysterious process known as renormalization. Precusors to this idea are present
as early as in Euler's theory of divergent series. Finding a formalism for quantum
�eld theory free of these divergences remains one of the grand challenges of math-
ematics and of physics. We will start down this path by starting with quantum
mechanics. Instead of Feynman's approach we will follow later work of Kac which is
a bit easier: it deals with real rather than complex integrands. It relates quantum
mechanics to the Wiener integral, the only well-understood integration theory on
function spaces.

14.1. The Heat Kernel of The Schrodinger Operator

We have already seen that solving the spectral problem for a Schrodinger op-
erator

Ĥ = −1

2
∂2 + V

is equivalent to �nding the heat kernel. That is, the solution to the PDE

∂ht(x, y)

∂t
=

1

2
∂2ht − V (x)ht, lim

t→0
ht(x, y) = δ(x, y)

If the spectrum is pure-point (i.e., just eigenvalues of �nite multiplicity)

ht(x, y) =
∑
n

e−Ent
∑
a

ψ∗na(x)ψna(y)

where

Ĥψna = Enψna

and a labels the degeneracy of the eigenvalue En. Also we know that this is

the kernal of the operator ĥt = e−Ĥt

ht(x, y) =< x|ĥt|y >
In the simplest case V (x) = 0 we have
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< x|et 1
2∂

2

|y >=
e−

(x−y)2

2t

[2πt]
n
2

On the other hand,

< x|e−tV |y >= e−tV (x)δ(x, y)

Thus, each term in the hamiltonian can be easily exponentiated. For operators,

eÂ+B̂ 6= eÂeB̂

so we cannot directly use these formulas for the exponential of each term to
deduce that of the hamiltonian. If the commutators are small,

eÂ+B̂ = eÂeB̂e−
1
2 [Â,,B̂]+···

This can be veri�ed by expanding both sides to the required order in the com-
mutator: teh ignored terms involve repeated commutators of higher order. Thus
for small t we can hope that

et
1
2∂

2−tV ≈ e t2∂
2

e−tV
[
1 + O

(
t2
)]

In terms of kernels

ht(x, y) =
e−

(x−y)2

2t

[2πt]
e−tV (y)

[
1 + O

(
t2
)]

The idea of the Feynman-Kac formula is to break up the time interval into
small pieces, for each of which the above approximation can be used.

14.2. Subdividing Time

Since

ĥt = e−tĤ

we have

ĥt = ĥt−t1 ĥt1 , t > t1 > 0

In terms of Kernels,

ht(x, y) =

ˆ
ht−t1(x, x1)ht1(x1, y)dx1

We can divide the interval [0, t] any number of times

ĥt = ĥt−tN · · · ĥt2−t1 ĥt1 , t > tN · · · t2 > t1 > 0

to get

ht(x, y) =

ˆ
ht−tN (x, xN ) · · ·ht2−t1(x2, x1)ht−t1(x, x1)ht1(x1, y)dx1 · · · dxN

This looks more natural if we changenotation slightly and call y = x0



14.2. SUBDIVIDING TIME 92

ht(x, x0) =

ˆ
ht−tN (x, xN ) · · ·ht2−t1(x2, x1)ht−t1(x, x1)ht1(x1, x0)dx1 · · · dxN

Then x0can be thought of as the position of the particle at time 0, x1 that at
time t1 and so on, and �nally x is the position at time t.

ht(x, x0) =

ˆ N+1∏
k=1

htk−tk−1
(xk, xk−1)dxk

with the understanding that

tN+1 = t, t0 = 0.

For N big enough, the intervals tk − tk−1 will become small enough that we
can approximate

htk−tk−1
(xk, xk−1) ≈ e−

1
2

(xk−xk−1)2

tk−tk−1
−[tk−tk−1]V (xk−1) 1

[2π(tk − tk−1)]
n
2

[
1 + O

(
[tk − tk−1]2

)]
Thus we get

ht(x, x0) =

ˆ
e
−
[

1
2

∑N
k=1

(xk−xk−1)2

tk−tk−1
+
∑N
k=1[tk−tk−1]V (xk−1)

] [
1 + O

(
[tk − tk−1]2

)] N∏
k=1

dxk

[2π (tk − tk−1)]
n
2

In the limit as N → ∞, the quantity in the exponential tends to something
simple:

−

[
1

2

N∑
k=1

(xk − xk−1)2

tk − tk−1
+

N∑
k=1

[tk − tk−1]V (xk−1)

]
→ S[x] = −

ˆ t

0

[
1

2
ẋ2(s) + V (x(s))

]
ds

This quantity S[x] depends on a path x(s) connecting x0 at time zero to x at
time t. It is called the action.( The sign of the kinetic energy is not what you
are used to in mechanics. That is because we are solving Schrodinger's equation in
imaginary time.This is easier technically than the more phsyical case of real time.)

In this limit we are integrating over all possible paths that start at x0 at time 0
and end at x at time t. Just as the limit of a sum can be thought of as an integral,

N∑
k=1

f(tk) [tk − tk−1]→
ˆ t

0

f(s)ds

a limit of such integrals can be thought of as a new kind of integral on paths:
a path integral.

ht(x, x0) =

ˆ
x(0) = x0

x(t) = x

eS[x]D[x]

The symbol D[x] is to be thought as the limit of
∏N
k=1

dxk
[2π(tk−tk−1)]

n
2
as N →∞.

But it is not to be taken literally, just as the derivative df
dx of calculus is not literally

the ratio of two in�nitesimal quantities. The proper de�nition of the path integral,
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just like the ε− δ de�nition of the derivative, is a subtle piece of analysis. We will
take that up later. For now we are just developing the physical intuition needed
for that construction.

This is Feynman's variational principle: if we integrate over all paths starting
at x0 at time zero and ending at x at time t, the weight of each path being given by
its action as e−S[x], we get the heat kernel of the Schrodinger equation. A moments
thought will show that if we had not set ~ = 1 we would have obtained

ht(x, x0) =

ˆ
x(0) = x0

x(t) = x

e
1
~S[x]D[x]

14.3. Laplace's Method for Path Integrals

For small ~ we should expect that the path integral is dominated by the path of
largest action: the variational principle of classical mechanics follows as an approx-
imation from Feynman's variational principle of quantum mechanics. (Again we
get the path of largest rather than least action because our sign conventions di�er
from that in mechanics. The idea is the same, though.) Moreover by expanding
around this maximum of the integrand, we should be able to get an asymptotic
expansion in powers of ~. This is the most physically clear way of deriving the
semi-classical approximation of quantum mechanics.To put this through in prac-
tive, we will have to learn how to evaluate (and de�ne) Gaussian integrals over the
space of paths. The techniques needed were developed by Wiener, as part of his
mathematical formulation of Einstein' theory of Brownian motion.



CHAPTER 15

The Gaussian Integral

We are interested in developing a theory of integration over an in�nite num-
ber of variables. The �rst instinct might be to de�ne some generalization of the
Lebesgue measure dφ to the in�nite dimensional case. But that turns out to be
impossible: there is no translation invariant measure except in �nite dimensions.
However, the Gaussian measure

given by a positive matrix K

e−
1
2φ

TKφdφ

does have a generalization to the in�nite dimensional case. In the limit, K
can be a positive operator, such as the laplacian or a Schrodinger operator. To
understand this, we start by reviewing the �nite dimensional case. The most natural
language to use is that of probability distributions.

15.1. The Normal Distribution

By far the common probability distribution in science is the normal distribution.
Given a mean µ and variance G, the probablity that such a random variable will
take values in some interval [a, b] is

P (a ≤ φ < b) =

ˆ b

a

e−
1
2G
−1(φ−µ)2 dφ√

2πG
That this is a positive quantity is obvious; the identityˆ ∞

−∞
e−

1
2x

2

dx =
√

2π

proves that as a→ −∞ and b→∞ this probability tends to one, as it should.
A basic result of statistics is that the average of a large number of independent

random variables (each with �nite variance) tends to such a distribution. For
example, if the measurement of a physical quantity is subject to a large number
of independent errors, the measured value will be normally distributed. This is
also called the Gaussian distribution, after Karl Frederich Gauss, one of the most
respected mathematicians of all time. Much of asymptotic anlaysis is centered on
Gaussian integrals, which are the average values with respect to this distribution.
It is obvious by symmetry around the point µ that

< φ >=

ˆ ∞
−∞

φe−
1
2

(φ−µ)2

σ2
dx√
2πG

= µ

By adding a constant and multiplying by another constant, we can bring any
normal random variable to a standard normal variable with zero man and unit
standard deviation. Using the identity

94
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´∞
−∞ e−

1
2x

2

x2dx´∞
−∞ e−

1
2x

2
dx

= 1

we can see that

Var(φ) =< φ2 > − < φ >2= G.

Thus µ and G are indeed the mean and variance of the random variable. The
probability density has a familiar bell-shape.

15.2. The Characteristic Function

For any probability distribution, expectation values such as < φn >are called
its moments. The moments are determined by their generating function

Zφ(J) =

∞∑
n=0

Jn

n!
< φn >

The idea is that if we know Z(J) we can �nd the moments by expanding it
around the origin in a Taylor series and reading o� the coe�cients. A moments
thought will show that Z(0) = 1. And that Z[iJ ] is the Fourier transform of the
probability density:

Zφ(iJ) =< eiJφ >=

ˆ
eiJφp(φ)dxφ.

By inverting the Fourier transform, we can recover the probability density
function:

p(φ) =

ˆ
Z(iJ)e−iJφ

dJ

2π

Thus Z(J) determines the p.d.f., which is why it is also called the characteristic
function. The e�ect of adding a constant to the random variable is to shift Z(J)
by a multiplicative factor:

Zφ+a(J) = eJZφ(J)

The e�ect of multiplying the random variable by a constant is to mutliply J
by a constant as wel:

Zaφ(J) = Zφ(aJ)

By evaluating the integral (�completing the square�) , the characteristic function
of a Gaussian of mean µ and variance G is found to be

Zφ(J) = eµJe−
1
2GJ

2

.
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15.3. The Expectation Values of a Multi-variate Gaussian

Often we will need to deal with vector-valued random variables: the position of
a molecule of a gas for example. The Gaussian has a generalization to this multi-
dimensional case: the component φ · J of the random variable φ in some direction
J it must be a Gaussian. Since < φ · (J +J ′) >=< φ ·J > + < φ ·J ′ >, there must
be a vector µsuch that

< φ · J >= µ · J,
This vector µ is the mean of φ. Similarly, the variance

Var(φ · J)

is a quadratic function of J . So there must be a positive matrix G such that

< (φ · J)2 > − < φ · J >2= JTGJ.

This matrix G is the variance of φ. Using the result for a single Gaussian
random variable,

< eφ·J >= eµ·Je−
1
2J

TGJ

so that the mean and variance determine all the other moments: they are
determined by expanding in powers of J .

It is useful to think of φ = (φ1, · · · , φn) in terms of its components in some
Cartesian co-ordinate system

< φi >= µi, < φiφj > − < φi >< φj >= Gij .

Then the variance matrix Gij is symmetric and positive in the sense that

JTGJ = GijJiJj ≥ 0

with equality only in the case J = 0.
By expanding the characteristic function in a power series, we can get the

expectation values of products of the components , such as < φiφjφkφl >. The
explicit formula is quite useful and is called the Wick expansion in quantum �eld
theory.

Proposition 42. (The Wick Expansion)For a Gaussian random valiable
of mean µ and variance G, the expectation value

< φi1 · · ·φin >=
∑

pairings

∏
unpairedj

µj
∏

pairsa,b

Giaib

is given by a sum over pairings: the contribution of each pair is the corresponding
matrix element of G, and each unpaired component contributes the corresponding
component of the mean.

The idea of a pairing is best described graphically. Put down points (�vertices�)
labelled by the indices i1, · · · in. For each graph we can get by connecting pairs of
these vertices by lines, we get a contribution to the above sum.

In the simplest case of zero pairs, we get just the product of the components
of the mean. The next set of terms correspond to one factor of G and n− 2 factors
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of µ. After that we would get the graphs with two pairs of vertices connected by
lines and n− 4 singletons and so on:

< φi1 · · ·φin >= µi1µi2 · · ·µin +Gi1i2µi3µi4 · · ·µin + permutations

+Gi1i2Gi3i4µi5 · · ·µin + permutations

For example,

< φi >= µi

There is just one graph with one vertex.Then

< φiφj >= Gij + µiµj

which agrees with the de�nition of the Gaussian. Then

< φiφjφk >= µiµjµk +Gijµk +Gikµj +Gjkµi

< φiφjφkφl >= µiµjµkµl+

Gijµkµl +Gikµjµl + +Gilµjµk +Gjkµiµl +Gjlµiµk +G
kl

µiµj

+GijGkl +GikGjl +GilGjk

and so on.The proof is simply to expand the characteristic function above in a
series and collect coe�cients of J's.

15.4. The Multi-Dimensional Gaussian Measure

We can calculate the expectation values of any function (that can be approxi-
mated by polynomials) using the moments obtained by the Wick expansion.1 Still
there is interest in understanding the measure that generates these expectation
values:

< f(φ) >=

ˆ
f(φ)p(φ)dφ.

We can get it by inverting the Fourier transform. The answer should be

p(φ)dφ = e−
1
2φ

TKφ dφ

Z
where Z is a normalization factor determined the condition

ˆ
p(φ)dφ = 1

Z =

ˆ
e−

1
2φ

TKφdφ.

In the special case where K is diagonal, the probability density splits as a
product

1There is no loss of generality in setting the mean µ = 0: we can always put it back by a
translation of the variable by a constant vector.
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p(φ)dφ =

n∏
j=1

e−
1
2φjkjφj

dφj
Zj

In this case

< φiφj >= δijk−1
j

and

Zj =
√

2πk−1
j .

But any positive matrix can be diagonalized by an orthogonal transformation of
determinant one. Thus in general

< φiφj >= [K−1]ij

Z =
√

det [2πK−1].

We see that the variance G is the inverse of K.



CHAPTER 16

Laplace's Method For Multi-Dimensional Integrals

We return to a theme from the beginning of the course. The evaluation of an
integral

Z(g) =

ˆ
e

1
gS(φ)dNφ

over a �nite number N of variables. Suppose the integrand has a unique max-
imum at some point ϕ in the interior of the domain of integration. In the limit of
g → 0 we would expect the integral to be dominated by the contribution of the
neighborhood of this maximum. We expand

S(φ) = S(ϕ)− 1

2
(φ− ϕ)TG−1(φ− ϕ) +

∞∑
k=3

Si1···ik(φ− ϕ)i1(φ− ϕ)i2 · · · (φ− ϕ)ik

where

−[G−1]ij =

[
∂2S

∂φi∂φj

]
φ=ϕ

Si1···ik =
1

k!

[
∂kS

∂φi1 · · · ∂φik

]
φ=ϕ

Since we are at a maximum, the second derivative is a negative matrix; so G
is a positive matrix. Now we change variables to

χ =
1
√
g

[φ− ϕ]

and substitute the expansion in to the integral to get

Z(g) = g
N
2 e

1
gS(ϕ)

ˆ
e

[
− 1

2χ
TGχ+

∑
k=3 g

k
2
−1Si1···ikχ

i1 ···χik
]
dNχ

Expanding the exponential

Z(g) = e
1
gS(ϕ)

√
det[2πgG]

∞∑
nk=0

g
∑
k=3( k2−1)nk

nk!

´
e−

1
2χ

TG−1χ
[
Si1···ikχ

i1 · · ·χik
]nk dNχ´

e−
1
2χ

TG−1χnkdNχ

This can be evaluated by a combinatorial method, which hasa graphical inter-
pretation as well.

(1) Choose some even integer K > 3 (twice the number of edges of the graph)

99
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(2) For each partition of K =
∑
k=3 knk with nk > 0 , there are nk vertices,

each with k edges coming out. Label these edges with indices taking values
1 . . . N .

(3) Connect edges to each other in all possible ways; it is possible to connect
an edge to another from the same vertex or to one from a di�erent vertex.
There should be no unpaired edge (recall that K is even).

(4) To each edge labelled by i and j associate a factor Gij . To each vertex
of order k associate a factor Si1···ik . These indices will be summmed over
the range 1 · · ·N . Divide by a factor 1

nk!
where nk is the number of times

a vertex of a given order k appears.
(5) Sum over all such partitions.

These diagrams are called Feynman diagrams.

16.1. Example: K = 4

Let us consider the lowest order terms in this expansion. The only partition is
4 = 4× 1. The only graph is the ��gure eight � graph.

Z(g) = e
1
gS(ϕ)

√
det[2πgG]

[
1 + 3gSi1i2i3i4G

i1i2Gi3i3 + · · ·
]

16.2. K = 6

The only partition is 6 = 3× 2 which gives rise to two graphs:

Z(g) = e
1
gS(ϕ)

√
det[2πgG][

1+3gSi1i2i3i4G
i1i2Gi3i3+

g

2!
Si1iii3Si1j2j3

[
3× 2Gi1j1Gi2j2Gi3j3 + 32Gi1i2Gi3j3Gj1j2

]
+O(g2)]

In the last term there are 32 ways of choosing an index from the �rst vertex
to pair with one from the second vertex: the remaining contraction is determined
once this is chosen. In the �rst, there are three ways of choosing the index to pair
with the �rst vertex, 2 ways to choose a mate for the second and then the last is
determined. Note that 32 + 3× 2 = 15 = (6− 1)!! is the number of terms in the six
point function of the Gaussian (Wick's theorem).

Exercise 43. Enumerate all the partitions and Feynman diagrams for K = 8.
Find the corresponding terms in the Laplace expansion.
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Figure 16.1.1.

Figure 16.2.1.
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Figure 16.2.2.

Figure 16.2.3.
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Figure 16.2.4.

Figure 16.2.5.



CHAPTER 17

The Wiener Measure

There is no translation invariant measure in in�nite dimensions. The closest
we can come to it is the Gaussian measure. A Gaussian measure on the space
of continuous functions of ne variable is of great interest. It was constructed by
Wiener as a mathematical realization Einstein's theory of Brownian motion.

17.1. Lebesgue Decomposition

Even for a continuos real random variable, the probability of a particular value
is zero; the correct question to ask is, what is the probability that the variable takes
values within some semi-open interval [a, b). For such a variable, it will be given by

P (ξ ∈ (a, b]) = Φ(b)− Φ(a)

whereΦ(x) = Prob(ξ ≤ x) is the cumulative distribution function. The expec-
tation value of any function of the random variable can now be calculated as an
integral

< f >=

ˆ
f(x)dΦ(x)

This function Φ(x)is non-deceasing; it has jump discontinuities at the discrete
values of the random variable, and is the integral of some continuos function (the
probability density function) for the continuous range of values of ξ.

If Φhas a derivative p(x) = dΦ
dx we can write this is as

< f >=

ˆ
f(x)p(x)dx

But in many physically interesting cases we may get a sum as well

< f >=
∑
n

f(xk)pk +

ˆ
f(x)p(x)dx

Typically, Φ(x) does not have a derivative at all: in addition to jump discon-
tinuities, it may have a piece that is continuos but not di�erentiable. (Singular
continuos spectrum). An example is the Cantor function, which maps the middle-
third Cantor set onto the unit interval. Lebesgue showed that there is a unique
decomposition of an expectation value

< f >=
∑
n

f(xk)pk +

ˆ
f(x)p(x)dx+

ˆ
f(x)dΦsing(x)

into a discrete part, a continuous part and a singular continuos part. Here, pk
are positive numbers with

∑
k pk ≤ 1 and p(x) is a continuous positive function,
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and Φsing(x) is a contonuos function that is non-decreasing, but which is nowhere
di�erentiable.

17.2. The Space of Continuous Functions

The typical continuous function φ : [0, T ]→ R is not di�erentiable. That there
are functions that are continuous everywhere but di�erentiable no where was a
surprising discovery of nineteenth century analysis. They arose as Fourier sums of
the type

φ(t) =
∑
n

φne
int

If
∑
n |φn| is convergent, this sum is uniformly convergent and hence de�nes a

continuous function. But typically
∑
n n|φ|n will diverge, so the derivative φ′(t) is

not continuous. (e.g., φn = 1
n2 ). The set of continuous functions admits a norm (

a length)

|φ| =
∑

t∈[0,T ]

|φ(t)|

By completing with this norm, we get a Banach space.

17.3. Probability of a Path

When a particle is executing Brownian motion, its direction changes all the
time from hitting other particles in the medium. So its path is not di�erentiable.
But the path is continuos. What is the probability of a path? Of course, this is an
ill-de�ne question.

More precisely, what is the probability that at times

t1 < t2 · · · < tn

the path will fall within windows

φ(tk) ∈ [ak, bk)

For Brownian motion, physical considerations suggest this is a Gaussian: the
position of the particle is determined as the sum of a large number of independent
increments. There are so many colliions that the increments φ(tk) − φ(tk−1) are
independent random varables. The process is re�ection invariant, meaning that the
mean increment is zero: there is no drift in any direction. It is stationary, meaning
that the variance of the increment only depends on the di�erence tk − tk−1. with
all this in mind we get

Prob (φ(tk) ∈ [ak, bk)) =

ˆ bk

ak

n∏
k=1

dφk

n∏
k=2

e
−

(φk−φk−1)2

2σ[tk−tk−1]

[2πσ(tk − tk−1)]

If we were to omit any subset of the conditions on φ(tk) this formula would
remain unchanged: it is invariant under �integrating out� variables. This formula
de�nes the Wiener measure.
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17.4. The Harmonic Oscillator

We saw by the Feynman-Kac formula that

tre−Ĥt =

ˆ
φ(0)=φ(t)

e−
1
2

´
φ̇2(s)ds−

´
V (φ(s))dsDφ

In the particular case V (φ) = 1
2φ

2 this is a Gaussian integral. Recall that in
�nite dimensions

ˆ
dφe−

1
2 (φ,Aφ) =

√
det [2πA−1]

In our case, we can interpret the domain of integration as the vector space of
periodic functions of period t. Then

A = − d2

ds2
+ 1

On the above vector space the eigenfunctions of this operator are

1, sin

[
2πs

t
k

]
, cos

[
2πs

t
k

]
, k = 1, 2, · · ·

with eigenvalues

1, 1 +

[
2π

t

]2

k2, 1 +

[
2π

t

]2

k2, k = 1, 2 · · ·

Thus

√
detA =

∞∏
k=1

[
1 +

[
2π

t

]2

k2

]

=

∞∏
k=1

[[
2π

t

]2

k2

] ∞∏
k=1

[
1 +

[
t

2πk

]2
]

The �rst product diverges. But it can be given a meaning using zeta function
regularization. The second can be deduced from

sinh z = z

∞∏
k=1

[
1 +

z2

π2k2

]
so that

∞∏
k=1

[
1 +

[
t

2πk

]2
]

=
sinh t

2
t
2

Now,

∞∏
k=1

k = e
∑∞
k=1 log k = e−ζ

′(0) = e
1
2 log[2π] =

√
2π

∞∏
k=1

ρ = ρζ(0) = ρ−
1
2

so that
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(∏
k=1

[
2π

t
k

])2

=
t

2π
2π = t

Thus √
det

A

2π
= 2 sinh

t

2
.

tre−Ĥt =

ˆ
φ(0)=φ(t)

e−
1
2

´
φ̇2(s)ds−

´
V (φ(s))dsDφ =

1

2 sinh t
2

.

The usual spectrum En = n+ 1
2 , n = 0, 1, 2, · · · follows from this.


