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Renormalization in simple quantum mechanical systems is illustrated by diagonalizing the
Hamiltonians for the displaced harmonic oscillator and the one-boson Lee model. The
diagonalizing transformation for the one-boson Lee model is found by generalizing its dressing
transformation. The renormalized fermion masses in the diagonalized Hamiltonian are found

to be g numbers.

I. INTRODUCTION

The concept of renormalization is usually
associated with the theory of interacting quantum
fields and, thus, is usually discussed only in
courses in advanced quantum mechanics. How-
ever, there exist physically interesting quantum
mechanical systems which can be solved by
students in a first course in quantum mechanics,
and which also exhibit renormalization.

Two such models are discussed in this note.
They are the field theoretic interpretation of the
shifted harmonic oscillator," and the one-boson
Lee model,2 which is also the model for optical
spin-resonance in the rotating wave approxima-
tion.* The solutions of these models, ie., the
eigenfunctions and eigenvalues, have been previ-
ously obtained.* However, explicit diagonalization
of the Hamiltonians immediately leads to mass
renormalization in a transparent manner.

The canonical transformation which diag-
onalizes the Hamiltonian of the shifted harmonic
oscillator is well known.’ Tt is also the clothing or
dressing transformation for this Hamiltonian.¢
The diagonalizing transformation for the one-
boson Lee model Hamiltonian was not previously
known. However, the simplicity of the model and
the equality of the dressing and diagonalizing
transformations for the harmonic oscillator led to
the conjecture that the diagonalizing transforma-
tion would be simply related to the dressing
transformation.

In Sec. IT the displaced harmonie oscillator is
analyzed in detail in order to introduce the
operator techniques. The renormalized mass
follows immediately upon diagonalization.

In Seec. IIT the dressing of the one-boson Lee
model is carried out. The model’s Hamiltonian is
then diagonalized by choosing the dressing param-

eter to be a ¢ number. This results in ¢ number
fermion masses. Similar behavior was found for
the fermion mass in the demonstration of the
equivalence of pseudovector and pseudoscalar
meson coupling,” which is based on a canonical
transformation similar to the diagonalizing one for
the Lee model.

II. SHIFTED HARMONIC OSCILLATOR

The displaced harmonic oscillator can be cast
into field-theoretic form by considering the
coupling between a one-mode boson field and a
one-mode fermion field. The Hamiltonian for this
system is

H=Myry+owatatgd™y(atat),
and the nonvanishing commutation relations are

g, v+}=1, [a,at]=1.

The diagonalizing and dressing transformations
for this Hamiltonian are the same. They are
generated by

V(A) = expMty(at—a) = expAS,

and the dressed operators are defined by the
transformation

X\ =VMXV ()L

These dressed operators are found by integrating
the differential equations

(@/d\)X(N) =VNLS, XV (A)~

subject to the boundary conditions X (0) =X.
For this particular case, the equations for the
dressed operators are:

@/ (\) = —¢ (M) [a)F—a(N)]
=—¢y(M)[a*~a]
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and
(d/dya(N) =—¢ (M) (N) =—yTy.
The solutions are:
¢(\) =y exp[—A(at~a)]
and
a(\) =a—\Hy.

These equations are now inverted so as to
express the bare operators in terms of the dressed
ones. Then, the Hamiltonian in terms of the
dressed operators is

H =[Mo+oX+200 T (\) (N +wa(A) ta (M)
+Dot+gILaN) T+a(N) N TQR).

Clearly, the Hamiltonian is diagonal if the
choice

A=—g/w
18 made. This choice will also result from the
dressing condition, i.e.,
HY (), a0 )] 0)=Map(M)+]0).
The final form of the Hamiltonian is
H=Mpy(MN) ) +wa(X)Fa(r),
where
Mp=My—g/c.

Thus, the fermion mass is renormalized by the
attachment of a boson cloud which results from
the interaction.

III. ONE-BOSON LEE MODEL

The one-boson Lee model is described by the
Hamiltonian

H=MV+*V+MxyN+*N+ata

+g[aVIN+atN+TV ],
where the nonvanishing commutators are
{v,v+t=1, [N,N*}=1, [qa"]=1

By using the well-known isomorphism between
bilinear products of fermion operators and the
Pauli spin matrices,? this Hamiltonian can be
rewritten as

H=M[1-T.,]+4+AMo.,+wata+glao,+ate_],
where
o =VIN=¢_1 c,=V+V—N*N,
T.=1—V+V—-N+N,
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and the new coefficients are
M=(M»My)/2, AM = {M =M 5) /2.

The optical spin-resonance Hamiltonian, in the
rotating wave approximation, is obtained by
setting M to zero.

As discussed in the introduction, the interaction
induced mass renormalization in this system
becomes transparent once the Hamiltonian is
diagonalized. The successful diagonalization of the
Hamiltonian for the displaced harmonic oscillator
by its dressing transformation provides the clue
for the diagonalization of the one-boson Lee model.
The dressing transformation is known to be
generated by?®

V(A) = expAlaVIN —atN+V]
= expilao.—ato_]= expAS.

The equations for the dressed operators in this
case are:

(d/d\)a(\) =a-(\),

(d/d)o-(N) =a(N) o, (N),
and

(d/dN)o.(\) = —2[a(N) o (M) +a(M) Fo_ (V) 1.

Although these equations appear to be highly
nonlinear, they are easily reduced to linear form
by introducing the constants of the dressing. This
is analogous to the reduction of the equations of
motion to linear form by introduction of the non-
linear constants of the motion.? The dressing
constant needed is

C=c,+2a a=0c.(\)+2a(N)Ta(N).

Thus, once ¢.()\) is known, the dressed form for
all of the operator ecombinations appearing in the
Hamiltonian is known.

In order to find ¢.(\), the above constant of the
motion is inserted into the equation

(@/d2) . (\) =—2[{a V), 0—(V) }
+i{aMt a(M eV ],

to rewrite it as

(B/d\) o, (N) =—2[{o, V), o-(N) } —a.(N)?]
—2[C+1]e(N).

By virtue of the anticommutation relation

UZ(A)ZZ {U+(>\)) O-—(A) }7
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the equation for ¢.(A) reduces to

(2/d\D) o, () +9%.(N) =0,
where
2=2[¢,+{a, a*}].

The equation may be integrated as a ¢-number
one because the commutation rule

[o:(A), a(A)]=0
implies that
[o.()), Q¥]=0.
The solution is
5(A) =0, cosAN2—2[ ao .+ ate_](sin\Q/Q),

and there is no ordering ambiguity because of the
commutation rule

(@2, aoyi+ac]=0.

The other operator combinations which appear
in the Hamiltonian follow immediately and are:

a(M)ta(\) =ata+30.(1— cosAQ)
+ (aoy+ato ) (sinA2/Q)

and
aM)ar(A)+aX)ro_(N) =(aoc.+ato_) cosAQ
+15.0Q sinQ.
As before, these equations are now inverted so
as to express the bare operators in terms of the

dressed ones. Then, the Hamiltonian in terms of
the dressed operators is

+AM[o.(A) cosAQ+ 2y (sindQ/Q) ]
+ola(M)Ta(M)+2o.(M) (1 — cosAQ) —y(sinAQ/Q) ]

+g[v cosAQ—10,(A)Q sinAQ ],
where
vy=a(A)ar(A) +a(N)to_(7).
Unlike the displaced harmonie oscillator, the
dressing and diagonalizing transformations for the
one-boson Lee model are not identical. If V() is

to generate the dressing transformation, the
dressing eondition

HV (M| 0)=MEV(A)+]|0)
must be satisfied. This yields the value
A=%tan[2¢/(0—2AM)]

and the renormalized mass
M2 =M+3o+[(AM—40) "¢,

which agrees with the usual sector analysis of this
model.? However, this value for A does not diag-
onalize the Hamiltonian.

In order to diagonalize the Hamiltonian it is
necessary to choose A to be the ¢ number

A= (1/2) tangQ/(w—2AM)].

Of course, this choice raises certain questions
regarding the validity of the differential equations
for the dressed operators.

Although this choice of A commutes with S, it
is true that the differential equations really are
invalid because A does not commute with the
boson operator a. However, A does commute with
the relevant operator combinations a*a, ¢., and
as,.+ato_. These, of course, are just the operator
combinations solved for. Thus, the results can be
made rigorous by going back and starting from the
dressing equations for these operator combinations.

The resultant diagonalized Hamiltonian is

H=wa(\)*a(A)+3Te.(N) +M[1-T.(\) ]
=wa(N)Ta(M) +3(M+T) V(M) TV (N)
+EM—-T)NM*N ),

where
T=w-[ (2AM —w)?+ (gQ)2 2

Thus, in general, the interaction renormalized the
mass of both fermions by an amount dependent on
the particular state of the system. This is in
marked contrast to the simple constant mass
renormalization found for the displaced harmonic
oscillator. [Note that the previously obtained
mass M is regained when H acts on the state

vn*10).]
IV. CONCLUSION

The simple models analyzed in this paper show
that the concept of renormalization can be
introduced early in the career of the physics
major. They also illustrate the power of canonical
transformations, a tool often overlooked in
quantum mechanies courses. Finally, the analysis
of the one-boson Lee model should encourage an
element of boldness on the part of the student.
Too often he expects rigorous proofs before taking
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an innovative step rather than trusting in his
abilities to produce them afterward.
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This note describes three of many uses to which the desk-top computer has been put in the
introductory physies laboratory. The three uses involve an ac circuit laboratory, an equi-
potential mapping experiment, and an N-slit diffraction experiment. Typical desk-top com-
puter-produced theory plots are shown; the student often compares his experimental measure-
ments to theory by plotting his points directly on the computer plot.

INTRODUCTION

Recent advances in computer technology have
made possible the desk-top computer. Such a
computer is about the size of a calculating
machine, but has memory storage and far greater
calculational speed. A desk-top computer can be
used as a caleulator for arithmetic and trigono-
metric calculations without programming, or it
can be programmed to do any series of steps
repetitively.! Programming is done by pushing
the computer’s keys. The keys are either numbers,
functions, or computer instructions. For example,
in addition to the wusual zero-through-nine
keyboard, there are keys which automatically give
trigonometric, exponential, and logarithmic fune-
tions for any argument. There are also keys to
compare numerical values and to store or recall
numbers from memory.

Such a desk-top computer is easy to use, easy to
learn to program, and fairly powerful. Although

desk-top computers do not replace large, high-
speed computer installations, a very large number
of introductory physies problems can be done on
these small, inexpensive machines. Many problems
have not been done previously at the introductory
level simply because of the tedium involved in
carrying out calculations.

This note illustrates three of many uses to which
a desk-top computer has been put in the elemen-
tary-physics laboratories at Dartmouth. Even
though Dartmouth has 2 superior time-sharing
computer installation that more than 809, of the
undergraduates use, the desk-top eomputer still
fills a need. Small, straight-forward computations
need not now be done on the big computer.

The programs discussed here used the Hewlett—
Packard 9100 A desk-top caleculator/computer;
the programs are available from the author. The
desk-top system that was used included not only
the 9100 A computer but also an X-Y plotter
attached to it.



