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Chapter 1

Introduction

1.1 Relativistic Quantum Mechanics is the combination of Special
Relativity and Quantum Mechanics

1.2 It leads inevitably to the quantum field theory: quantum sys-
tems with an infinite number of degrees of freedom.

1.3 In another direction, it led to the study of unitary represen-
tations of the Lorentz group, and to Harish-Chandra’s marvellous
theory on the unitary dual of semi-simple Lie groups.

1.4 The central object of our study will be the Dirac equation.
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Chapter 2

The Axioms of Quantum
Mechanics

2.1 Observables of a physical system are represented by hermitean
(more precisely self-adjoint) operators on a complex Hilbert space
H .

2.2 The eigenvalues of such an operator (which are necessarily real
numbers) are the possible outcomes of measuring it.

2.3 States of a physical system are described vectors (more pre-
cisely rays) in the Hilbert space.

2.4 If the system is in state |ψ >∈ H , the probability of obtaining

the value a during a measurement of the observable A is |<a|ψ>|2
|<ψ|ψ>|2 .

2.4.1 Here, A|a >= a|a > so that |a > is the eigenstate (assumed to be
unique) of eigenvalue a .

2.5 There is a self-adjoint operator H , the hamiltonian, which
describes the time evolution of a state

ih̄
∂

∂t
|ψ >= H|ψ > .

2.5.1 This is the Schrödinger equation.
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Chapter 3

Rotations

3.1 The distance between two points with co-ordinates x = (x1, x2, x3) and

y = (y1, y2, y3) is given by
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 .

3.2 If we translate both vectors by the same amount x→ x+a and
y → y + a , the distance is unchanged.

3.3 Similarly if we rotate both the same way, the distance is un-
changed.

3.4 The length of a vector is
√
xTx where x is thought of as a

1× 3 matrix; i.e., a column vector.

3.4.1 xT stands for the transpose, which is a 1 × 3 ‘matrix’; i.e., a row
vector.

3.5 A rotation is described by a 3× 3 matrix R :

x→ Rx.

To preserve the length (Rx)T (Rx) = xTx ; i.e., xT (RTR)x = xTx .

3.6 Thus a rotation must satisfy

RTR = 1.

A matrix satisfying such a condition is called an orthogonal ma-
trix.
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3.6.1 Not all orthogonal matrices describe rotations. For example

−1 0 0
0 1 0
0 0 1

 is

orthogonal; it reflects the first component while leaving the others unchanged.

This is not possible by any rotation. On the other hand

−1 0 0
0 −1 0
0 0 1

 reflects

the first and second components; this just a rotation around the third axis
by 180o .

3.7 A rotation is an orthogonal matrix whose determinant is one.

3.7.1 Since detAB = detA detB and detAT = detA , we can deduce that
for and orthogonal matrix (detR)2 = 1. Thus detR = ±1 . Under small
changes of the matrix elements of R , the determinant cannot change: it
would have to jump from 1 to −1 if it were to change. Since all rotations can
be got from the identity by a continuous change of matrix elements (change
the angle of rotation), they have to have determinant one. An orthogonal
matrix with determinant −1 is a combination of a rotation and a reflection.

3.8 The set of orthogonal matrices is a group

3.8.1 The product of two orthogonal matrices is orthogonal, the identity is
an orthogonal matrix and the inverse of an orthogonal matrix is one as well.
Moreover the multiplication of matrices is associative.

3.8.2 This group is denoted by O(3)

3.9 The set of Special Orthogonal matrices, SO(3) , which repre-
sent rotations, is a subgroup.

3.10 An infinitesimal transformation R = 1 + A is orthogonal if
AT + A = 0 ; i.e., infinitesimal rotations are described by anti-
symmetric matrices.

3.11 An arbitrary anti-symmetric matrix can be written as a linear
combination of the basic ones

S12 =

 0 1 0
−1 0 0
0 0 0

 , S13 =

 0 0 1
0 0 0
−1 0 0

 , S23 =

 0 0 0
0 0 1
0 −1 0
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3.12 A Lie algebra is a linear vector space along with a bilinear
operation satisfying

[A,A] = 0, [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

3.13 The commutator of two matrices is defined to be [A,B] =
AB −BA .

3.14 The set of anti-symmetric matrices form a Lie algebra, using
the commutator.

3.14.1 The commutation relations of the basis elements describe this alge-
bra completely:

[S12, S13] = −S23, [S12, S23] = S13, [S13, S23] = −S12

3.14.2 It is special to the case n = 3 that SO(n) has dimension n ; in

general the dimension is n(n−1)
2

. It is convenient to take advantage of this
coincidence and use a simplified notation

S3 = S12, S1 = S23, S2 = −S13

which satisfy

[S3, S2] = S1, [S3, S1] = −S2, [S1, S2] = S3

3.15 What is the Lie algebra of rotations in n dimensions?



Chapter 4

Spinors

4.1 A linear operator U : H → H in a complex Hilbert space is
Unitary if it has an inverse and if it preserves the length of all
vectors.

4.1.1 In other words, < Uψ,Uψ >=< ψ,ψ > or U †U = 1 = UU † .

4.2 The set of unitary operators on a complex Hilbert space of
dimension n forms a group, the Unitary group U(n) .

4.2.1 The determinant of a unitary matrix is a complex number of modulus
one.

4.2.2 The subgroup of operators which are of determinant one as well is
SU(n) .

4.2.3 In the simplest case n = 1 , U(1) the group of complex numbers of
modulus one.

4.2.4 When n = 2 , the general element of SU(2) can be written as

g =
(
a b
c d

)
satisfying

|a|2 + |c|2 = 1 = |b|2 + |d|2, a∗b+ c∗d = 0, ad− bc = 1.

In fact we can eliminate c, d from these equations to get a nice description
of the elements of SU(2) :

g =
(

a b
−b∗ a∗

)
, |a|2 + |b|2 = 1.

6
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Thus the points in SU(2) are in one-one correspondence with points on the
three dimensional sphere a2

1 + a2
2 + b21 + b22 = 1

4.3 A unitary matrix infinitesimally close to the identity is of the
form g = 1 + A where

A+ A† = 0.

4.3.1 That is, A is anti-hermitean; this means A = iH where H = H† is
hermitean.

4.4 If 1 + A ∈ SU(n) and A is infinitesimally small, we have in
addition tr A = 0 .

4.4.1 The set of anti-hermitean matrices of zero trace forms a Lie algebra.
The commutator is still of zero trace and anti-hermitean:

tr [A,B] = 0, [A,B]† = B†A† − A†B† = BA− AB = −[A,B].

Also, we can verify that the conditions for a Lie algebra are satisfied:

[A,A] = 0, [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

4.4.2 Note that in spite of the appearance of complex numbers, the set of
anti-hermitean matrices is a vector space over the real numbers: multiplying
by i will turn a hermitean matrix into a hermitean one. Watch for these
little factors of i , they will cause much grief otherwise!

4.4.3 Hermitean matrices do not form a Lie algebra with respect to the
commutator: the commutator of two hermitean matrices is anti-hermitean.

4.5 The most general traceless hermitean matrix is
(

a b1 + ib2
b1 − ib2 −a

)
where

a, b1, b2 are real.

4.6 The Pauli matrices are defined to be

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
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4.6.1 These provide a basis for the space of traceless hermitean 2×2 matrices:

(
a b1 − ib2

b1 + ib2 −a

)
= aσ3 + b1σ1 + b2σ2

4.6.2 An anti-hermitean matrix is obtained by multiplying a hermitean
matrix by i . Thus iσ1, iσ2, iσ3 form a basis for the Lie algebra of SU(2) .

4.7 The Pauli matrices satisfy the relations

σ1σ2 = iσ3 = −σ2σ1, σ2σ3 = iσ1 = −σ3σ2, σ3σ1 = iσ2 = −σ1σ2,

4.8 The Lie algebra of traceless anti-hermitean matrices can thus
be expressed in terms of the commutation relations of the Pauli
matrices:

[− i
2
σ1,−

i

2
σ2] = − i

2
σ3, [− i

2
σ2,−

i

2
σ3] = − i

2
σ1, [− i

2
σ3,−

i

2
σ1] = − i

2
σ2,

4.8.1 We could also have written this as

[σ1, σ2] = 2iσ3

etc. But sneaking in the factor of − i
2

displays a remarkable relationship of
the Lie algebra of 2× 2 traceless anti-hermitean matrices to the Lie algebra
of 3× 3 anti-symmetric matrices. With

− i
2
σ1 → S1, − i

2
σ2 → S2, − i

2
σ3 → S3,

we get the same commutation relations. They have the same structure in
spite of the fact that they are made of different kinds of matrices.

4.9 The Lie algebras of SU(2) and SO(3) are isomorphic.

4.9.1 This rather peculiar mathematical fact is useful in quantum mechan-
ics; we can use it to describe the spin of an electron.
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4.10 The operators describing the intrinsic (or spin) angular mo-
mentum components of an electron at rest are,

h̄

2
σ1,

h̄

2
σ2,

h̄

2
σ3

4.10.1 This is observed in the magnetic splitting of the spectral line of
many atoms (e.g., Sodium). Of course, in classical mechanics, it would be
impossible for a particle at rest to carry angular momentum.

4.11 The state of an electron is described by functions ψ : R3 →
C2 ; the total angular momentum is the sum of the orbital and spin
angular momenta:

J = r × p +
h̄

2
σ

4.11.1 Recall that p = −ih̄ ∂
∂r

4.12 There is a one-one correspondence between traceless her-
mitean matrices and vectors

û =
(

u3 u1 + iu2

u1 − iu2 −u3

)
= uiσi.

4.12.1 The determinant of the matrix is the negative of the square of the
length of the corresponding vector:

det û = −(u2
1 + u2

2 + u2
3) = −(u, u).

4.13 There is a 2 → 1 onto homomorphism SU(2) → SO(3) :

gûg−1 = ̂R(g)u
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4.13.1 In other words,

gσig
−1 = Rji(g)σj

4.13.2 A homomorphism between groups is a map that preserves the mul-
tiplication law and identity.

4.13.3 Proof that the multiplication is preserved:

R(g1g2)kjσk = (g1g2)σi(g1g2)
−1 = Rji(g2)g1σjg

−1
1 = Rji(g2)Rkj(g1)σk = [R(g1)R(g2)]kiσk

4.13.4 Proof that the matrix R(g) is orthogonal:

det[gûg−1] = det û⇒ (R(g)u,R(g)u) = (u, u).

4.13.5 The matrix R(g) is of determinant one because it is a continuous
function of g and R(1) = 1 has determinant one. (Recall that detR(g) =
±1 .

4.13.6 Any hermitean matrix can be diagonalized. Thus there is a rotation

R(g) such that any vector can be brought to the form
(
u3 0
0 −u3

)
. Thus

the map is onto: any rotation can be realized as R(g) for some g

4.13.7 Both g and −g go to the same matrix R(g) : the map is 2 → 1 .

4.14 A representation of a group is a homomorphism to a group
of matrices.

4.14.1 Thus the above map R(g) is a representation of SU(2) on three
dimensional Euclidean space.

4.15 A spinor is a function ψ : R3 → C2 . The space of spinors
carry a representation of SU(2) :

r(g)ψ(x) = gψ(R(g)−1x).

This is also a projective representation of the rotation group.

4.15.1 A projective representation is a map into transformations of a pro-
jective space;that is, they act on rays of a vector space rather than vectors.



Chapter 5

Lorentz Invariance

5.1 It is an astonishing physical fact that the speed of light (in
vacuum) is the same in all reference frames.

5.1.1 This is not true of other waves; for example the speed of sound is
different for observers moving at different velocities with respect to air.

5.2 The law of addition of velocities has to be modified to live be
consistent with this peculiar result:

v1 ⊕ v2 =
v1 + v2

1 + v1v2
c2

.

5.2.1 If we require that the addition of velocities forms a group, and that
c added to any velocity give c , this is the only answer.

5.2.2 The easiest way to check the group property to make the change of
variable

v

c
= tanh θ

and use the addition formula for tanh .

5.3 This means that the shape of the wavefront of light is the same
for all observers.

11
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5.3.1 If a pulse of light is emitted at the origin at time t = 0 , it will spread
along the cone

c2t2 − x2
1 − x2

2 − x2
3 = 0, t > 0.

5.4 The laws of physics have to the same for all observers moving
at constant velocity relative to each other.

5.4.1 This innocuous statement has important consequences when com-
bined with the fact the the velocity of light is the same for all such observers.

5.4.2 The Newtonian notions of time, space, energy, momentum all need
to be modified.

5.4.3 Minkowski noted that the addition law for velocities has a simple
geometric interpretation: the rule for the distance between two points in

space-time is
√
c2(t− t′)2 − (x1 − x′1)

2 − (x2 − x′2)
2 − (x3 − x′3)

2

5.4.4 If velocity is identified as dx
dt

, the rule for addition of velocities cor-
responds to ‘rotations’ around an imaginary angle. A more precise version
is,

5.5 The Minkowski inner product of a pair of vectors in space-
time is

(u, v) = u0v0 − u1v1 − u2v2 − u3v3.

5.5.1 We can also write this in matrix notation:

(u, v) = uTηv η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





PHY405 S. G. Rajeev 13

5.6 A Lorentz transformation is a linear transformation leaving
this inner product invariant:

[Λu]Tη[Λv] = uTηv, ⇒ ΛTηΛ = η.

5.6.1 If Λ1 and Λ2 satisfy this equation, so will the product and inverse:
the set of Lorentz transformations is a group.

5.6.2 SO(3) is a subgroup:

Λ =
(

1 0
0 R

)
, RTR = 1.

5.6.3 By taking determinants it is easy to see that the determinant of a
Lorentz matrix is either ±1 . The sign of the determinant is constant under
continuous changes of matrix elements.

5.6.4 The 00 component of the condition says

Λ2
00 − Λ2

01 − Λ2
02 − Λ2

03 = 1.

This is the equation for a hyperboloid of two sheets. So the sign of Λ00 is
constant under continuous changes of the matrix elements

5.6.5 The set of Lorentz transformations splits into four connected compo-
nents labelled by the signs of det Λ and Λ00 .

5.6.6 The component containing the identity (i.e., det Λ = 1 and Λ00 > 0 )
is the group of proper Lorentz transformations. They preserve the orientation
of time and do not contain reflection of an odd number of spatial directions.

5.7 Only the proper Lorentz transformations are symmetries of
physical laws.

5.7.1 Weak interactions are not invariant under violate parity as well as
time reversal.
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5.8 The relation of momentum p to energy E is

(p, p) = m2c4, p = (E, cp).

5.8.1 When m > 0 this is a two-sheeted hyperboloid; if m = 0 this is a
cone.

5.8.2 The case m2 < 0 is un-physical since the sign of energy is not invari-
ant under proper Lorentz transformations. The hyperboloid in this case has
a single sheet and contains energies that are negative: some observers will
see that the energy of a given vector is is positive and others will see it as
negative, so there is no way to exclude negative energies. But then we can
make energies as negative as we want, and the system is unstable against
emission of arbitrarily large amounts of energy. These non-existent particles
are called tachyons.



Chapter 6

Bohr-Sommerfeld Quantization

6.1 Sommerfeld generalized the Bohr model of the atom to include
relativistic effects. He found that the energy levels predicted agree
even better: they explain the hyperfine structure.

6.1.1 In the Bohr model the energies only depend on the principal quantum
number, which is the sum of the radial and angular momentum quantum
numbers. Relativistic effects remove this degeneracy, so that the energy
does depend separately on the principal and angular momentum quantum
numbers. This dependence was already known in atomic spectroscopy as
a small effect of about 0.01% . This was Sommerfeld’s achievement. The
enery levels are still degenerate: they remain independent of the magnetic
quantum number, a consequence of rotaion invariance.

6.1.2 The mass shell condition becomes

(p0 − V )2 − c2p2 = m2c4, V =
Ze2

r

since p0 − V is the kinetic energy. In radial co-ordinates

p2 = p2
r +

p2
θ

r2

where pθ is the angular momentum and pr the radial momentum. Since
pθ is conserved we treat it as a constant. The Bohr condition says that∫
pθdθ = 2πlh̄ for some integer l .

15
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6.1.3 The mass-momentum relation yields, for V = −Ze2

r

[p0 − V ]2 − c2
[
p2
r +

p2
θ

r2

]
= m2c2 ⇒

pr =

[
1

c2
(p0 − V )2 −m2c2 − p2

θ

r2

] 1
2

=
[
−A+

B

r
− C

r2

] 1
2

where

A = m2c2 − p2
0

c2
, B =

2Ze2p0

c2
, C = p2

θ −
Z2e4

c2
.

6.1.4 The Bohr-Sommerfeld quantization condition says that the total ac-
tion of a complete orbit is an integer multiple of Plank’s constant h = 2πh̄ :

2
∫ r2

r1
prdr = 2πnrh̄

where r1 and r2 are the turning points at which pr vanishes.

6.1.5 The integral can be evaluated by countour integral methods:

2
∫ r2

r1

(
−A+

B

r
− C

r2

) 1
2

dr = −2π

[
√
C +

B

2
√
A

]

6.1.6 Thus the energy p0 is the solution of

nrh̄ = −

(p2
θ −

Z2e4

c2

) 1
2

+
1

2

2Ze2p0

c2

(
m2c2 − p2

0

c2

)− 1
2

;


i.e.,

p0 =
mc2√
1 + a

, a =
Z2e4

c3
1(

h̄nr +
√
h̄2l2 − Z2e4

c2

)2

In the limit of large c this reduces to the usual formula for hydrogen.



Chapter 7

The Klein-Gordon Equation

7.1 The set of four-momenta of a particle with mass m form a
hyperboloid:

p2
0 − c2p2

1 − c2p2
2 − c2p2

3 = m2c4, p0 > 0.

7.2 If we ignore the condition that the energy has to be positive,
we can express this as a simple differential equation for its wave-
function:

−h̄2[
∂2

∂t2
− c2

∂2

∂x2
1

− c2
∂2

∂x2
2

− c2
∂2

∂x2
3

]ψ = m2c4ψ

7.2.1 Recall that p0 = ih̄ ∂
∂t
, p1 = −ih̄ ∂

∂x1 etc. in quantum mechanics.

7.2.2 The equation is invariant under Lorentz transformations-including
parity and time reversal.

7.2.3 The equation allows for negative energy solutions. To properly in-
terpret this situation, we need quantum field theory. We will return to this
topic later.

7.2.4 Under the influence of a potential V the mass-shell condition changes
to

(p0 − V )2 − c2p2 = m2c4.

17
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7.2.5 The wave equation of relativistic quantum mechanics corresponding
to this is [

ih̄
∂

∂t
− V

]2

ψ + c2h̄2∇2ψ = m2c4ψ.

7.2.6 A negatively charged pi meson can form a bound state with a nucleus
analogous to the hydrogen atom. Althuogh relativistic effects are small, they
have been observed in classic experiments of Wu et al in the late 1970’s.
We can determine the ‘fine structure’ of pionic atoms by solving the Klein-
Gordon equation in a Coulomb potential V (r) = −Ze2

r
.

7.2.7 [
ih̄
∂

∂t
− V (r)

]2

ψ + c2h̄2

[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∇2
θ

]
ψ = m2c4ψ.

where ∇2
θ is the usual angular part of the Laplace operator.

7.2.8 Recall that the spherical harmonics Ylm(θ, φ) = P
|m|
l (θ)eimφ are the

eigenfunctions of the angular Laplacian:

∇2
θYlm(θ, φ) = −l(l + 1)Ylm(θ, φ)

7.2.9 As in the non-relativistic theory, we can solve this equation by pos-
tulating a separation of variables

ψ(r, θ, φ) = rR(r)Ylm(θ, φ)e−
iEt
h̄

to get the differential equation for the radial function

R′′ −
[
m2c4 − (E − V )2

h̄2c2
+
l(l + 1)

r2

]
R = 0
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7.2.10 For the Coulomb potential V (r) = −Ze2

r
we get

R′′ +
[
−A+

B

r
− C

r2

]
R = 0

with

A =
m2c4 − E2

h̄2c2
, B =

2EZe2

h̄2c2
, C = l(l + 1)− Z2e4

h̄2c2
.

7.2.11 Fortunately this is the same equation we would get in the non-
relativistic case, but with different constants.There we would have

A =
2m|E|
h̄2 , B =

2mZe2

h̄2 , C = l(l + 1).

So the same methods will apply to our relativistic case.

7.2.12 The constant α = e2

h̄c
≈ 1

137
is a dimensionless combination of funda-

mental constants of nature, called the fine structure constant. It determines
the size of the relativistic corrections, the ‘fine structure’ of atomic spectral
lines.

7.2.13 It is sometimes convenient to use so-called ‘natural units’ in which
h̄ = c = 1 . Then, energy has dimensions of inverse length, a does mass and
momentum. In these units,

A = m2 − E2, B = 2EZα, C = l(l + 1)− Z2α2

which helps with the book-keeping.

7.2.14 For large r , R ∼ e−r
√
A so it is useful to introduce the dimensionless

variable ρ = r
√
A and the dimensionaless function of energy

ε =
B√
A

= 2
E√

m2 − E2
Zα

to get

d2R

dρ2
+

[
−1 +

ε

ρ
− C

ρ2

]
R = 0.
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7.2.15 For small r , R(r) ∼ rλ+1 with

λ(λ+ 1) = C = l(l + 1)− Z2α2.

Note that because of the relativistic correction to C , the exponent λ need
not be an integer;since Zα << 1, this shift away from an integer is small.
We discard the other solution ρ−λ as it blows up at the origin.

7.2.16 Combining all the above, we make the change of variable R
(

ρ√
A

)
=

ρλ+1e−ρw(ρ) to get

w′′ + 2

[
λ+ 1

ρ
− 1

]
w′ +

ε− 2(λ+ 1)

ρ
w = 0.

A power series w(ρ) =
∑∞
k=0 akρ

k gives the recusion

ak+1

ak
=

−ε+ 2(k + λ+ 1)

(k + λ+ 1)(k + λ+ 1)− λ(λ+ 1)

since this ratio goes like 1
k

for large k the series will not converge; unless it
truncates at some value of k so that w is really a polynomial. The condition
for this is

ε = 2(k + λ+ 1).

which determines the energy. The rest is algebra.

7.2.17 Te algebraic relation that determines the spectrum is

B√
A

= 2(k + λ+ 1), λ(λ+ 1) = C

or

A =
B2

4(k + λ+ 1)2
, k = 0, 1, · · · .

This quadratic equation can be solved for energy.

7.2.18 The positive energy solutions are in agreement with observed val-
ues for pionic atoms; the discrepancies that remain can be explained from
Quantum Electrodynamics.
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7.2.19 There are also negative energy solutions. These cause many concep-
tual problems as they don’t exist in nature. The situation is even worse. They
cause an instability of the atom where the electron drops into the negative
energy states releasing arbitrarily large amounts of energy. The resolution
to this lies in Quantum Field Theory, which totally revamps the foundations
of physics.



Chapter 8

Spinors in Space-Time

8.1 The group SL(2, C) is the set of complex 2 × 2 matrices of
determinant one.

8.1.1 A subgroup is the group SU(2) of special unitary matrices.

8.1.2 Three complex numbers or six real numbers are needed to determine
an element of SL(2, C) .

8.2 There is a 2 → 1 homomorphism from SL(2, C) to the proper
Lorentz group.

8.2.1 We begin with the observation that

pTηp = det p̂, p̂ =
(

p0 − p3 −p1 − ip2

−p1 + ip2 p0 + p3

)
= p01− σ1p1 − p2σ2 − p3σ3.

Moreover, from any hermitean matrix we can extract such a vector uniquely.

8.2.2 Now for each 2 × 2 matrix g , there is a 4 × 4 matrix Λ(g) such
that

gp̂g† = ̂Λ(g)p.

since the l.h.s. is also a hermitean matrix which depends linearly on p . If
moreover det g = 1 , we will have Λ(g)TηΛ(g) = η , since

det gp̂g† = det p̂,⇒ [Λ(g)p]Tη[Λ(g)p] = pTηp.

22
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8.2.3 Since SL(2, C) is connected and Λ is continuous, the image has
to be contained in the connected component of the identity in the Lorentz
group. Since any hermitean matrix can be diagonalized, any four-vector can
be reduced to the form (p0, p3, 0, 0) by some transformation Λ(g) in the
image of this map. This can be seen to imply that the image is the whole
connected component of the identity in the Lorentz group.

8.2.4 Both g and −g are mapped to the same element in the Lorentz
group. The kernel of the map is exactly {1,−1} .

8.3 A map from a group to a set of matrices on a vector space is
called a representation if it preserves the multiplication law. Two
representations are said to be equivalent if they differ only by an
equivalence transformation; i.e., if there is a matrix S such that

r1(g) = Sr2(g)S
−1.

8.3.1 Thus we have a representation of SL(2, C) on four-vectors of space-
time.

8.3.2 The defining representation of SL(2, C) is simply the map g to itself.
The map g 7→ g†−1 is also a representation.

8.3.3 This is not equivalent to the defining representation; there can be
no matrix satisfying g†−1 = SgS−1 because there are cases where g and

g†−1 have different eigenvalues. ( For example g =
(
a 0
0 a−1

)
with a complex

non-zero a .)

8.3.4 The map g 7→ g∗ is also a representation. But for two by two matrices

g†−1 = σ2g
∗σ−1

2

so this equivalent to the representation mentioned above!

8.3.5 Thus we see that SL(2, C) has two different (inequivalent) represen-
tations on C2 . These are called the spinor representations; the defining
representation is called the right handed spinor and its conjuagte is the left-
handed spinor. ( Beware! conventions vary on this.)
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8.3.6 Multiplication by p̂ turns a left handed spinor to a right handed
spinor:

p̂ 7→ Λ̂p = gp̂g†, ψ 7→ g†−1ψ, p̂ψ 7→ gp̂ψ.

8.4 The Pauli equation

p̂ψ(p) = 0

is invariant under the action of the Lorentz group

ψ(p) → g†ψ(Λ(g−1)p)

8.4.1 This equation is not invariant under parity.

8.5 Th Pauli equation describes particles that are massless and of
spin 1

2
: a good approximation for neutrinos.

8.6 The Pauli equation is a differential equation when the usual
rules pµ = ih̄ ∂

∂xµ are applied:

(
∂0 + ∂3 ∂1 + i∂2

∂1 − i∂2 ∂0 − ∂3

)
ψ = 0

8.6.1 By applying the conjugate operator
(

∂0 − ∂3 −∂1 − i∂2

−∂1 + i∂2 ∂0 + ∂3

)
on the

left we see that each component of the spinor satisfies the wave equation: the
signals described by ψ propagate at the speed of light.

8.6.2 Its hermitean conjugate satisfies

∂µψ
†σµ = 0.
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8.6.3 The quantity jµ = ψ†σµψ transforms as a vector field. The Pauli
equation implies that this vector field is conserved:

ηµν∂µjν = 0, ∂0j0 − ∂1j1 − ∂2j2 − ∂3j3 = 0.

8.6.4 If we integrate this over all of space at a given instant in time

∂

∂x0

∫
j0d

3x =
∫
∇ · jd3x = 0

by Gauss’ theorem. ( We assume that ψ vanishes at infinity so that the
integral on the l.h.s.,

∫
ψ†ψd3x is finite.) Thus

∫
ψ†ψd3x is independent

of time. This density ψ†ψ can be thought of as the probability density of
finding the particle described by ψ .

8.6.5 In spite of being first order in time, the Pauli equation has negative
energy solutions. This requires that we change the entire physical basis by
passing to quantum field theory.

8.6.6 On passing to the quantum field theory, the energy of the particles
is positive while the density ψ†ψ becomes non-positive: it describes the net
number of particles minus anti-particles.

8.6.7 It is possible to modify the Pauli equation to allow for a non-zero
mass, but then we lose this conserved quantity.

8.7 A Lorentz invariant wave equation for a massive particle of
spin 1

2
is

−iσ · ∂ψ = mσ2ψ
∗.

This is often called the Majorana equation.

8.7.1 Recall that ψ 7→ g†−1ψ and σ · pψ 7→ gσ · pψ under a Lorentz
transformation; that is, ψ 7→ σ2g

∗σ2ψ .

8.7.2 Thus

ψ∗ 7→ σ2gσ2ψ
∗, σ2ψ

∗ 7→ gσ2ψ
∗

and the l.h.s. and r.h.s. transform the same way under Lorentz transforma-
tions.
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8.7.3 These describe massive spin half particles that are there own anti-
particles: one of the candidates to describe a massive neutrino. The true
story about neutrinos is not known yet, since there are several different kinds
of them, and they get mixed with each other.

8.7.4 Because it involves both ψ and ψ∗ , it is often thought of an equation
for the four real components of ψ ( the real and imaginary parts of the two
complex components) and then the Pauli matrices are turned into four by
four real matrices.

8.7.5 Recall that the multiplication of a complex number a + ib by is the

same as multiplication of the real vector
(
a
b

)
by the matrix

(
0 −1
1 0

)
.

Thus we can think of the Pauli matrices as for by four real matrices

σ1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 σ2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 σ3 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


instead of two by two complex matrices. In this language complex conjuga-
tion ψ → ψ∗ would be a real linear transformation by the matrix

K =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



8.7.6 Exercise: Rewrite the Majorana equation as a linear differential equa-
tion for a four component real function on space-time.



Chapter 9

The Dirac Equation

9.1 The Pauli matrices satisfy

[σi, σj]+ = 2δij

where [A,B]+ = AB +BA denotes the anti-commutator.

9.1.1 All their properties that are independent of the choice of basis can be
obtained just from these relations.

9.1.2 For example,

tr σiσj = tr σjσi =
1

2
tr [σiσj + σjσi] = δij.

9.1.3 Every Pauli matrix has a matrix has another that anti-commutes with
it; hence its trace is zero; e.g.,

tr σ1 = tr σ2
2σ1 = tr σ2σ1σ2 = − tr σ1σ

2
2 = − tr σ1.

9.1.4 Any 2× 2 matrix is a linear combination of Pauli matrices

A = a01 + aiσi, a0 =
1

2
tr A, ai =

1

2
tr Aσi.

Note that the number of independent matrix elements of A is equal to the
number of components a0, ai .

27
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9.1.5 In particular σ1σ2 = σ3 etc. can be deduced.

9.1.6 A two by two matrix that commutes with every Pauli matrix is a
multiple of the identity.

9.2 The Dirac matrices are defined by

[γµ, γν ]+ = 2ηµν , µ, ν = 0, 1, 2, 3.

9.2.1 The analogy with Pauli matrices is clear.

9.2.2 In detail, γ2
0 = 1, γ0γi = −γiγ0, γiγj + γjγi = −2δij .

9.2.3 The eigenvalues of γ0 are ±1 . Moreover, γ0γ1 = −γ1γ0, γ
2
1 = −1 ⇒

γ0 = −γ−1
1 γ0γ1 ⇒ tr γ0 = 0. So the degeneracy of ±1 are equal (say n ).

There is a basis in which

γ0 =
(

1n 0n
0n −1n

)
.

9.2.4 A matrix that anti-commutes with
(

1n 0n
0n −1n

)
is of the form

(
0 b
c 0

)
.

It follows that

γ0 =
(

12 0
0 −12

)
, γi =

(
0 σi
−σi 0

)
satisfy the Dirac anti-commutation relations.

9.3 If γµ satisfy the Dirac relations, so will SγµS
−1 for any invert-

ible S .

9.3.1 Proof is obvious. This corresponds to a change of basis.

9.4 The converse is true as well: any set of 4 × 4 matrices γµ ,
γ′µ satisfying the Dirac relations are connected by a change of basis
γ′µ = SγµS

−1 .
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9.4.1 Any such matrix can be expanded in terms of the Dirac matrices and
their products: there are 24 independent components.

9.5 Any product of Dirac matrices can be written as a linear com-
bination of the 16 matrices

1, γµ, γµγν for µ < ν, γµγνγρ for µ < ν < ρ, γ0γ1γ2γ3.

9.5.1 It follows that the minimum dimension of matrices satisfying the
Dirac algebra is 4 .

9.5.2 Each of these (except 1 ) has zero trace. Any product of two distinct
matrices above has zero trace;

9.5.3 Any 4 × 4 matrix can be expanded in terms of the Dirac matrices
and their products: there are 16 independent components.

9.5.4 Define

σµν =
1

2
[γµ, γν ]

9.5.5 These satisfy the commutation relations of the infinitesimal Lorentz
transformations:

[
1

2
σµν ,

1

2
σρσ] = ηνρ

1

2
σµσ

Moreover, the Dirac matrices transform as vectors under it.

[
1

2
σµν , γσ] = ηνσγµ − ηµσγν

9.5.6 Hint: It is actually easier to start by establishing the second relation
and then use it to establish the first.
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9.6 The Dirac equation

[iγ · ∂ +m]ψ = 0

is invariant under the infinitesimal Lorentz transformations gener-
ated by

Jµν = [xµ∂ν − xν∂µ] +
1

2
σµν .

9.6.1 We verify that under Jµν both ∂µ and γµ transform as Lorentz
vectors so that the scalar product is invariant:

[Jµν , ∂σ] = ηνσ∂µ − ηµσ∂ν

[Jµν , γσ] = ηνσγµ − ηµσγν

[Jµν , γ · ∂] = 0.

9.7 The Dirac equation describes a particle of mass m .

9.7.1 We use units in which h̄ = c = 1 . The Dirac equation has a plane
wave solution

ψ(x) = ueip·x

for a constant u if

γ · pu = mu.

This eigenvalue problem has a solution only if p · p = m2 ; for,

[γ · p]2 =
1

2
[γµγν + γνγµ]p

µpν = p · p.
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9.7.2 There are solutions with positive as well as negative energy. Indeed,
if p = (p0,0) ,

p0γ0u = mu⇒ p0 = m,u =


u1

u2

0
0

 , or p0 = −m,u =


0
0
u3

u4

 .
The meaning of the negative energy solutions will be made clear later through
the hole theory of Dirac.

9.8 The particle described by the Dirac equation has spin 1
2

.

9.8.1 We look at the generators of angular momentum contained in the
Lorentz transformation above:

Jij = [xi∂j − xj∂i] +
1

2
σij

Using the explicit representation of the Dirac matrices and identifying J1 =
−iJ12 ( so that the angular momentum is represented by hermitean operators)
we get

J = L +
1

2

(
σ 0
0 σ

)
and L is the orbital angular momentum operator of quantum mechanics.



Chapter 10

The Hole Theory of Dirac

10.0.2 Dirac proposed a dramatic reinterpretation of physics to avoid the
contradictions inherent in the negative energy solutions.

10.1 Particles of spin 1
2

obey the exclusion principle: only one
such particle can occupy a state.

10.1.1 We know that the electrons obey the exclusion principle from atomic
physics: the shell model of atomic orbitals explains the periodic table of
elements.

10.2 Axiom: The ‘vacuum’ state (the state of the lowest possible
energy) already has all the negative energy states occupied.

10.2.1 It will cost energy to either create a positive energy particle or re-
move a negative energy particle.

10.3 Axiom: The electric charge of the electrons occupying the
negative energy states is not measurable.

10.3.1 The absence of a negative energy particle (a hole) itself behaves like
a new particle of positive energy and with the opposite electric charge.

10.3.2 A particle-hole pair can be produced if we have at least 2m units
of energy available.

32



PHY405 S. G. Rajeev 33

10.3.3 A constant electric field E extending over a distance L will be
unstable due to production of particle-hole pairs if EL > 2m . But since
m ∼ .511 MeV for the electron, this is far beyond the capacity of materials.
Such fields might exist in outer space and could be the source of some of the
cosmic rays.

10.3.4 A photon of energy greater than 2m (in the laboratory frame) can
produce a particle-hole pair if it collides with a nucleus. This was observed,
originally using cosmic gamma rays .



Chapter 11

The Dirac Equation in a
Centrally Symmetric Potential

11.1 The exact determination of the energy levels of hydrogen is
the foundation of atomic physics.

11.1.1 At first we solve the non-relativistic Schrödinger equation in the
Coulomb field of the nucleus. The relativistic effects are small because the
velocity of the electron in the hydrogen atom is α ∼ 1

137
.So the change in

energy levels due to relativistic effects will be down by a factor of ∼ 10−4 .

11.1.2 Although small the relativistic effects of hydrogen are easily visible
in spectroscopy: the fine structure. The energies are independent of the an-
gular momentum in non-relativistic quantum mechanics; the small observed
dependence on the angular momentum was explained by Sommerfeld as by
a relativistic generalization of the Bohr model.

11.2 We will need to solve the Dirac equation in a spherical sym-
metric potential to understand the fine structure of a hydrogenic
atom.

11.3 The key idea is to exploit the conservation of angular mo-
mentum to reduce the problem to one dimension.

11.3.1 We will see that only the sum of orbital and spin angular momentum
is conserved.

34
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11.4 The Dirac equation of a particle in a static potential V reduces
to

[α · p + βm+ V ]ψ = Eψ.

where

αi = γ0γi, β = γ0,p = −i∇

11.4.1 The free Dirac equation can be written as

[iγ0∂0 − γ · p +m]ψ = 0

For a stationary solution ψ(r, t) = ψ(r)e−iEx
0

,

Eψ = [γ0γ · p + γ0m]ψ

Thus the operator α · p +mβ represents the Kinetic energy. In a potential
V , we must put this equal to E − V .

11.4.2 These matrices satisfy

[αi, αj]+ = 2δij, β2 = 1, [β, αi]+ = 0.

11.4.3 An explicit representation would be

α =
(

0 σ
σ 0

)
, β =

(
1 0
0 −1

)
.

11.5 If the potential V depends only the distance from the origin,
and is spin independent, the total angular momentum

J = r× p +
1

2
Σ

commutes with the Dirac hamiltonian H = α · p + βm+ V :

[J, H] = 0.
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11.5.1 Here, Σ are the spin matrices satisfying

[
1

2
Σi, αj] =

√
−1εijkαk, [Σi, β] = 0.

Explicitly

αiαj = δij +
1

2

√
−1εijkΣk

Σi =
(
σi 0
0 σi

)
.

11.5.2 Spin independence means that V is proportional to the identity in
the space of spinors. It is clear that a spherically symmetric potential will
satisfy

[L, V ] = 0, [Σ, V ] = 0

separately so that [J, V ] = 0 .

11.5.3 Since α and p transform as vectors under J it follows that α ·p is
a scalar: [J, α · p] = 0 . Similarly [J, β] = 0 . Piecing all this together we
get

[J, H] = 0.

Note that neither Li nor Σi commutes with α · p , hence with H .

11.5.4 We now separate the Dirac operator into parts involving radial and
angular derivatives. Let us start with the identity

p = r
r

r2
· p− 1

r2
r× (r× p)

The cross-product of p with the unit vector r
r

rotates its component or-
thogonal to r through a right angle; another such cross product will give the
negative of this component, explaining the sign of the second term.
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11.5.5 Thus

α · p = αrpr −
1

r2
(α× r) · L

where αr = 1
r
r · α etc.

11.5.6 It is easy to see that α2
r = 1 . More generally, αiαj = δij +

iεijkΣk gives

αrα =
r

r
− i

r

r
×Σ

11.5.7 Using (r ×Σ)× r = r2Σ− Σrrr ,

(αrα×
r

r
) · L = −iΣ · L.

11.5.8 Hence

α · p = αr

(
pr − i

1

r
Σ · L

)

11.5.9 The Dirac equation becomes[
−iαr

(
ipr +

1

r
Σ · L

)
+mβ + (V − E)

]
ψ = 0.

Now, in radial co-ordinates the measure of integration is r2drdΩ . An

integration by parts will show that ∂†r = −r−2∂rr
2 = −∂r− 2

r
⇒
(
∂r + 1

r

)†
=

−
(
∂r + 1

r

)
. So we must identify ipr = ∂r+

1
r

. If we define K = −[1+Σ·L] ,

[
−iαr

(
∂r −

1

r
K
)

+mβ + (V − E)
]
ψ = 0.
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11.5.10 We now show that [β,K] = 0 and αrK = −Kαr . The first
statement is obvious. The second is equivalent to [αr,Σ ·L]+ = −2αr . This
follows from [αi,Σj]+ ∝ 2δij and [Li, rj] =

√
−1εijkrk . Thus in the basis

where β =
(

1 0
0 −1

)
,

K =
(
k̂ 0
0 −k̂

)
where

k̂ = −[1 + σ · L]

is the Dirac operator on the sphere.

11.5.11 Since also (−iαr)2 = 1, [β,−iαr]+ = 0 we have a basis in which

−iαr =
(

0 −1
1 0

)
. If we let ψ =

(
φ
χ

)
,

[
∂r −

1

r
k̂
]
φ+ (V − E −m)χ = 0,

[
∂r +

1

r
k̂
]
χ+ (E − V −m)φ = 0,

11.5.12 We will now assume that φ(r) = f(r)Y (r
r
), χ(r) = g(r)Ỹ (r

r
) ,separable

into a product of radial and angular functions.

11.5.13 We will show in the next chapter that the spectrum of k̂ is the set
of non-zero integers. Let Yk be the eigenfunctions of K = −[1 + σ · L] (
spinorial harmonics, analogous to spherical harmonics):

k̂Yk = kYk

11.5.14 The Dirac equation in a central potential now reduces to a system
of first order equations(

f ′

g′

)
=
( k

r
m+ E − V

m− E + V −k
r

)(
f
g

)
.
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11.6 When V = −Zα
r

as for the Coulomb potential, the Dirac equa-
tion can be solved in terms of Confluent Hypergeometric functions.

11.6.1 Exercise: Find the normalizable eigenfunctions (bound states) of
the Dirac equation in a Coulomb potential. Hint: Express the solution in
terms of the Confluent Hypergeometric series; show that for a normalizable
solution the series must terminate; determine the eigenvalues from this con-
dition.

11.1 The Confluent Hypergeometric Func-

tion

11.7 We will study some infinite series of interest in physics.

11.7.1 The geometric series is defined by

f(z) = 1 + z + z2 + z3 · · ·

It converges in the region |z| < 1 .

11.7.2 It is easy to check that

zf(z) = z + z2 + z3 + · · · = f(z)− 1

so that

1 + z + z2 + z3 · · · = 1

1− z
.

This allows an analytic continuation outside the unit circle. Indeed, f(z) ∼
1
z

as |z| → ∞ .

11.7.3 The differential equation derived below:

f ′(z) = 1 + 2z2 + 3z+ . . . , zf ′(z) = z + 2z2 + 3z3 + · · ·

⇒ (1− z)f ′(z) = 1 + z + z2 + z3 + · · · = f(z)

can be solved with the initial condition f(0) = 1 to get the same answer.
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11.7.4 We can get interesting new series by differentiation:

(1− z)−2 = 1 + 2z + 3z2 + 4z3 + · · ·

2(1− z)−3 = 2 + 3 · 2z + 4 · 3z2 + 5 · 4z3 · · ·

3 · 2 (1− z)−4 = 3 · 2 + 4 · 3 · 2z + 5 · 4 · 3z2 + 6 · 5 · 4z3 + · · ·

Rearranging these series,

(1− z)−3 = 1 + 3 z + 3 · 4z
2

2!
+ 3 · 4 · 5z

3

3!
+ 3 · 4 · 5 · 6z

4

4!
· · ·

(1− z)−4 = 1 + 4 z + 4 · 5z
2

2!
+ 4 · 5 · 6 z3

3!
+ · · ·

11.7.5 We begin to see a pattern:

(1− z)−n = 1 + n z + n(n+ 1)
z2

2!
+ n(n+ 1)(n+ 2)

z3

3!
+ n(n+ 1)(n+ 2)(n+ 3)

z4

4!
· · ·

This can be established by induction on n : Assuming that the formula
above is true for powers up to −n ,using d

dz
zr

r!
= zr−1

(r−1)!
,

(1− z)−(n+1) =
1

n

d

dx
(1− z)−n

= 1 + (n+ 1)z + (n+ 1)(n+ 2)
z2

2!
+ (n+ 1)(n+ 2)(n+ 3)

z3

3!
· · ·

which establishes the formula for the power −(n+ 1) .

11.7.6 We could also have obtained this formula by differentiating the ge-
ometric series n times and using

dn

dzn
zr = r(r − 1)(r − 2) · · · (r − n+ 1)zr−n · · · , d

n

dzn
(1− z)−1 = n!(1− z)−(n+1)
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to get

(1− z)−(n+1) =
1

n!

dn

dzn

∞∑
r=0

zr

=
∞∑
r=n

r(r − 1)(r − 2) · · · (r − n+ 1)

n!
zr−n

=
∞∑
s=0

(n+ s)(n+ s− 1) · · · (s+ 1)

n!
zs

=
∞∑
s=0

(n+ s)!

n!s!
zs

=
∞∑
s=0

(n+ 1)(n+ 2) · · · (n+ s)
zs

s!

11.7.7 These manipulations are justified because the geometric series con-
verges inside the unit circle; so it defines a analytic function whose Taylor
series can be differentiated term by term.

11.7.8 We have just discovered a version of the binomial theorem.The for-
mula is true even for fractional ( indeed complex) values of the exponent:

(1− z)−a = 1 + a z + a(a+ 1)
z2

2!
+ a(a+ 1)(a+ 2)

z3

3!
+ a(a+ 1)(a+ 2)(a+ 3)

z4

4!
· · ·

Indeed this can be thought of as obtained from the geometric series by differ-
entiating a fractional number of times! The fractional derivative of a power
is defined to be

Dazr = r(r − 1)(r − 2) · · · (r − a+ 1)zr−a

This will satisfy the usual rules

DaDb = Da+b

11.7.9 It is interesting to take limit as a tends to infinity. To get a sensible
limit we must simultaneously replace z by z

a
. Now recall the ‘compound

interest’ definition of the exponential:

exp(z) = lim
a→∞

(
1− z

a

)−a
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Note also that

a(a+ 1)(a+ 2)(a+ 3) · · · (a+ r − 1)
(
z

a

)r
=
(
1 +

1

a

)(
1 +

2

a

)(
1 +

3

a

)
· · ·

(
1 +

r − 1

a

)
zr → zr

as a→∞ .Applying this to the series(
1− z

a

)−a
=

∞∑
r=0

1

r!
a(a+ 1)(a+ 2)(a+ 3) · · · (a+ r − 1)

(
z

a

)r
we get the series for the exponential:

exp(z) = 1 +
z

1!
+
z2

2!
+
z3

3!
+ · · ·

Since the ratio of the (n+1) th to the n th term, z
n+1

, vanishes as n→∞ ,
this series converges everywhere.

11.7.10 The differential equation

d

dz
exp(z) = exp(z)

follows by term by term differentiation.

11.8 The binomial theorem:

F (a; z) = (1− z)−a = 1 +
a

1!
z +

a(a+ 1)

2!
z2 +

a(a+ 1)(a+ 2)

3!
z3 + · · ·

11.9 We note some useful identities in manipulating infinite series.

d

dz

∞∑
r=0

fr
zr

r!
=

∞∑
r=0

fr+1
zr

r!
, z

∞∑
r=0

fr
zr

r!
=

∞∑
r=0

rfr−1
zr

r!

z
d

dz

∞∑
r=0

fr
zr

r!
=

∞∑
r=0

rfr
zr

r!
, z

d2

dz2

∞∑
r=0

fr
zr

r!
=

∞∑
r=0

rfr+1
zr

r!
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11.9.1 Some we have used already others will be useful later. The identities
give another proof of the binomial theorem using differential equations.

11.9.2 The the recursion relations

(1− z)F (a; z) = F (a− 1; z).

and

F ′(a; z) = aF (a+ 1; z).

follow using the above identities.

11.9.3 Combining the two we get the differential equation

(1− z)F ′(a; z) = aF (a; z)

whose solution satisfying F (a; 1) = 1 is F (a; z) = (1− z)−a .

11.9.4 What if we modified the exponential series by putting some factors
in the denominator?

11.9.5 Exercise:Express the series

F1(c; z) = 1 +
1

c
z +

1

c(c+ 1)

z2

2!
+

1

c(c+ 1)(c+ 2)

z3

3!
+ · · ·

in terms of Bessel functions. ( Hint: derive a differential equation for it
using the above formulae.)

11.10 The Confluent Hypergeometric Series is defined by

F 1
1 (a, c; z) = 1 +

a

c
z +

a(a+ 1)

c(c+ 1)

z2

2!
+
a(a+ 1)(a+ 2)

c(c+ 1)(c+ 2)

z3

3!
+ · · ·

11.10.1 For c not equal to a negative integer, this is an entire function of
z .

11.10.2 The previous series are special cases:

F 1
1 (a, a; z) = ez, lim

c→∞
F 1

1 (a, c; cz) = (1− z)−a.
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11.10.3 When a = −n is a negative integer, the series terminates and
becomes just a polynomial:

F 1
1 (−n, c; z) = 1− n

c
z +

n(n− 1)

c(c+ 1)

z2

2!
− n(n− 1)(n− 2)

c(c+ 1)(c+ 2)

z3

3!
+ · · ·+ (−1)n

c(c+ 1)(c+ 2) · · · (c+ n− 1)
zn

11.10.4 The coefficients satisfy the recursion relation

fr+1

fr
=
a+ r

c+ r
,⇒ (c+ r)fr+1 = (a+ r)fr

which implies that the function F 1
1 (a, c; z) satisfies the following differential

equation.

11.11 The confluent hypergeometric differential equation is

zu′′ + (c− z)u′ − au = 0.

11.11.1 In other words, the Confluent Hypergeometric function is the solu-
tion of this differential equation with initial conditions u(0) = 1, u′(0) = a

c
.

11.11.2 As the order of z grows, the coefficients tend to that of the expo-
nential series; so this entire function tends to ez for large |z| . This can also
be seen from the differential equation.

11.11.3 Exercise: Derive an integral representation of the form F 1
1 (a, c; z) =∫

C e
tzv(t)dt for some function v(t) and a suitable contour on the t -plane.Hint:

derive a first order differential equation for v(t) , solve it and then study
which contour will make the integral converge. This is called Laplace’s
method.

11.12 An equivalent form is the Whittaker equation

W ′′ +

(
−1

4
+
κ

z
+

1
4
− µ2

z2

)
W = 0.

The change of variable W = e−
z
2 zµ+ 1

2F (z) will take this to the con-
fluent hypergeometric equation.
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11.2 First Order Systems

11.13 Any two dimensional system of ordinary differential equa-
tions of the form

dψ

dz
+ A(z)ψ = 0, A(z) = B +

C

z

can be reduced to the confluent hypergeometric equations.

11.13.1 If ψ 7→ zaebzψ for constants a, b ,

A(z) 7→ A(z)− a

z
− b.

We can choose a = 1
2

tr C and b = 1
2

tr B such that B,C become traceless
after the transformation. In the case of the Coulomb-Dirac equation they
are already traceless.

11.13.2 Recall that the square of any traceless 2× 2 matrix is a multiple
of the identity:(

A11 A12

A21 −A11

)(
A11 A12

A21 −A11

)
=
(
A2

11 + A12A21

) ( 1 0
0 1

)
= − detA.

11.13.3 Make the substitution

ψ =

(
d

dz
− A

)
χ

so that the equation becomes(
d2

dz2
− A2 − dA

dz

)
χ = 0

which is (
d2

dz2
− A2(z) +

1

z2
C

)
χ = 0
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If C = S−1

(
c 0
0 −c

)
S and φ = Sχ we get the decoupled equations

(
d2

dz2
− A2(z) +

1

z2

(
c 0
0 −c

))
φ = 0.

Note also that

A2(z) =
1

z2

(
C2

11 + C12C21

)
+

1

z
(2B11C11 +B21C12 +B12C21) +B2

11 +B12B21

Moreover, c2 = C11 + C12C21 . Thus the equation for φ becomes

−φ′′1(z) +

[
c(c− 1)

z2
+

1

z
(2B11C11 +B21C12 +B12C21) +

(
B2

11 +B12B21

)]
φ1 = 0.

−φ′′2(z) +

[
c(c+ 1)

z2
+

1

z
(2B11C11 +B21C12 +B12C21) +

(
B2

11 +B12B21

)]
φ2 = 0.

This can be turned into the Whittaker equation and solved in terms of the
confluent hypergeometric form using the transformation mentioned earlier.

11.3 Reduction of the Coulomb-Dirac Equa-

tion

11.13.4 The matrices can be read off

B(z) =
(

0 m+ E
m− E 0

)
C =

(
k Zα

−Zα −k

)
so that

c2 = k2 − (Zα)2,

2B11C11 +B21C12 +B12C21 = −2ZαE,

and

B2
11 +B12B21 = m2 − E2
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so that

−φ′′2 +

[
c(c+ 1)

r2
− 2ZαE

r
+m2 − E2

]
φ2 = 0.

This is similar to the Schrödinger equation for the non-relativistic hydrogen
atom, but with constants redefined. The main difference is that c may not
be an integer.



Chapter 12

Spinorial Harmonics

12.1 The operator K = 1 + σ · L can be thought of as the Dirac
operator on the sphere S2 .

12.1.1 It is the angular part of the Dirac operator on R3 as we saw in an
earlier chapter.

12.2 It can be expressed in terms of the total angular momentum
operator

K = J2 − L2 +
1

4
.

where

J = L +
1

2
σ.

12.3 J2, L2, J3 form a set of mutually commuting operators. The
eigenvalues of L2 are l(l+1) for l = 0, 1, 2, 3, · · · and those of J2 are
j(j+1) , with j = l+ 1

2
for l = 0, 1, 2, · · · and j = l− 1

2
for l = 1, 2, 3 · · · .

For given j , J3 has eigenvalues −j,−j + 1, · · · j − 1, j .

12.4 The eigenvalues k of K, J are therefore

k = l, for l = 0, 1, 2, · · ·

and

K = −l, for l = 1, 2, · · ·

48
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12.4.1 Thus the spectrum of K consists of the integers k 6= 0 . More
precisely, the eigenvalues of K are integers k with degeneracy 2|k| .

12.5 It is possible to find the eigenspinors by solving the equations
[σ · L + 1]Y = kY using separation of variables in the angular co-
ordinates.



Chapter 13

Relativistic Quantum
Statistical Mechanics

13.1 Dirac postulates that the vacuum of the system already has
all negative energy states occupied. Also each state can be occupied
by at most one particle ( exclusion principle).

13.1.1 It is impossible to make sense of relativistic quantum mechanics if
we study a single particle, because of the negative eigenvalues of the Dirac
operator of a single particle, it cannot describe the total energy.

13.1.2 We are forced to study states containing an arbitrary number of
particles and holes: only the difference between the number of particles and
total number of holes is conserved. This particle number can take any integer
value.

13.2 Define the thermodynamic partition function to be

Z(q, z) =
∑

all multi−particle states

qtotal energy zparticle number.

The variable q = e−β ( β is the inverse of temperature) is the
Boltzmann factor and z is the fugacity in the language of thermo-
dynamics.

13.3 Suppose the Dirac operator has only discrete eigenvalues
λ each with degeneracy d(λ) . Then the partition function is

Z(q, z) =
∏
λ

(
1 + q|λ|zsgn(λ)

)d(λ)
.

50
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13.3.1 If the Dirac operator has a zero eigenvalue ( as for the case of periodic
boundary condition) there are several state in the multi-particle system with
zero energy: depending on whether the null eigenspace of the Dirac operator
is occupied or not.

13.3.2 It is useful to study the Dirac operator in the simplest of all spaces-
the circle- as a way to understand the hole theory of Dirac better.

13.3.3 The Dirac algebra is just γ1
0 = −γ1

1 = 1, γ0γ1 = −γ1γ0 ; let α =
γ0γ1 so that α2 = 1 . The eigenvalue problem for energy is

−iα d

dx
ψ + βmψ = Eψ

We can choose a basis with α =
(

1 0
0 −1

)
, β =

(
0 1
1 0

)
.If the mass is

zero, we can restrict to a one-component spinor and the eigenvalue equation
Weyl operator becomes just

−i d
dx
ψ = Eψ

13.3.4 There are two possible boundary conditions: periodic or anti-periodic

ψ(x+ 2π) = ±ψ(x).

Anti-periodic boundary conditions are allowed because all observables such
as energy or electric charge density are quadratic functions of ψ .

13.4 For the periodic (respectively anti-periodic) boundary con-
ditions on the circle, the spectrum of this Weyl operator is the set
of integers (respectively half-integers), each with degeneracy one.

13.4.1 Let us consider first the case of anti-periodic boundary conditions,
which is simpler because the ground state is unique.
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13.4.2 If the spectrum of the Dirac operator does not contain zero, any
departure from this state will cost a positive amount of energy. The simplest
such state has a particle of energy ν > 0 ; or a ‘hole’ corresponding to the
eigenvalue µ < 0 , which has energy −µ .We can also have a pair of particles
0 < ν1 < ν2 which has energy ν1+ν2 or a particle-hole pair µ < 0 < ν which
has the positive energy ν−µ . The particle number (the number of particles
minus the number of anti-particles) is 2 for the first case and 0 for the
second.

13.4.3 Thus an arbitrary state of the system is given by a list of unequal
positive half-integers and another list of unequal negative half-integers: µ1 <
µ2 · · · < µr < 0 < ν1 < ν2 < · · · νs . The corresponding state has ‘holes’ at
µ1 < µ2 · · · < µr and particles at ν1 < ν2 < · · · νs . The total energy is

E = ν1 + ν2 + · · ·+ νs − (µ1 + µ2 + · · ·+ µr)

which is a positive number. The particle number is r − s which can be
positive, zero or negative.

13.5 The partition function for anti-periodic boundary conditions
is

Z1(q, z) =
∞∏
n=1

(
1 + qn−

1
2 z
) (

1 + qn−
1
2 z−1

)
and for periodic boundary condition is

Z0(q, z) = (1 + z)
∞∏
n=1

(1 + qnz)
(
1 + qnz−1

)

13.5.1 The first factor is for the zero eigenvalue of the Dirac operator.

13.5.2 These functions have remarkable double periodity properties and
are related to elliptic functions ( the θ functions of Jacobi).

13.6 The Dirac operator on S2 , σ · L , has integer eigenvalues
k with degeneracy 2|k + 1| .

13.6.1 Exercise: Find the partition function of this system.

Z(q, z) =
∞∏
k=0

{(
1 + qkz

) (
1 + qk+2z−1

)}2(k+1)



Chapter 14

The Relativistic Degenerate
Fermi Gas

14.1 A system is degenerate if the mean distance between parti-
cles is comparable to the de Broglie wavelength.

14.1.1 This means quantum effects cannot be ignored.

14.2 The energy density P and number density n are related to
each other by

s
∫
|p|<pF

d3p

(2π)3
= n, s

∫
|p|<pF

ωp
d3p

(2π)3
= P

where ωp is the energy of a particle of momentum p . Also, s is
the number of independent polarization states of a particle with
given momentum.

14.2.1 The kinetic energy density of a gas is also its pressure; hence the
notation P for it.

14.2.2 For an electron s = 2 , ωp =
√

p2 +m2 .

14.2.3 If the density is large enough, the mean momentum can get large
compared to the mass. Then ωp = |p| ; We can perform the integrals to get

s
1

(2π)3
4π
p3
F

3
= n, s

1

(2π)3
4π
p4
F

4
= P,⇒ P = Cn

4
3 , C =

1

8

[
64π2

s

] 1
3

.

53
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14.3 The density of certain stars, white dwarfs is so high that the
electrons in them become a relativistic degenerate gas.

14.3.1 The pressure of the electron gas is balanced by the gravitational
attraction of the protons.

14.3.2 The protons and electron densities are equal for electrical neutrality;
but the protons being much heavier dominate the mass while the electrons
dominate the pressure since their de Broglie wavelengths are much longer.

14.4 The energy of the star is given by

E = −Gm2
p

∫ n(x)n(y)

|x− y|
dxdy + C

∫
n(x)

4
3dx,N =

∫
n(x)dx.

14.4.1 mp is the mass of the proton and G is Newton’s constant in units
where h̄ = c = 1 . In fact in these units G = mP

−2 , the inverse square of
the Planck mass so that

√
Gmp ∼ 1019 .

14.4.2 Here we are assuming that over one de Broglie wavelength of the
electron, the gravitational potential is approximately constant: the Thomas-
Fermi approximation. We will see that this is easily satisfied as the radius of
the degenerate core of the star is several thousand kilometers.

14.4.3 We can factor out the total number of particles by defining ν(x) =
n(x)
N

: ∫
ν(x)dx = 1

14.4.4

E = −Gm2
pN

2
∫ ν(x)ν(y)

|x− y|
dxdy + CN

4
3

∫
ν(x)

4
3dx.

E

N
4
3

= −g2
∫ ν(x)ν(y)

|x− y|
dxdy + C

∫
ν(x)

4
3dx, g =

√
GmpN

1
3

Here g is a dimensionless quantity: each term has dimensions of 1
length

.
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14.5 There is a constant S such that∫ ν(x)ν(y)

|x− y|
dxdy ≥ S

∫
ν(x)

4
3dx

whenever
∫
ν(x)dx = 1, ν(x) ≥ 0 .

14.5.1 The best such constant is the solution of the variational problem

S = inf
ν(x)≥0,

∫
ν(x)=1

∫ ν(x)ν(y)
|x−y| dxdy∫
ν(x)

4
3dx


This becomes an integral equation

2
∫ ν(y)

|x− y|
dy + µν(x) =

4

3
Sν

1
3

One can reduce this to an integral equation in one dimension by assuming
spherical symmetry.

14.5.2 Exercise:For astrophysical purposes, even a crude estimate based
on a sphere of constant number density at the degenerate core is useful.
Determine this estimate of S .

14.6 Thus if

g > gc =

√
C

S

the energy diverges and star collapses.

14.7 This gives a bound

Nc <

(
mP

mp

gc

)3

for the maximum number of protons that the core can support.
The maximum mass of the white dwarf is thus

Mc = Ncmp.
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14.7.1 This is about 1.4 Solar masses. Indeed, white dwarfs are found to
have masses less than this limit. Stars with masses greater than this will
explode in a supernova and form an even denser object, a neutron star. A
neutron star is a degenerate fermi liquid of neutrons and there is a maximum
mass for them also. It is harder to calculate this because of the effect of
the nuclear force ( strong force). If the mass exceeds this limit the star will
collapse into a blackhole.

14.7.2 Exercise Determine the critical mass using the estimate for S in
the exercise above.



Chapter 15

Particles as Oscillators

15.1 A system of free bosons is equivalent to a harmonic oscillator;
to each allowed single-particle state, corresponds one degree of
freedom of the harmonic oscillator.

15.1.1 Suppose a single boson can exist in states with energies ωk for some
range of values of k . The energy of a two boson state will be ωk + ωk′ , of
a three boson system ωk + ωk′ + ωk′′ and so on. The energies add because
they are free particles: no interaction energy.

15.1.2 The most general bosonic state is given by the number nk =
0, 1, 2, · · · of bosons occupying the k th state. Its energy is

∑
k nkωk.

15.1.3 This happens to be the spectrum of a harmonic oscillator whose
characteristic frequencies are ωk . Thus the hamiltonian of such a system of
bosons is

H =
1

2

∑
k

[
p2
k + ω2

kq
2
k − ωk

]

We subtract the constant ωk to make the ground state energy equal to zero.

15.1.4 With

ak =
ωkqk + ipk√

[2ωk]
a†k =

ωkqk − ipk√
[2ωk]

57
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we have

[ak, a
†
k′ ] = δkk′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0.

and

H =
∑
k

ωkaka
†
k.

15.2 The Heisenberg equations of motion of a system of bosons
are thus

q̈k + ω2
kqk = 0.

We are to think of qk as an operator at each time t .

15.2.1 For a system of free bosons of mass m , ωp =
√

[p2 + m2] where
p is the momentum. Thus the equations of motion become

q̈p + (p2 +m2)qp = 0.

15.3 If we define

φ(t,x) =
∫
qp(t)eip·x

dp

(2π)3

we get

φ̈−∇2φ+m2φ = 0.

15.3.1 This is just the Klein-Gordon equation. But there is an important
difference: φ(x) is now an operator. Its Fourier components satisfy the
commutation relations

[qp, q̇p′ ] = i(2π)3δ(p− p′), [qp, qp′ ] = 0 = [q̇p, q̇p′ ]

at equal time. These translate in position space to

[φ(t,x), φ̇(t,x′)] = iδ(x− x′), [φ(t,x), φ(t,x′)] = 0 = [φ̇(t,x), φ̇(t,x′)].
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15.3.2 Thus φ(t,x) is a quantum field, an operator at each point of
space-time. When we originally discussed the Kelin-Gordon equation we
were thinking of φ(t,x) as a complex number at each point of space-time.
But that only describes a single particle at a time. Now our system can have
as many particles as the available energy allows.

15.3.3 The energy is the operator

H =
1

2

∫
[φ̇2 + |∇φ|2 +m2φ2]dx

up to an overall additive constant.



Chapter 16

Fermionic Oscillators

16.1 The state of a system of identical fermions is anti-symmetric
under the interchange of a pair of particles.

16.1.1 In particular if two particles have the same quantum numbers, the
state would vanish: the Pauli exclusion principle that each single particle
state can be occupied .

16.1.2 Consider a system of identical free fermions with single particle
states of energy ωk labelled by k . Each state can be either occupied
or not. So the energy is

∑
k νkωk , for occupation numbers νk = 0, 1 .

16.1.3 Let |0 > be the empty state, b†k the operator that creates a fermion
at state k and bk the one that annihilates such a fermion. Then it is
reasonable that bk|0 >= 0, b† 2

k = 0 = b2k.

16.1.4 Also b†kb
†
k′|0 >= −b†k′b

†
k|0 > by anti-symmetry of states.

16.2 The Canonical Anti-Commutation Relations

[bk, b
†
k′ ]+ = δkk′ , [bk, bk′ ]+ = 0 = [b†k, b

†
k′ ]+ = 0

are satisfied by the creation-annihilation operators of a system of
fermions. The empty state (‘vacuum’) is defined by

bk|0 >= 0.
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The remaining states are built from it by the action of the creation
operators

b†k|0 >, b
†
kb
†
k′|0 >, · · ·

In general,

b†k1b
†
k2
· · · b†kr

|0 >, k1 < k2 < k2 · · · kr.

form an orthonormal basis of states.

16.2.1 The number operator

b†kbk

has square zero; hence its eigenvalues are 0, 1 . The hamiltonian of a system
of free fermions is

H =
∑
k

ωkb
†
kbk.

16.2.2 The Heisenberg equations of motion

dbk
dt

= i[H, bk],
db†k
dt

= i[H, b†k]

become

dbk
dt

= −iωkbk,
db†k
dt

= iωkb
†
k.

16.2.3 Unlike in the bosonic case, it is not possible to represent the fermionic
creation-annihilation operators as differential operators on functions of real
or complex variables. But we can invent a new number system, the Grass-
mann numbers that make this possible. Since about half of all elementary
particles are fermions, this number system must be as important as real or
complex numbers, although humans only invented them fifty years ago.
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16.2.4 Let us begin with a fermionic system with just one single particle
state. So there are two possible states altogether: either it is occupied or it
is empty.

16.3 A Grassmann number θ satisfies

θ2 = 0.

A complex-valued function of a Grassmann variable is

f(θ) = f0 + f1θ

The product and sum of such functions are defined as below:

[f + g](θ) = (f0 + g0) + (f1 + g1)θ, fg(θ) = f0g0 + (f0g1 + f1g0)θ.

16.3.1 Thus

θf(θ) = f0θ,
∂

∂θ
f(θ) = f1.

16.3.2 Also,

θ2f = 0 =
∂2f

θ2
,

∂(θf)

∂θ
+ θ

∂f

∂θ
= f.

In other words, these operators satisfy the relations for fermion creation-
annihilation operators:

θ2 = 0 =
∂2

∂θ2
[θ,

∂

θ
]+ = 1.

16.3.3 When there are several such variables, we postulate

θiθj + θjθi = 0.
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The most general function is then

f(θ) = f0 + fiθ
i + fij

θiθj

2!
+ · · · fi1···ir

θi1 · · · θir
r!

+ · · ·

where the coefficients are anti-symmetric

fij = −fji, fi1···ir = sgn (π)fiπ(1)···iπ(r)

for any permutation π . The coefficient fi1···ir can be thought of as the
wavefunction of a system of r identical fermions.

16.4 The differentiation of a function of Grassmannian variables
is defined as

∂

∂θi
f = fi + fijθ

j + · · · fii1···ir
θi1 · · · θir

r!
+ · · ·

The multiplication and differentiation operators satisfy

[θi, θj]+ = 0 = [
∂

∂θi
,
∂

∂θj
]+, [

∂

∂θi
, θj]+ = δji .

16.4.1 These are just the creation-annihilation operators of fermions:

bk =
∂

∂θk
, bk† = θk.

Thus the hamiltonian of free fermions is the operator

H =
∑
k

ωkθ
k ∂

∂θk
.



Chapter 17

The Two Level Atom

17.1 A simple model of an electron interacting with a photon is

H = ωb†b+ ε1a
†
1a1 + ε2a

†
2a2 + gb†a†1a2 + g∗ba†2a1

17.1.1 Here b, b† are the creation operators for the boson, a, a† those for
the fermion:

[b, b†] = 1, [aa, ab]+ = 0 = [a†a, a
†
b]+, [aa, a

†]+ = δab.

17.1.2 This describes the emission of a boson while the fermion makes a
transition from the excited state to the ground state or the absorption during
the opposite process.

17.2 The states containing a fixed number of bosons, and either
both fermionic states occupied or both empty are eigenstates of
this hamiltonian; so also when the electron in the lower level with
no photon present.

17.2.1 In this case the interaction terms vanish identically.

17.2.2 The most general state state containing one electron is

∞∑
n=0

χn|n, 1, 0 > +
∞∑
n=0

φn|n, 0, 1 > .
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The eigenvalue equation for the hamiltonian becomes

∞∑
n=0

(nω + ε1)χn|n, 1, 0 > +
∞∑
n=0

(nω + ε2)φn|n, 0, 1 > +

g
∞∑
n=0

√
n+ 1φn|n+ 1, 1, 0 > +g∗

∞∑
n=0

√
nχn|n− 1, 0, 1 >=

E

[ ∞∑
n=0

χn|n, 1, 0 > +
∞∑
n=0

φn|n, 0, 1 >
]

17.2.3 This becomes the recursion relations

(nω + ε1)χn + g
√
nφn−1 = Eχn

(nω + ε2)φn + g∗
√
n+ 1χn+1 = Eφn

Shifting the first equation by one step, we get the 2× 2 system(
(n+ 1)ω + ε1 g

√
n+ 1

g∗
√
n+ 1 nω + ε2

)(
χn+1

φn

)
= E

(
χn+1

φn

)
Setting the determinant to zero gives the eigenvalue equation

E2 − [e1 + e2]E + e1e2 − |g|2(n+ 1) = 0, e1 = (n+ 1)ω + ε1, e2 = nω + ε2.

17.3 The energy eigenvalues are, for n = 0, 1, 2, · · ·

En± = (n+
1

2
)ω +

1

2
[ε2 + ε1]±

1

2

√
(ε2 − ε1 − ω)2 + 4(n+ 1)|g|2.

17.3.1 Thus for each value of n there are two eigenstates; the splitting
between them , √

(ε2 − ε1 − ω)2 + 4(n+ 1)|g|2,
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is increased by the interaction. The absorption and re-emission of photons
has caused this change in the energy levels. For each n , the eigenstate is a
linear combination of an n photon state with the electron in its upper level
and an n + 1 photon state with the electron in the lower level. The case
of ‘resonance’ is ε2 = ε1 + ω when these two states are degenerate in the
absence of interaction; the interaction has the biggest effect in this case by
removing the degeneracy.

17.3.2 Exercise: Determine the corresponding eigenvector.

17.3.3 The ground state of an electron is just the state |0, 1, 0 > , where it
occupies the lower level with no photon present.This is an exact eigenstate.
The first excited state is when it is in the upper level with no photon present;
but this is not an exact eigenstate. A linear combination of this state with
the one where the electron is in the lower level with a photon present is the
true eigenstate- the case n = 0 above. This can be understood as the result
of repeated emission and absorption of the photon by the electron.

17.4 This model is often used to describe the interaction of an
atom with a laser.



Chapter 18

The Lee Model

18.1 T. D. Lee proposed a model for renormalization:

H =
∫ dk

(2π)3
φ†(k)φ(k)ωk + ε1a

†
1a1 + ε2a

†
2a2 + gφ†0a

†
1a2 + g∗φ0a

†
2a1

18.1.1 Here φ, φ† are bosonic creation-annihilation operators and a, a† fermionic
ones:

[φ(k), φ†(k′)] = (2π)3δ(k − k′), [aα, a
†
β]+ = δαβ

The remaining pairs of opertaors commute.

18.1.2 Also

φ0 =
∫
φ(k)

dk

(2π)3
, φ†0 =

∫
φ†(k)

dk

(2π)3

This is the value of the bosonic field at the origin in position space.

18.1.3 The energy of the boson can be taken to be ωk =
√

[k2 + m2] or
ωk = k2

2m
+m in the non-relativistic approximation.

18.1.4 Thus we have a boson interacting with a fermion. The fermion is
allowed to sit only at one point, the origin of position space. It can exist
in one of two states, with energies ( masses) ε1,2 . Thus this is much like
the ‘two level atom’ except that the boson is allowed to have many possible
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energies and momentum. The idea is that the fermion is much heavier than
the boson; that is why we can ignore the motion of the fermion after it emits
or absorbs a boson. Momentum is not conserved in this approximation, but
energy is.

18.1.5 The original purpose of the model was to explain the interaction of
a nucleon with pions. The two states of the nucleon are the neutron and the
proton. They are both much heavier ( ∼ 103 MeV) than the pion ( 102 Mev).
Lee had hoped that the neutron-proton mass difference can be explained this
way but because of the divergences of this model, the idea didn’t work. But
it teaches us how to deal with such divergent quantities, by renormalization.
This idea is crucual in modetn particle physics, but in the true context of
non-abelian Yang-Mills theories it is much harder to understand. So we
practice here.

18.1.6 The total number of fermions

a†1a1 + a†2a2

is conserved.

18.1.7 The number of bosons

Nφ =
∫
φ†(k)φ(k)

dk

(2π)3

not conserved. But the quantity

N = Nφ − a†1a1

is conserved. When a boson is emitted, a fermion of type 1 is converted to
one of type 2.

18.1.8 The states that contain no fermion are uninteresting; it is just a
theory of free bosons.

18.1.9 We seek to calculate the energy difference between the two states
of the fermion. This is affected by the emission and reabsorption of the
boson.So we look at states that contain one fermion.
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18.1.10 The only state with N = −1 is the one with a single fermion in
the 1 state and no bosons. So this must be an eigenstate of the hamiltonian:

H|0 > |1 >= ε1|0 > |1 > .

18.1.11 The most general states with N = 0 are

|u, ψ >= u|0 > |2 > +|ψ > |1 >

where

|ψ >=
∫
ψ(k)φ†(k)

dk

(2π)3
|0 >

Let us look for an eigenstate in this sector.

18.1.12 The equation H|u, ψ >= E|u, ψ > gives

[ε2 − E]u+ g∗
∫
ψ(k)

dk

(2π)3
= 0, [ωk + ε1 − E]ψ(k) + gu = 0

wherefrom

ψ(k) =
u

E − [ωk + ε1]

E − ε2 = |g|2
∫ 1

E − [ωk + ε1]

dk

(2π)3
.

18.1.13 Unfortunately this integral is divergent. So we dont get a mean-
ingful physical answer for the energy of the first excited state. This is typical
of the problems we encounter in quantum field theory.

18.1.14 The culprit is the integration over all momenta. It is clear that our
approximation of no recoil will break down for large enough momenta. So
we should only integrate over momenta smaller than spme cut-off Λ which



70 PHY405 S. G. Rajeev

itself is smaller than the mass of the fermions Λ << ε1, ε2 . So we go back
and replace φ0, φ

†
0 in the hamiltonian with

φΛ =
∫
|k|<Λ

φ(k)
dk

(2π)3

and its adjoint. Also we make the parameters in the hamiltonian depend on
Λ such that physical quantities are independent of Λ.

18.1.15 The energy of the first excited state is a physically meaningful
quantity. But the parameters in the hamiltonian don’t have to be. ε1 is a
physical quantity because it is the energy of the state with N = −1. So we
don’t mess with that. We can make ε2 depend on Λ. This process is called
regularization.

HΛ =
∫ dk

(2π)3
φ†(k)φ(k)ωk + ε1a

†
1a1 + ε2(Λ)a†2a2 + gφ†Λa

†
1a2 + g∗φΛa

†
2a1

18.1.16 Then we determine its dependence on Λ in order that the physical
quantity E2, the energy of the excited state a finite quantity. This is called
renormalization.

18.1.17 In fact

ε2(Λ) = E2 − |g|2
∫
|k|<Λ

1

E2 − [ωk + ε2]

dk

(2π)3
.

18.1.18 In effect we have traded the ε2 parameter in the original hamil-
tonian ( the unperturbed first excited state energy) for the exact energy of
the first excited state E2. All physical quantities will be independent of Λ if
thought of as functions of E2 rather than as functions of ε2.

18.1.19 Next we can look for a scattering state for the ‘pion’ against a static
‘proton’. This invloves solving the inhomogenous Schr “odinger equation
[H −E]|u, ψ >= |v, χ > where χ represents an incoming pion state. We will
get

[ε2(Λ)− E]u+ g∗
∫
|k|<Λ

ψ(k)
dk

(2π)3
= v, [ωk + ε1 − E]ψ(k) + gu = χ(k)
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18.1.20 We can again eliminate ψ(k) :

ψ(k) =
gu

E − [ωk + ε1]
+

χ(k)

ωk + ε1 − E
.

Also,

[ε2(Λ)− E]u− |g|2u
∫
|k|<λ

1

E − [ωk + ε1]

dk

(2π)3
= v − g∗

∫
|k|<Λ

χ(k)

ωk + ε1 − E

dk

(2π)3
+ v.

18.1.21 Trading ε2(Λ) for the more physical E2 we get

u|g|2
∫
|k|<Λ

[
1

E2 − [ωk + ε1]
− 1

E − [ωk + ε1]

dk

(2π)3

]
= v − g∗

∫
|k|<Λ

χ(k)

ωk + ε1 − E

dk

(2π)3
.

18.1.22 If m << E2 − ε1 (as is true for the pion and nucleon) we can use
the non-relativistic formula for the pion energy ωk = m + k2

2m
. In this case

the integral in the l.h.s. converges. It is possible to determine the scattering
phase shift of the pion from the proton from the above equation from the
integral equation

u|g|2
∫ [

1

E2 − [ωk + ε1]
− 1

E − [ωk + ε1]

dk

(2π)3

]
= v − g∗

∫ χ(k)

ωk + ε1 − E

dk

(2π)3
.

18.1.23 But if m << E2 − ε1 we must use the relativistic formula and the
integral is still divergent. In this case we must do yet another renormalization,
where we allow the ‘coupling constant’ g to become a function of Λ also. Then
we must determine its dependence by fixing some other physical quantity. It
turns out that it is possible to do this, but that takes us out of the scope of
this course.

18.1.24 The renormalization of the Lee model and its more accurate pre-
decessor, the Yukawa model, is becoming relevant again in the context of
the Higgs boson. In this case there is one massive fermion, the top quark.
The boson has a mass comparable to, or larger, than the top quark. The
remaining fermions are all (in this scale) massless. There are still unsolved
problems in the renormalization of this theory, which will be interesting as
the LHC starts producing data on the Higgs. Stay tuned.


