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We know now the force on a charged particle. Next we will understand its
energy.

1 Conservative Forces
Recall that if you exert a constant force F on a particle and it is displaced
by a, the wok you have done is F · a. The energy of the particle increases by
that amount. If the force and displacement are in the same direction, this is
positive; if they are in opposite directions, the work done is negative and the
energy particle actually decreases ( increases by a negative amount). If the
displacement is perpendicular to the force, no work is done, no matter how
large the force; and the energy of the particle does not change.

Now suppose that the particle is in a force field, that varies from point to
point in space. It can still be thought of as constant for a small displacement
dl so that the work done is dW = F·dl. If the particle moves along a path
connecting r1 to r2 the work done can be found by breaking up the path into
small steps and adding up the work done in each step. This is the integral

W =

ˆ r2

r1

F · dl

In general this will depend on the path: some paths might get you from r1
to r2 with less energy than others. But there are some force fields for which the
work done only depends on the endpoints: it doesn’t matter how long or short
the path connecting them is, the work done is the same. Such forces are called
conservative forces.

An example of this gravity. If you move a weight from one point to another
near the surface of the Earth, the work you did only depends on the height
difference between r1 and r2. If they are at the same height you have done no
work, no matter how much you sweated while moving the weight.

It turns out that another example of a conservative force is the Coulomb
force between static charges. This should not surprise you: the Coulomb force
law and Newton’s law of gravity are so similar that if one is conservative the
other had to be also. Magnetic forces are not conservative because they depend
on the velocity, not just the position of a particle. But that is not our concern
right now.
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2 The Potential Energy of a Conservative Force
Consider a force that is conservative, so that the work done depends only on
the endpoints and not on the path we chose to connect them. Suppose we went
from r1 to r2 and then onto another point r3. Then the total work done is the
sum of the integrals over the two:

ˆ r3

r1

F · dl =
ˆ r2

r1

F · dl+
ˆ r3

r2

F · dl (1)

Because it is conservative, the l.h.s. can only depend on r1 and r3while the
first term on the right depends on r1 and r2and the second term on the right
depends on r2 and r3. Thus the dependence on r2must cancel between the two
terms on the r.h.s. This can happen only if there is a function V (r) such that

ˆ r2

r1

F · dl = U(r1)− U(r2).

Write out the sum of the two terms on the r.h.s. of (1) and check that
the dependence on r2 does indeed cancel. This function is called the potential
energy of the force.

If you knew V (r), you could determine the force by differentiation. Consider
a very small step from r to a nearby point r+ dl:

F · dl = U(r)− U(r+ dl)

This is saying that the force is the negative of the derivative of the potential
energy. If a force satisfies this condition at any point, it is conservative.

3 The Coulomb Potential
We will show now that the Coulomb force is conservative.

Suppose we have a charge Q at the origin. The force on a charge q at some
point r is

F(r) = k
qQ

r2
r̂.

This is just Coulomb’s law. We must come up with a function U(r) such
that

k
qQ

r2
r̂ · dl = U(r)− U(r+ dl)

for any small step dl. If you know a bit of calculus you can guess the answer:
we asking for the integral of the force. We will see that the answer is

U(r) = k
qQ

r
.
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To see that this works, we must calculate the change in U(r) under a small
step. Now, recall that r2 = r·r : the square of the length of a vector is its dot
product with itself. So

|r+ dl|2 = (r+ dl) · (r+ dl) = r2 + 2r · dl

We ignore the square of the small quantity.
Now,

|r+ dl|2 = r2 + 2r · dl = r2
�
1 +

2

r2
r · dl

�

This tells us how r2 = r·r changes. But what we need is to know how r−1

changes. But r−1 = (r2)−
1
2

Thus
1

|r+ dl| =
�
r2 + 2r · dl

�− 1
2 = r−1

�
1 +

2

r2
r · dl

�− 1
2

.

Now remember that for a small quantity

(1 + �)n = 1 + n�.

This is a basic fact of algebra.
�
1 +

2

r2
r · dl

�− 1
2

= 1− 1

r2
r · dl

and
1

|r+ dl| =
1

r
− 1

r2
r

r
· dl

Remember that
r

r
= r̂.

Thus
1

|r+ dl| −
1

r
= − 1

r2
r̂ · dl

Rearranging the sides
1

r2
r̂ · dl = 1

r
− 1

|r+ dl|
We are almost there. Just multiply both sides by kqQ to get

k
qQ

r2
r̂ · dl = k

qQ

r
− k

qQ

|r+ dl|
which is what we had to prove.
Thus we showed that the Coulomb potential is a conservative force. And

we even found the potential energy of the Coulomb force. This is a big step
forward.

3



4 The Electric Potential
Recall that the force on a particle is proportional to its charge. The force on
a particle divided by its charge is the electric field. The electric force due to a
point charge is

F = k
qQ

r2
r̂.

So it woud make sense to think of the potential energy divided by the electric
charge q. This is called the electrostatic potential.

Electric Field =Force divided by charge E = F
q

Electric Potential= Potential energy divided by charge V (r) =
U(r)
q

Dividing by q,

k
Q

r2
r̂ · dl = k

Q

r
− k

Q

|r+ dl|

The electric potential at r due to a point charge Q at the origin is,

V (r) = k
Q

r
.

This is yet another way think of Coulomb’s law. Although we had to think
hard to arrive at the idea of a potential, we have made a major simplification:
in this form of the law, we have a scalar quantity V to deal with instead of the
electric field E, which is a vector.

5 The Electric Potential of Many Charges
The electric field produced by two charges is the sum of the electric fields due
to each one. The same is true of the eletric potential. But the potential being a
scalar, it is much easier to add them. If there are charges Q1 and Q2at positions
r1and r2respectively, the potential is

V (r) = k
Q1

|r− r1|
+ k

Q2

|r− r2|

If we have many charges at r1, r2, r3, · · · we get

V (r) = k
Q1

|r− r1|
+ k

Q2

|r− r2|
+ k

Q3

|r− r3|
+ · · ·

and so on. This way we can find the electric potential of any distribution of
charges. We will look at some examples in the next class.
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