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1 Partial Derivatives

If you have a function of one variable f(x), its derivative measures how much it
changes under a small change of x:

df

dx
= lim

δ→0

f(x+ δ)− f(x)

δ
.

Thus

dx2

dx
= 2x,

d

dx

�
3x+

√
x
�
= 3 +

1

2
√
x

etc.
But many functions depend on more than one variable. For example, the

potential energy U(r) of a particle depends on its position, which is specified
by three co-ordinates r = xi + yj + zk, where i, j,k are unit vectors along
the three co-ordinate axes. Thus we can think of U as a function of three
variables U(x, y, z). The force acting on a particle is the negative derivative of
the potential (for conservative forces). The component of the force in the x-
direction is the derivative of of U with respect to x keeping y, z fixed.

This is called the partial derivative:

∂U

∂x
= lim

δ→0

U(x+ δ, y, z)− U(x, y, z)

δ
.

The little curly ∂ is also pronounced ‘d’: it is just an old way of writing
cursive ‘d’.

There are of course similar partial derivartives with respect to y, z :

∂U

∂y
= lim

δ→0

U(x, y + δ, , z)− U(x, y, z)

δ
,

∂U

∂z
= lim

δ→0

U(x, y, z + δ)− U(x, y, z)

δ
.

2 Gradient

The three partial derivatives are the components of a vector called the ‘gradient’
of U :

∇U =
∂U

∂x
i+

∂U

∂y
j+

∂U

∂z
k.
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The symbol ∇ is pronounced ‘grad’, short for gradient. If we change r to r+ dl
for a small vector dl, then

dl = dxi+ dyj+ dzk

∇U · dl = ∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz.

In other words

∇U · dl = U(r+ dl)− U(r)

2.1 Examples
U(x, y, z) = x2y ⇒ ∂U

∂x = 2xy, ∂U
∂y = x2, ∂U

∂z = 0, ∇U = 2xyi+ x2j.
We showed in the last class that

∇1

r
= − 1

r2
r̂.

Here is another way to do prove it. Start with

r2 = (x2 + y2 + z2)

so that
1

r
= (x2 + y2 + z2)−

1
2 .

Then
∂

∂x

�
1

r

�
=

�
−1

2

�
2x (x2 + y2 + z2)−

3
2 = −x r−

3
2

where we treat y, z asif they are constants. That is,

∂

∂x

�
1

r

�
= − 1

r2
x

r
.

In exactly the same way we can see that

∂

∂y

�
1

r

�
= − 1

r2
y

r
,

∂

∂z

�
1

r

�
= − 1

r2
z

r
.

Putting the three components together

∇1

r
= − 1

r2
xi+ yj+ zk

r
= − 1

r2
r̂.

A little knowledge of calculus goes a long way. A lot of the difficulties that
people have with learning physics is that they haven’t taken the time to learn
a bit of the mathematics needed. This is true at every level, from HIgh School
eve to research level physicists. But once you learn the math (which is actually
not as big a deal as learning the physics) you can circles around the people who
haven’t.
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3 The Electric Potential

The main point of the last class was that for a conservative force,

F = −∇U.

The electrical force is conservative. It is also proportional to the charge q of
the particle sitting at the point r. If we divide by this charge both sides, we get

E = −∇V

where V (r) = U(r)
q is the potential energy per unit charge of a particle at the

point r. It is called the electric potential. From Coulomb’s law, the electrical
potential created at a point r by a charge Q at the origin is

k
Q

r
.

If you have charges Q1, Q2, · · · at points r1, r2 · · ·the total potential created
at point r by them is

k

�
Q1

|r− r1|
+

Q2

|r− r2|
+ · · ·

�

We can use this to calculate the potential due to many distributions of
charges.

4 The Unit of Electric Potential

The unit of force is Newton and the unit of charge is Coulomb. The unit of
electric field is thus NC−1. The unit of work ( or energy) is Joules , which is
the same as Nm. Thus the unit of potential energy is JC−1 = NmC−1.This
has another name Volt. One Coulomb is such a large amount of energy that
you are likely to encounter only a few µC in practice. But it turns out that one
Volt is a common potential.

A typical alkaline cell (like the AAA battery that powers my microphone)
produces an electrical potential difference of 1.5 Volts. The different sizes AAA,
AA, A, B, C, D, DD etc. all produce the same potential, but simply last longer.

(What other consumer product is sold in sizes AAA,AA,A,B,C,D,DD etc.?
Hint: The answer has nothing to do with physics.)
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5 The Electric Potential in the Hydrogen Atom

The charge on an electron is a tiny fraction of a Coulomb −1.6 × 10−19C. Yet
the potential seen by an electron is a few Volts: the Volt is one of the few unis
that work just as well at the atomic scale as in every day life.

Let us calculate the eletrical potential in a hydrogen atom.
The charge of its nucleus is 1.6 × 10−19C. The size of the atom (radius of

the electron’s orbit) is one Bohr radius; i.e., r = 6× 10−11m. Thus

V (r) = k
Q

r
=

1

4π�0

Q

r
=

1

4π8.9× 10−12

1.6× 10−19

5.3× 10−11
=

1.6

4× 3.14× 8.9× 5.3
104 = 27V

Other atoms are bigger and their outermost electron (called the valence
electron) is what takes part in

chemical reactions. At those distances the electrical potential is a few volts.
That is why batteries based on chemical reactions produce a few volts.

If you want larger potentials, you need special equipment like a van de Graf
generator, which can create about a million volts.

6 Equipotential Surfaces

A surface on which the potential is a constant is called an equipotential surface.
For gravity this are points at the same height; more precisely (assuming the
Earth is a sphere) at the same distance from the center of the Earth.

An equipotential surface of a positive point charge is a sphere: as the po-
tential decreases, the radius of the sphere grows.

The electric field is always normal the surface: it points in the direction
of decreasing potential. Thus for a point positive charge the field ponts out-
ward. Plotting equipotential surfaces and electrical field lines is a good way of
understanding the electrical field of a system of charges.

In this figure, the thick blue lines are the electric field lines. The dashed
lines are the equipotential surfaces.
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Notice that they are always perpendicular.

7 Potential of a Dipole

An eletric dipole are two equal and opposite charges located close together.
Their electrical potential is

1

4π�0

Q

|r| −
1

4π�0

Q

|r+ a| .

At distances large compared to |a|, we can treat the displacement between
them as infinitesimal. Then this becomes (much like the calculation earlier of
the gradient of 1

r )

− 1

4π�0

1

r2
Qa · r̂.

The quantity p = Qa is called the dipole moment. Thus the electrical potential
of a dipole is

V (r) = − 1

4π�0

p · r̂
r2

.
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Shown above ( is a cross-section) of the equipotential surfaces of a dipole
oriented along the horizontal axis.

7.1 The dipole moment of a water molecule
Water is H2O. The two hydrogen molecules lie along the vertices of a triangle
with the Oxygen at the third vertex. The angle between the H molecules is
105 degrees. The overall charge of the molecule is zero, but the electrons of
the hydrogen molecules shift their positions towards the Oxygen atom. By
how much does the average position of such an electron shift? This can be
determined by measuring the dipole moment of a water molecule, which turns
out to be p = 6.3× 10−30Cm. Dividing by the charge of an electron this is

p

e
= 3.9× 10−11m

The radius of the orbit of an electron in a hydrogen atom is 5.3 × 10−11m.
So the electrons in the hydrogen atom are shifted a fraction of this radius, in
the water molecule.

7.2 Potential Energy of a Dipole
A dipole sitting in an electric field has an energy that is equal to the sum of the
energies of each of its charges. This is

QV (r+ a)−QV (r)

In the limit of small athis becomes

−p ·E.

To minimize the energy, the dipole must point along the electric field. To
dipoles located nearby each other will try to orient themselves so that the unlike
charges are closer together.

An electric dipole is much like a magnet: there are in fact things called
electrets which are the analogues of magnets: they produce eletric fields instead
of magnetic fields. They are basically a large collection of molecules, each with
an electric dipole moment, all pointing the same way.

8 The Electrical Potential of a Charged Plane

Imagine a large sheet of constant electrical charge density σ. Gauss’s law applied
to a rectangular box surrounding it will gives us the electric field E to be normal
to the plane and of constant magnitude

E =
σ

�0

So the electric potential is
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V (x) =
σ

�0
x

where x is the axis perpendicular to the plane.

9 The Electrical Potential of a Ring of Charge

Imagine a ring of constant charge per unit length σ. It has radius R and the
x-axis is normal to its plane, passing through its center. The potential at some
point along this axis is the sum of those produced by point charges on the ring:

V (x) =
1

4π�0
σ

ˆ
dl√

x2 +R2
=

Q

4π�0

1√
x2 +R2

The electric field on this axis is given by the negative derivative

E(x) =
Q

4π�0

x

(x2 +R2)
3
2

.
The answers are more complicated away from the x-axis.
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