Physics 122 Final Exam December 18, 2013 7:15 to 9:15 pm

Constants and equations for final exam. You may detach this page if you wish.

Coulomb’s Law constant

\[k = 8.99 \times 10^9 \text{ N m}^2/\text{C}^2 \]

Permittivity of free space

\[\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N m}^2 \]

Charge of one electron

\[-e = -1.60 \times 10^{-19} \text{ C} \]

Mass of one electron

\[m_e = 9.11 \times 10^{-31} \text{ kg} \]

Magnetic permeability of free space

\[\mu_0 = 4\pi \times 10^{-7} \text{ T m/A} \]

Speed of light in vacuum

\[c = 3.00 \times 10^8 \text{ m/s} \]

Coulomb’s law

\[F = k \frac{Q_1 Q_2}{r^2} \]

Electric field

\[\vec{F} = q\vec{E} \] - definition of \(E \)

\[E = k \frac{Q}{r^2} \] - point charge

\[E = \frac{V}{d} \] – capacitor, constant field

Electric Potential

\[PE = qV \] - potential energy of a charge in electric field

\[V = k \frac{Q}{r} \] - potential of a point charge

\[\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 \ldots \] - sum of point-like charges

\[V = V_1 + V_2 + V_3 + \ldots \]

System of charges

Electric Flux, Gauss’s Law

For uniform field \(\Phi_E = \vec{E} \cdot \vec{A} \) - electric flux; \(\vec{A} \) - area vector, equal to area, pointing perpendicular to area

\[\Phi_E = \int \vec{E} \cdot d\vec{A} \]

\[\Phi_E > 0 \] – outflux, \(\Phi_E < 0 \) – influx,

\[\Phi_E = \frac{Q}{\varepsilon_0}, Q \] – enclosed charge

Electric current

Definition: \(I = \Delta Q/\Delta t \)

\[V = I R \] – Ohms law

Power: \(P = IV \)

Resistance: \(R = \rho l/A \)

Series connection:

\[R_{eq} = R_1 + R_2 + R_3 \]

\[V = V_1 + V_2 + V_3 \]

\[I = I_1 = I_2 = I_3 \]

Parallel connection:

\[\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \]

\[V = V_1 = V_2 = V_3 \]

\[I = I_1 + I_2 + I_3 \]
Capacitor

$$Q = CV \quad \text{definition of capacitance}$$

Energy stored:

$$U = \frac{QV}{2} = \frac{CV^2}{2} = \frac{Q^2}{2C}$$

Parallel plates with dielectric K:

$$C = K\varepsilon_0 \frac{A}{d}$$

Magnetic field

- \(B = \frac{\mu_0 I}{2\pi r} \) - magnetic field of a current (1st right hand rule: thumb along the current, fingers curled in the direction of the magnetic field); \(B = K_B \mu \ln n \) – magnetic field in solenoid, \(n = N/l \)
- \(F = BIL \sin \theta \); \(F = qvB \sin \theta \); \(a = v^2/r \) – centripetal acceleration (2nd right hand rule: fingers along the current, bend in the direction of the magnetic field, thumb shows the force)
- \(\tau = rF \sin \theta \); \(\mu = NAI \); \(\vec{\tau} = \vec{\mu} \times \vec{B} \)

\[\oint Bdl = \mu_0 I_{net} \quad \text{Ampère’s law}; \quad d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \times \vec{r}}{r^2} \quad \text{- Biot-Savart law.} \]

Induced emf

Magnetic flux: \(\Phi = BA \cos \theta \)

Faraday’s Law: \(\varepsilon = -N\frac{d\Phi}{dt} \)

Transformer: \(V_s / V_p = N_s / N_p \)

\(V_s I_s = V_p I_p \)

AC circuits

Current:

\(I(t) = I_0 \cos(2\pi ft) \)

Voltage:

\(V(t) = V_0 \cos(2\pi ft + \varphi) \)

RMS and peak:

\(I_{rms} = I_0 / \sqrt{2} \)

\(V_{rms} = V_0 / \sqrt{2} \)

<table>
<thead>
<tr>
<th>Resistor R</th>
<th>(V = IR)</th>
<th>(V_{rms} = I_{rms} R)</th>
<th>(I, V) – in phase: (\varphi = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitor</td>
<td>(dV / dt = I / C)</td>
<td>(V_{rms} = I_{rms} X_C)</td>
<td>(X_C = 1 / (2\pi C))</td>
</tr>
<tr>
<td>Inductor</td>
<td>(V = LdI / dt)</td>
<td>(V_{rms} = I_{rms} X_L)</td>
<td>(X_L = 2\pi L)</td>
</tr>
</tbody>
</table>

Impedance:

\(Z = \sqrt{R^2 + (X_L - X_C)^2} \)

\(V_{rms} = I_{rms} Z \)

Phase angle:

\(\tan \varphi = \frac{X_L - X_C}{R} \)

Power factor = \(\cos \varphi \)

Power dissipated:

\(P = I_{rms}^2 R \)

Resonance:

\(X_L = X_C \)

\(f_0 = \frac{1}{2\pi \sqrt{LC}} \)

EM waves

Displacement current:

\(I_D = \varepsilon_0 A \frac{dE}{dt} \)

Wave:

\(v = f\lambda \quad \text{EM wave in vacuum} \)

Trigonometry review

\(\sin \theta = \frac{opp}{hyp} \), \(\cos \theta = \frac{adj}{hyp} \), \(\tan \theta = \frac{opp}{adj} \)

Pythagorean theorem:

\(\text{hyp}^2 = \text{opp}^2 + \text{adj}^2 \)