Physics 122

Electric potential, Systems of charges

Concepts

• Primary concepts:
 – Electric potential
 – Electric energy

• Secondary concepts:
 – Equipotentials
 – Electronvolt

Charges in electric fields

Positive charges experience force along the direction of the field
Negative charges – against the direction of the field.

$$\vec{F} = q\vec{E}$$
Potential electric energy

Just like gravity, electric force can do work. Work does not depend on the path; it depends only on the initial and final position.

⇒ there is a potential energy associated with electric field.

Electric potential

$PE(q) \propto q$

- PE/q is a property of the field itself—called electric potential V.

Electric potential

$V = \frac{PE}{q}$

- V – electric potential is the potential energy of a positive test charge in electric field, divided by the magnitude of this charge q.
- Electric potential is a scalar (so much nicer!).
- Electric potential is measured in Volts ($V=J/C$).
- Potential difference between two points $\Delta V = V_b - V_a$ is often called voltage.
Charges in electric fields

\[E = \text{const} \]

Force on charge \(q \):
\[F = qE \]

Work done by the field to move this charge:
\[W = Fd = dqE \]
\[W = PE_a - PE_b = qV_a - qV_b = q\Delta V \]

\[dE = \Delta V \]

\(E \approx \Delta V/d \), points from high potential to low

Sometimes electric field is measured in \(V/m \approx N/C \)

Non-uniform electric field

\[\vec{E}(x) \Rightarrow \vec{F}(x) = q\vec{E}(x) \]
\[W = \int \vec{F}dx = q\int \vec{E}dx \]
\[U_a - U_b = -W_{ab} \]
\[V = \int \vec{E}d\vec{a} \]

Determine \(E \) from \(V \)

- Think ski slopes
- If \(V \) depends on one coordinate \(x \)
 - \(E \) is directed along \(x \) from high \(V \) to low
 \[E(x) = -\frac{dV}{dx} \]
- If \(V \) depends on \(x, y, z \)
 \[E_x = -\frac{\partial V}{\partial x}; \quad E_y = -\frac{\partial V}{\partial y}; \quad E_z = -\frac{\partial V}{\partial z} \]
Electric field and potential in conductors

\[E = 0 \text{ in good conductors in the static situation.} \]
\[E \] is perpendicular to the surface of conductor.

Metal hollow boxes are used to shield electric fields.

When charges are not moving conductor is entirely at the same potential.

\[E = E_{\text{external}} + E_{\text{internal}} = 0 \]
\[V = \text{const} \]

Electronvolt

• Energy that one electron gains when being accelerated over 1V potential difference is called electronvolt eV:
 \[1eV = 1.6 \times 10^{-19} \text{C} \]
 \[1V = 1.6 \times 10^{-19} \text{J} \]

• Yet another unit to measure energy,

• Commonly used in atomic and particle physics.

Equipotentials

Equipotentials

• are surfaces at the same potential;
• are always perpendicular to field lines;
• Never cross;
• Their density represents the strength of the electric field
• Potential is higher at points closer to positive charge
Potential of a point charge

Potential \(V \) of electric field created by a point charge \(Q \) at a radius \(r \) is

\[
V(r_0) = -\int Edr = -kQ \int_0^r \frac{dr}{r^2} = k \frac{Q}{r_0}
\]

\(Q > 0 \Rightarrow V > 0 \)
\(Q < 0 \Rightarrow V < 0 \)

Do not forget the signs!

Potential goes to 0 at infinity.

Equipotentials of a point charge are concentric spheres.

Superposition of fields

Principle of superposition:

Net potential created by a system of charges is a **scalar (!) sum** of potentials created by individual charges:

\[
V = V_1 + V_2 + V_3 + \ldots
\]

Potential is a scalar \(\Rightarrow \) no direction to worry about.

Electric Dipole potential

\[
V(r) = k \frac{Q}{r} - k \frac{Q}{r + \Delta r} = kQ \frac{\Delta r}{r(r + \Delta r)}
\]

\(\Delta r = \cos \theta \cdot \Delta r \)

\(\text{Let } r \gg L, \)

\[
V(r) = k \frac{p \cos \theta}{r^2}
\]
Test problem

- What is wrong with this picture?
 - A Equipotentials must be parallel to field lines
 - B Field lines cannot go to infinity
 - C Some field lines point away from the negative charge
 - D Equipotentials cannot be closed

The electric potential of a system of charges

\[V = V_1 + V_2 + V_3 + \ldots \]
\[V_i = \frac{k \cdot q_i}{r_i} \text{ - distance from charge } i \text{ to point in space where } V \text{ is evaluated} \]

\[dV = k \frac{dq}{r} \]
\[V = \int dV \]
Symmetry and coordinate systems

• Coordinate systems are there to help you
• You have a choice of
 – System type
 • Cartesian
 • Cylindrical
 • Spherical
 – Origin (0,0), Direction of axis
• A good choice (respecting the symmetry of the system) can help to simplify the calculations

Ring of charge

• A thing ring of radius \(a \) holds a total charge \(Q \). Determine the electric field on its axis, a distance \(x \) from its center.

\[
E = k \frac{Qx}{(x^2 + a^2)^{3/2}}
\]

Ring of charge

• A thing ring of radius \(a \) holds a total charge \(Q \). Determine the electric potential on its axis, a distance \(x \) from its center.

\[
dV = k \frac{Q d\phi}{2\pi \sqrt{x^2 + a^2}}
\]

\[
V = k \frac{Q}{(a^2 + x^2)^{1/2}}
\]
Work to move a charge

How much work has to be done by an external force to move a charge $q=+1.5 \, \mu C$ from point a to point b?

Work-energy principle

$$W = \Delta KE + \Delta PE = PE_2 - PE_1$$

$$PE_2 = qV_2 = q(V_1^b + V_2^b)$$

$$PE_1 = qV_1 = q(V_1^a + V_2^a)$$

E near metal sphere

- Find the largest charge Q that a conductive sphere radius $r=1cm$ can hold.
- Air breakdown $E=3x10^6 V/m$

$$E(r) = -\frac{dV}{dr} = -k\left(\frac{1}{r}\right) = k \frac{Q}{r^2}$$

$$Q = \frac{1}{k} E_r \cdot 2 = \frac{3 \times 10^6}{9 \times 10^{-9}} (10^{-2})^2 = 0.33 \times 10^{-7} = 0.033 \, \mu C$$

Larger spheres can hold more charge