Magnetism

Physics 122

Concepts

• Magnetic field
• Magnetic force

Skills

• Determine the direction of magnetic field created by electric current
• Determine the direction of magnetic force on electric current
• Two right hand rules
Magnets

- Magnets have magnetic poles – north and south
 - Like poles repel
 - Unlike poles attract
- Similarity to electric interaction

Magnetic field

- Introduce magnetic field:
 - Field lines go from north pole to south
 - Mnemonic rule – birds fly from north to south

Magnetic field of the Earth

- Earth has a magnetic field \(B \sim 5 \times 10^{-5} \text{T} \)
- Compass - a small magnet in a form of an arrow - is used to determine the direction of the magnetic field
- South magnetic pole is located close to the north geographic pole, that is why north end of the compass is pole is pointing there (unlike poles attract)
Magnetic field

- Magnetic field is labeled by B
- It is measured in Tesla and Gauss

 \[1T = 10 \text{ kG} \]
 \[1T = 1 \text{N/A m} \]

Magnets

- North and south poles do not exist separately!!!
 - Two halves of a broken magnet still have south and north pole each
- Different from electric charges – positive and negative charges can exist separately

Magnetic field created by currents

- Electric currents – moving electric charges – create magnetic field
- Stationary electric charges do not create magnetic field
- First right hand rule
 - Thumb along the current
 - Wrap your fingers around the wire
 - Fingers show the direction of the magnetic field
Magnetic field created by current

- Magnetic field \(B \) created by current \(I \) at a distance \(r \) from the conductor is:
 \[
 B = \frac{\mu_0 I}{2\pi r}
 \]
- \(\mu_0 = 4\pi \times 10^{-7} \text{Tm/A} \) - magnetic permeability of free space

Magnetic field of loop current

- Magnetic field is in ~ same direction inside a current loop
- Several loops create stronger magnetic field - solenoid

Magnetic field of a solenoid

- Magnetic field inside solenoid
 - Is parallel to its axis
 - Depends on the current \(I \)
 - Depends on the number of loops per unit length \(n=N/l \):
 \[
 B = \mu_0 n I
 \]
 - Does not depend on diameter
 - Does not depend on the total length
Magnetic force on electric currents
- Magnetic field exert a magnetic force on electric currents—
moving electric charges
\[F = IlB \sin \theta \]
\(\theta \)– angle between \(B \) and \(I \)
\(F \) is max when \(B \) is perpendicular to \(I \) and zero when \(B \) is parallel to \(I \)

Direction of the magnetic force
- Second right hand rule:
 - Fingers along the current
 - Bend to show the direction of the magnetic field
 - Thumb shows the direction of the force

Magnetic force on moving charge
- Magnetic force \(F \) is perpendicular to the velocity \(v \) of a particle with charge \(q \)
\[F = qvB \sin \theta \]
- Charged particles move in circles in magnetic fields
Magnetic fields are used to separate matter from antimatter
And measure particle velocity

Torque

\[\tau = r \vec{F} = Fr \sin \theta \]

\[\tau = r \vec{F} = rF \sin \theta \]

Current loop in magnetic field

\[\tau = \tau_1 + \tau_2 = IaB \frac{b}{2} + IaB \frac{b}{2} = Iab = IAB \]

- \(A = ab \) – area of the loop
- Magnetic field exerts a torque on a loop parallel to the magnetic field:

\[\tau = IAB \]
Current loop in magnetic field

- \(\theta \) – angle between magnetic field and a perpendicular to the loop!!!
- Magnetic field orients a loop current perpendicular to \(B \).
- \(N \) loops:

\[
\tau = NIAB \sin \theta
\]

Force between two currents

- Parallel currents attract
- Anti-parallel repel

\[
B_1 = \frac{\mu_0 I_1}{2\pi L}
\]
\[
F_{21} = I_2 B_1
\]
\[
F_{21} = \frac{\mu_0 I_1 I_2}{2\pi L}
\]