Induced EMF

Generators, Transformers

Physics 122

Concepts

- Electric generator
- Magnetic flux
- Induced EMF

Electric motor ↔ electric generator

- **Electric motor:**
 - electric energy → mechanical.
 - Current loop rotates in magnetic field
- **Electric generator:**
 - mechanical → electric energy
 - conductor loop rotating in magnetic field produces electric current
Magnetic flux

- If magnetic field is rain — magnetic flux is the amount of water in a bucket accumulated per unit of time:
 \[\Phi = B \cdot A = BA \cos \theta \]

- Magnetic flux is measured in Weber:
 \[1 \text{Wb} = 1 \text{Tm}^2 \]

Three ways to change flux:
- Change B
- Change A
- Change \(\theta \)

Faraday’s Law of induction

- Changing magnetic flux induces emf (voltage),
- Acts like a battery!

\[\text{emf} = -N \frac{d\Phi}{dt} \]

Lenz’s Law: conservatism of nature

- An induced emf always gives rise to a current whose magnetic field opposes the original change in flux:
 - Flux decreases \(\Rightarrow \) internal \(B_{int} \) (created by the induced current) is in the same direction as the external \(B_{ext} \)
 - Flux increases \(\Rightarrow \) \(B_{int} \) – in the opposite direction to \(B_{ext} \)
 - Determine current direction using 1st right hand rule
Moving conductor

- A conducting rod is moving to the right on a U-shaped conductor in a uniform magnetic field → flux is increasing
 \[\frac{d\Phi}{dt} = B l v dt\]

- Induced emf:
 \[\text{emf} = \frac{d\Phi}{dt} = B l v\]

- Induced electric field:
 \[E = \frac{\text{emf}}{l} = v B\]

Electric generator

- Electric generator:
 - conductor loop rotating in magnetic field produces
 - Alternating electric current AC
 - Angle between B and \(\vec{A}\) \(\theta = \omega t\)
 - Flux:
 \[\Phi = B A \cos \omega t\]

- Induced emf:
 \[\text{emf} = -N \frac{d\Phi}{dt} = -N B A \frac{d \cos \omega t}{dt}\]
 \[\text{emf} = N B A \omega \sin \omega t\]

Alternating current (AC)

- Emf changes sign → current changes the direction
 \[\text{emf} = \text{emf}_0 \sin \omega t\]

\[V = V_0 \sin \omega t\]

\[V_0 = NBA \omega\]

\[I = I_0 \sin \omega t\]

\[I_0 = \frac{V_0}{R_{eq}}\]

\[V = V_0 \sin \omega t\]
Transformer

- If all flux goes through the core:

\[V_p = N_p \frac{d\Phi}{dt} \]
\[V_s = N_s \frac{d\Phi}{dt} \]

\[\frac{V_s}{V_p} = \frac{N_s}{N_p} \]

- If energy is conserved

\[I_p V_p = I_s V_s \]

\[\frac{I_s}{I_p} = \frac{N_p}{N_s} \]

- If efficiency \(\varepsilon < 100\% \)

\[I_s V_s = \varepsilon I_p V_p \]

- Power transmission

- High voltage \(\rightarrow \) low current \(\rightarrow \) power loss in power line resistance is lower:

\[P_{\text{loss}} = I^2 R \]

Power is dissipated only in resistors!!!
Power transmission

- 65kW is transmitted over two 0.100 Ohm lines.
- \(V = 120 \rightarrow 1200V \rightarrow 120V \), \(\varepsilon = 99\% \)
- Compare losses to power transmission at 120V

\[
P_{\text{loss}}(\text{transformer}) = (1 - \varepsilon)P \\
P_{\text{loss}}(\text{resistor}) = I^2R
\]

Moving conductor – eddy currents

- \(A \) increases \(\Phi \) increases
 - Induced current creates \(B_{int} \) opposite to external \(B_{ext} \)
- \(I \) down
- Now we have a current in magnetic field \(\Rightarrow \) there is a force acting on it
 - The direction of this force is opposite to \(v \)
 - Conservatism of nature
 - Currents created in conductors moving through the magnetic field – eddy currents – work to resist the change

Electric generator – counter torque

- Loop is rotating cw
- Induced currents experience force in magnetic field \(\Rightarrow \) resultant torque on the loop cw – counter torque
- Nature resists change.
Electric motor – counter emf

- Current loop in magnetic field
- Magnetic field creates a torque that rotates the loop
- Changing flux \Rightarrow emf
- Based on conservatism – this emf will try to create a current in the opposite direction to the original current - **counter emf**.
- Current is large at the beginning and is decreased later on.