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Abstract

In this paper we will extend the solutions of the single, double, and triple pendulum to a system
of arbitrary n pendulums each hanging below the previous, and explore the equations of motion for
small oscillations about the equilibrium position. We will approach this problem both from a Newtonian
Mechanics and Lagrangian Dynamics perspective. We will also explore the resulting equations of motion
for small oscillations of a hanging rope of constant mass density by both taking the limit n→∞ in our
solution for the n-pendulum, and by formulating Lagrangian Dynamics for a continuous system. We will
show that all of these approaches result in identical equations of motion and are therefore equally valid
ways of approaching this problem. Finally, we will present a numerical solution to the nonlinear equations
of motion for the n-pendulum and demonstrate chaotic behavior through Mathematica animations.
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1 INTRODUCTION
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Figure 1.1: Sketch of the n-pendulum system for n = 1, n = 2, n = 3, and arbitrary n.

1 Introduction

The simple pendulum, consisting of a mass-bob suspended by a rigid rod allowed to pivot
about the suspension point, is one of the most iconic systems in physics. Its properties have
been studied extensively for hundreds of years and is an iconic demonstration included in every
introductory physics course. Many variations on the simple pendulum have been studied over
the years that have practical applications useful for timekeeping or engineering purposes, such
as Huygen’s pendulum and Foucault’s pendulum. Other variations pose physically interesting
problems to explore that test our understanding of the physical world, like the Kapitza pendulum.

An example of such a “physically interesting” variation of the simple pendulum involves
hanging another simple pendulum from the first. This system, dubbed the “double pendulum,”
was explored in class. As a homework assignment we solved the “triple pendulum,” which
includes a third pendulum hung from the second. In this paper, we will extend the analysis
of these two systems to an arbitrary number of n many pendulums each suspended from the
mass-bob of the pendulum above it. As the sketch of these systems in Figure 1.1 shows, we
will index the mass and arm length of the ith bob as mi and ai respectively, where i = 0 refers
to the fixed point at the top, i = 1 refers to the top-most pendulum, and i = n describes the
bottom-most pendulum.

Throughout our analysis we will carry out as much of the derivation as we easily can with as
few assumptions as possible. In our final solutions however, we will use the following simplifying
assumptions:

1. The mass of each pendulum bob is equal. That is, mi = m ∀ i.
2. The arm length of each pendulum is equal. That is, ai = a ∀ i.
3. In the limit n → ∞, we keep the total length of the system fixed. That is, ` = na is

constant.

4. In the “small oscillations” linear approximation, described by θi � 1 ∀ i, we will keep
terms in the Taylor expansion up to second order.

We will explore two methods of solving this problem that will result in equivalent solutions,
each of which will be approached from a Newtonian and Lagrangian Mechanics perspective:

1. Solving for the equations of motion for finite n (discrete case), then taking the limit n→∞.

2. First taking the limit n→∞ (continuous case), then solving for the equations of motion.

Finally, we will observe the chaotic behavior of the full nonlinear solution by solving the equations
of motion numerically and producing an animation of the motion using Mathematica.
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2 NEWTONIAN APPROACH

2 Newtonian Approach

The approach using Newtonian Mechanics is centered around determining all of of the forces
acting on the given system and using Newton’s second law

~Fnet =
∑
i

~Fi = m~a (Newton’s 2nd Law)

where ~Fnet is the sum of all of the forces ~Fi acting on one particle in the system, m is the
mass of the particle, and ~a is the particle’s acceleration. The acceleration may also be denoted
as

~a =
d2~x

dt2
= ~̈x

where ~x is the position vector of the particle and each dot denotes a time derivative. We will
use the dot notation to represent differentiation with respect to time throughout the rest of this
paper.

2.1 Equations of Motion for Finite n

We first need to determine an adequate coordinate system to describe the positions of each
mass-bob. Using the indexing convention shown in Figure 1.1, we call θi the angle between the
vertical and the ith arm. Define the origin (x0, y0) = (0, 0) to be at the fixed pivot point at
i = 0. Let the line along which the pendulum would lie along if it were at rest define the y-axis,
and set the x-axis perpendicular to this plane. Then we can also define the coordinates (xi, yi)
such that xi is the horizontal displacement from the y-axis and yi is the y-coordinate of the ith

mass-bob. These coordinates are displayed in Figure 2.1.
Each mass-bob will experience a torque due to the gravitational force if displaced from the

equilibrium position. The magnitude of the downward force pulling on the ith mass-bob will be
due to the weight of all of the other masses below it, which we will denote as the tension Ti by

Ti =
n∑

j=i+1

mjg.

The horizontal component of Ti will be the harmonic restoring force ~Fi pointing towards the
y-axis that brings the pendulum back to its equilibrium position, with magnitude:

Fi = Ti tan θi =

n∑
j=i+1

mjg tan θi. (2.1)

However, the mass-bob above will also be subject to its own restoring force due to all of the
weight below it, and so it too will be moving. In other words, the pivot point of the ith mass-bob
is the (i− 1)th bob, which is in motion itself, with the lone exception of the “zeroth” bob (the
origin). Thus the difference in the magnitudes of the forces acting on the ith and (i− 1)th bob
will create the resulting net-force by Newton’s second law that will result in the motion of the ith

pendulum. For small oscillations, we can approximate the motion as purely in the x direction.
Thus Newton’s second law becomes

Fnet = Fi − Fi−1 =
n∑

j=i+1

mjg tan θi −
n∑
j=i

mjg tan θi−1 = mẍi. (2.2)

We can simplify this further by making use of Assumptions 1 and 4 described in Section 1,
yielding

(n− i)mgθi − (n− i+ 1)mgθi−1 = mẍi, (2.3)
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2 NEWTONIAN APPROACH 2.1 Equations of Motion for Finite n

Ti = Sum[mi g, {j,i+1,n}] = (n-i)mg
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Figure 2.1: Forces acting on the ith and (i− 1)th mass-bob caused by the tension due to all masses
below that point. The difference in the forces between neighbors will produce the net force, causing the
motion of that particular mass-bob. The combined interactions of all the mass-bobs result in the overall

motion of the system.
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2 NEWTONIAN APPROACH 2.1 Equations of Motion for Finite n

where we have used the Taylor series approximation tan θ ≈ θ for θ � 1. Now, from Figure 2.1,
it can be seen that for small angles the angle θi can be approximated as

θi =
∆xi
ai+1

where
∆xi = xi+1 − xi

is the difference in x coordinates between the mass bob and the one below it. It is this angle
that defines the horizontal component of the tension. Making these substitutions into equation
(2.2) we find

(n− i)mg
(
xi+1 − xi
ai+1

)
− (n− i+ 1)mg

(
xi − xi−1

ai

)
= mẍi. (2.4)

We can cancel the mass m from both sides and rearrange terms on the left side to yield

ẍi = g

[
(n− i)

(
xi+1 − xi
ai+1

− xi − xi−1
ai

)
−
(
xi − xi−1

ai

)]
(2.5)

which describes the motion of the ith pendulum. This equation was first found by Daniel
Bernoulli and then Euler in the 1730s, and later by Johann Bernoulli in 1742, who all worked
independently to solve the problem of the then called “hanging chain” [1]. As we will see in the
next section, when we take the limit to the continuous case, we will find what Bernoulli first
discovered when he solved this problem.

2.1.1 Equations of Motion in the Limit n→∞

First, we rewrite equation (2.5) as the following by multiplying the first term in the square
brackets by a

a and applying Assumption 2:

ẍi = g

[
(n− i)a

a

(
xi+1 − xi
ai+1

− xi − xi−1
ai

)
−
(
xi − xi−1

ai

)]
. (2.6)

As we take the limit of equation (2.5) for n→∞, the coordinates of each mass-bob will become
the function describing the shape of the now rope of constant mass density with time. That is,

lim
n→∞

xi = x = x(y, t).

Thus

lim
n→∞

ẍi =
∂2x(y, t)

∂t2
.

By Assumption 3 we will also have

lim
n→∞

(n− i)a = (`− y).

By the definition of the derivative, the remaining terms become

lim
n→∞

(
xi − xi−1

ai

)
=
∂x(y, t)

∂y
,

lim
n→∞

1

a

(
xi+1 − xi
ai+1

− xi − xi−1
ai

)
=
∂2x(y, t)

∂y2
.

Thus equation (2.6) becomes

∂2x

∂t2
= g

[
(`− y)

∂2x

∂y2
− ∂x

∂y

]
(2.7)

We have recovered the wave equation, albeit in a different form than we are used to! We will
now derive this exact equation starting from the continuous system, and solve it for x(y, t).
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2 NEWTONIAN APPROACH 2.2 Equations of Motion for a Continuous Mass-Density Rope

2.2 Equations of Motion for a Continuous Mass-Density Rope

This will be a very similar treatment of the problem as in Section 2.1, but nevertheless we will
demonstrate the “correctness” of the result of taking the limit by solving the problem from a
continuous setup. Consider a vertically hanging rope of constant mass density µ that is hanging
from one end with the other free to move. Let x = x(y, t) describe the displacement from the
vertical axis at a point y along the vertical axis at time t. The tension at any point in the rope
is due to all the weight of the rope hanging below that point. Focusing our attention on an
infinitesimal piece of the rope of length ds at a distance y along the rope, this piece is subject
to the tension force

T (y) = µ(`− y)g

in the case of small oscillations, so that to first order the arclength s and coordinate y are equal.
Again, the restoring force will be the horizontal component of the tension:

F = T (y) tan θ = T (y)
∂x

∂y
. (2.8)

For an infinitesimal chunk of rope, Newton’s second law reads

dF = dmẍ = µdyẍ

or equivalently

µẍ =
dF

dy
.

Combining with equation (2.8) we have

µẍ = µ
∂2x

∂t2
=

d

dy

(
T (y)

∂x

∂y

)
=

d

dy

(
µ(`− y)g

∂x

∂y

)
= −µg∂x

∂y
+ µg(`− y)

∂2x

∂y2
,

and by cancelling µ from both sides we recover

∂2x

∂t2
= g

[
(`− y)

∂2x

∂y2
− ∂x

∂y

]
(2.9)

which is exactly equation (2.7) as expected. To solve this differential equation, we will use the
method of separation of variables and make the separable ansatz

x(y, t) = φ(y)G(t).

Substituting this into (2.9) and dividing both sides by φ(y)G(t) yields

1

G

dG2

∂t2
= g

[
(`− y)

∂2φ

∂y2
− ∂φ

∂y

]
1

φ
= −ω2

where we choose the separation constant −ω2 in anticipation of a harmonic oscillator. This
gives us the following two ordinary differential equations:

d2G

dt2
+ ω2G = 0 (2.10)

(`− y)
d2φ

dy2
− dφ

dy
+
ω2

g
φ = 0 (2.11)

Equation (2.10) is solved by a harmonic oscillator

G(t) = A cos(ωt− φ) (2.12)
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2 NEWTONIAN APPROACH 2.2 Equations of Motion for a Continuous Mass-Density Rope

so we can see that ω has the meaning of frequency. For equation (2.11), we make the change of
variables

z2 =
4

g
(`− y).

The derivatives transform as

dφ

dy
=
dφ

dz

dz

dy
=
−2

gz

dφ

dz
,

d2φ

dy2
=

d

dy

(
−2

gz

dφ

dz

)
=

4

g2z2
d2φ

dz2
− 4

g2z3
dφ

dz
.

Substituting these into (2.11) gives

gz2

4

(
4

g2z2
d2φ

dz2
− 4

g2z3
dφ

dz

)
+

2

gz

dφ

dz
+
ω2

g
φ = 0.

Distributing through the first term gives

1

g

d2φ

dz2
− 1

gz

dφ

dz
+

2

gz

dφ

dz
+
ω2

g
φ = 0,

and multiplying everything by gz2 we get

z2
d2φ

dz2
+ z

dφ

dz
+ ω2z2φ = 0, (2.13)

which is Bessel’s equation of order zero, first encountered in this context by Daniel Bernoulli in
1733 [1]! The solution to (2.13) is a linear combination of the zeroth order Bessel functions

φ(z) = AJ0(ωz) +BY0(ωz).

Our solution must remain finite at the end of the rope corresponding to y = ` or z = 0, thus
since Y0(ωz) is singular at the origin the coefficient B must vanish. So our solution in y is

φ(y) = AJ0

(
2ω

√
`− y
g

)
.

We can determine the constant ω using the boundary condition at the fixed point

φ(0) = 0.

Thus the frequency ω is determined by the equation

J0

(
2ω
√
`/g
)

= 0, (2.14)

which has infinitely many solutions (Bernoulli understood this from the fact that for n linked
pendulums, there will be n modes, and in this case we have taken the limit n→∞ [1]). If we
denote z0n as the nth positive solution of

J0(z) = 0

then we can express the frequencies as

ωn =
1

2

√
g

`
z0n.

When Bernoulli derived this expression, he had discovered the problem of finding the zeroes
of the zeroth order Bessel function J0. Both Bernoulli and Euler used their solutions in the
discrete case, like we had derived in Section 2.1, to numerically approximate the zeroes by using
their solutions as an expansion of the continuous solution. They even go as far as to confirm
the first several zeroes experimentally by, of course, measuring the frequencies of oscillation of
a hanging chain [1]. Nowadays, however, we have computers at our disposal to crank out the
calculations.
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2 NEWTONIAN APPROACH 2.2 Equations of Motion for a Continuous Mass-Density Rope

Putting the two solutions together, the normal modes of the rope can be expressed as

xn(y, t) = AJ0

(
2ωn

√
`− y
g

)
cos(ωnt− φ). (2.15)

Thus we can write the final solution for the motion of the rope as

x(y, t) =
∞∑
n=1

AJ0

(
2ωn

√
`− y
g

)
cos(ωnt− φ), ωn =

1

2

√
g

`
z0n (2.16)

We can make some plots in Mathematica to see how the first few normal modes evolve with
time. The first six are shown in Figure 2.2.

To briefly summarize, we have used Newtonian mechanics to determine the equations of
motion for an arbitrary but finite number of n pendulums, each hanging from the previous
(equation (2.5)). We took the limit of this equation to obtain a differential equation describing
the motion (equation (2.7)), as well as deriving the differential equation directly approaching
the system as a continuous system (equation (2.9)). We solved this differential equation and
obtained Bessel functions to describe the mode shapes and a harmonic oscillator to describe
the time evolution of the system (equation (2.15)). The frequencies of small oscillations are
determined by the zeroes of the zeroth order Bessel function (equation (2.16)). We will now
approach the problem using a Lagrangian Mechanics perspective, and compare our solutions to
what we have found so far.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

t = 0

t = T/4

t = T/2

t = 3T/4

t = T

Figure 2.2: The first six normal modes of small oscillations of a hanging rope, given by equation (2.15)
at evenly spaced time intervals over the course of one period T of oscillation.
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3 LAGRANGIAN APPROACH

3 Lagrangian Approach

In stark contrast to Newtonian Mechanics, formulating a problem in Lagrangian Mechanics
requires no analysis of forces1. Instead, the energy of the system and principle of extremal
action are used to determine the equations of motion. The principle of extremal actions states
that the action, defined as

S ≡
∫ t2

t1

L(qi, q̇i; t)dt

of a particle moving between two points is extremized. The function L(qi, q̇i; t) of the generalized
coordinates qi and velocities q̇i is called the Lagrangian of the system and is defined as the
difference of the kinetic and potential energies

L = T − U.

For the action to be minimized, the Lagrangian must satisfy the Euler-Lagrange equations,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0,

which produce the equations of motion. For the discrete case, where n is finite, we will use this
approach in determining the equations of motion. However when we consider the continuous
case for the rope, we will need to reformulate the principle of extremal action to apply it to a
continuous system.

3.1 Equations of Motion for Finite n

We will use the same coordinates represented in Figure 2.1 to describe the position of each
mass-bob. Specifically, we will use the angles θi defining the angular displacement from the
vertical for each mass-bob as the generalized coordinates for the system. Once we have found
the equations of motion, we will use the relation

θi =
xi+1 − xi
ai+1

(3.1)

to change coordinates back to the form used in Section 2 so that we may compare to our
solutions there.

3.1.1 The Lagrangian and Equations of Motion

We will first derive the explicit Lagrangian for the full nonlinear system, then apply Assumption
4 in the linear approximation. We start by by expressing the cartesian coordinate position of
each mass-bob in terms of the angular displacement coordinate θi

x1 = a1 sin θ1 y1 = a1 cos θ1

x2 = x1 + a2 sin θ2 y2 = y1 + a2 cos θ2

x3 = x2 + a3 sin θ3 y3 = y2 + a3 cos θ3
...

...

xi =

i∑
j=1

aj sin θj yi =

i∑
j=1

aj cos θj (3.2)

1So long as there are no external forces, in which case the Lagrange multiplier technique and constraint equations are
needed.
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3 LAGRANGIAN APPROACH 3.1 Equations of Motion for Finite n

The velocities in each direction for the ith mass-bob are then

ẋi =
i∑

j=1

aj θ̇j cos θj ẏi = −
i∑

j=1

aj θ̇j sin θj (3.3)

So the overall velocity squared is the sum of the square of equations (3.3a) and (3.3b)

v2i = ẋ2i + ẏ2i =

 i∑
j=1

aj θ̇j cos θj

2

+

 i∑
j=1

aj θ̇j sin θj

2

.

Thus the kinetic energy of the whole system is

T =
1

2

n∑
i=1

miv
2
i =

1

2

n∑
i=1

mi

 i∑
j=1

aj θ̇j cos θj

2

+

 i∑
j=1

aj θ̇j sin θj

2 , (3.4)

and the potential energy is, taking y = 0 to be the zero of potential energy,

U = −g
n∑
i=1

miyi = −g
n∑
i=1

i∑
j=1

miaj cos θj . (3.5)

Therefore the Lagrangian for the n-pendulum is

L =
1

2

n∑
i=1

mi

 i∑
j=1

aj θ̇j cos θj

2

+

 i∑
j=1

aj θ̇j sin θj

2+ g

n∑
i=1

i∑
j=1

miaj cos θj (3.6)

We will use this Lagrangian in Section 4 to numerically solve for the full nonlinear equations
of motion. Here, however, we will Assumption 4 so that

cos θi ≈ 1− θ2i
2

sin θi ≈ θi (3.7)

Then the Lagrangian in (3.6) will become

L ≈ 1

2

n∑
i=1

mi

 i∑
j=1

aj θ̇j(1−
θ2j
2

)

2

+

 i∑
j=1

aj θ̇jθj

2+ g
n∑
i=1

i∑
j=1

miaj(1−
θ2j
2

) (3.8)

We can drop the constant term from the potential energy term in (3.8) and write the Lagrangian
equivalently as

L ≈ 1

2

n∑
i=1

mi

 i∑
j=1

aj θ̇j(1−
θ2j
2

)

2

+

 i∑
j=1

aj θ̇jθj

2− 1

2
g

n∑
i=1

i∑
j=1

miajθ
2
j (3.9)

Keeping with Assumption 4, we drop the higher order terms from (3.9) in favor of

L ≈
n∑
i=1

1

2
mi

 i∑
j=1

aj θ̇j

2

− g
i∑

j=1

ajθ
2
j

 (3.10)

where we have also rearranged the summations and some terms to make the expression cleaner.
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3 LAGRANGIAN APPROACH 3.1 Equations of Motion for Finite n

We can now compute the kth Euler-Lagrange equation for the Lagrangian in (3.10) by first
finding each of the partial derivatives. We’ll start with

∂L

∂θk
= −

n∑
i=1

i∑
j=1

1

2
migaj

∂(θ2j )

∂θk
= −

n∑
i=1

i∑
j=1

migakθkδjk

where δjk is the Kronecker delta, defined by

δij =

{
1 i = j

0 i 6= j
(Kronecker delta)

which has the effect of relabeling the summations, yielding

∂L

∂θk
= −akθkg

n∑
i=k

mi. (3.11)

From Assumptions 1 and 2, we can write (3.11) as

∂L

∂θk
= −(n− k + 1)mgaθk. (3.12)

Next we find the partial derivative with respect to θ̇k:

∂L

∂θ̇k
=

n∑
i=1

mi

 i∑
j=1

aj θ̇j

 i∑
l=1

alδlk.

Using Assumptions 1 and 2, we can simplify this as

∂L

∂θ̇k
= ma2

n∑
i=1

 i∑
j=1

θ̇j

( i∑
l=1

δlk

)

= ma2
n∑
i=1
i≥k

i∑
j=1
j≤i

θ̇j (Relabelling the outer sum)

= ma2
n∑
j=1
i≥j

n∑
i=1
i≥k

θ̇j (Swapping summations)

Now, i is an upper bound here for both j and k, so we can combine the inequalities and write
this last expression as

∂L

∂θ̇k
= ma2

n∑
j=1

n∑
i=max(k,j)

θ̇j = ma2
n∑
j=1

(n−max(k, j) + 1)θ̇j .

Thus we find
d

dt

∂L

∂θ̇k
= ma2

n∑
j=1

(n−max(k, j) + 1)θ̈j . (3.13)

Together, (3.12) and (3.13) give the equations of motion

d

dt

∂L

∂θ̇k
− ∂L

∂θk
= ma2

n∑
j=1

(n−max(k, j) + 1)θ̈j + (n− k + 1)mgaθk = 0. (3.14)
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3 LAGRANGIAN APPROACH 3.1 Equations of Motion for Finite n

Dividing (3.14) by ma2 we get

n∑
j=1

(n−max(k, j) + 1)θ̈j + (n− k + 1)
g

a
θk = 0 (3.15)

which for n = 1 recovers the equation of motion for a simple pendulum of length a

θ̈1 +
g

a
θ1 = 0 (Simple pendulum)

Equation (3.15) gives the equations of motion for small oscillations of the n-pendulum. To
compare to the equations of motion found in Section 2.1 (equation (2.5)), we use the relation
given in equation (3.1) and rewrite (3.15) as

n∑
i=1

(n−max(k, i) + 1)(ẍi − ẍi−1) + g(n− k + 1)
xi − xi−1

a
= 0 (3.16)

where we have also relabelled the summation index j to i and multiplied both sides by a factor
of a. Each term in the summation here is subtracting term before it, so to see how things may
cancel we can write out the summation into three parts:

k−1∑
i=1

(n− k + 1)(ẍi − ẍi−1)︸ ︷︷ ︸
i < k terms

+ (n− k + 1)(ẍk − ẍk−1)︸ ︷︷ ︸
i = k term

+
n∑

i=k+1

(n− i+ 1)(ẍi − ẍi−1)︸ ︷︷ ︸
i > k terms

+g(n−k+1)
xk − xk−1

a
= 0

(3.17)
We’ll first look at how the first group of terms (i < k) behave by writing out the last several

terms explicitly:

k−1∑
i=1

(n−k+1)(ẍi−ẍi−1) = (n−k+1)

(
k−4∑
i=1

(ẍi − ẍi−1) + (��
�ẍk−3 − ẍk−4) + (��

�ẍk−2 −���ẍk−3) + (ẍk−1 −���ẍk−2)

)
Writing the sum out like this allows us to see that the sum is telescoping as the ẍi−1 term cancels
the ẍi term in the piece before it, leaving behind only the first term of the last piece ẍk−1 and
the last term of the first piece ẍ0. However, the latter term is zero since i = 0 corresponds to the
the fixed pivot point at the top of the system. Thus the entire summation reduces down to just

k−1∑
i=1

(n− k + 1)(ẍi − ẍi−1) = (n− k + 1)ẍk−1. (3.18)

If we substitute this into (3.17), we can see that the second term in the i = k term cancels
(3.18), so (3.17) becomes

(n− k + 1)ẍk +
n∑

i=k+1

(n− i+ 1)(ẍi − ẍi−1) + g(n− k + 1)
xk − xk−1

a
= 0. (3.19)

To reduce this, we use a similar treatment for the i > k summation by writing out the first
two terms as follows:
n∑

i=k+1

(n− i+ 1)(ẍi − ẍi−1) = (n− k)(ẍk+1 − ẍk) + (n− k − 1)(ẍk+2 − ẍk+1) +
n∑

i=k+3

(n− i+ 1)(ẍi − ẍi−1)

= (n− k)(��
�ẍk+1 − ẍk) + (n− k)(ẍk+2 −���ẍk+1)− (ẍk+2 − ẍk+1) +

n∑
i=k+3

(n− i+ 1)(ẍi − ẍi−1)

= −(n− k)ẍk + (n− k)ẍk+2 − ẍk+2 + ẍk+1 +

n∑
i=k+3

(n− i+ 1)(ẍi − ẍi−1)

12



3 LAGRANGIAN APPROACH 3.1 Equations of Motion for Finite n

We’ll write out one more term, so the last line becomes

= −(n− k)ẍk + (n− k)ẍk+2 − ẍk+2 + ẍk+1 + (n− k − 2)(ẍk+3 − ẍk+2) +

n∑
i=k+4

(n− i+ 1)(ẍi − ẍi−1)

= −(n− k)ẍk +((((
(((n− k)ẍk+2 − ẍk+2 + ẍk+1 + (n− k)(ẍk+3 −���ẍk+2)− 2(ẍk+3 − ẍk+2)

+

n∑
i=k+4

(n− i+ 1)(ẍi − ẍi−1)

= −(n− k)ẍk + ẍk+1 + ẍk+2 + (n− k)ẍk+3 − 2ẍk+3 +
n∑

i=k+4

(n− i+ 1)(ẍi − ẍi−1)

So each piece of the summation has its lower term cancel the higher term from the piece below
it, but always while leaving behind one factor of ẍi, since we can always factor out the (n− k)
part to make pieces cancel. Since the sum runs to n, the final piece will have a coefficient of
(n− n+ 1) = 1, so there will be one final copy of ẍn left at the end as expected by the pattern.
Thus the sum can be rewritten as

n∑
i=k+1

(n− i+ 1)(ẍi − ẍi−1) = −(n− k)ẍk +

n∑
i=k+1

ẍi. (3.20)

Then substituting this back into (3.19), and also rewriting the first term of (3.19) as
(n− k + 1)ẍk = ẍk + (n− k)ẍk we have

ẍk + (n− k)ẍk − (n− k)ẍk +
n∑

i=k+1

ẍi + g(n− k + 1)
xk − xk−1

a
= 0, (3.21)

or

ẍk +

n∑
i=k+1

ẍi + g(n− k + 1)
xk − xk−1

a
= 0. (3.22)

Notice that (3.22) can be rewritten as

n∑
i=k

ẍi + g(n− k + 1)
xk − xk−1

a
= 0

→
n∑
i=k

ẍi = −g(n− k + 1)
xk − xk−1

a
. (3.23)

and substituting (3.23) into (3.22) and keeping track of the indices we have

ẍk − g(n− k)
xk+1 − xk

a
+ g(n− k + 1)

xk − xk−1
a

= 0, (3.24)

which can easily be rearranged to find

ẍk = g

[
(n− k)

(
xk+1 − xk

a
− xk − xk−1

a

)
− xk − xk−1

a

]
(3.25)

which describes the motion of the kth pendulum and is exactly equation (2.5) with index k
rather than i. Notice here the a’s do not have indices as we made use of Assumption 2 much
earlier here than we did in Section 2.1. Thus we have arrived at the same conclusion using
Lagrangian Mechanics as we did with Newtonian Mechanics, albeit with quite a bit more work2.

2This is not usually the case!
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3 LAGRANGIAN APPROACH 3.1 Equations of Motion for Finite n

3.1.2 Frequencies of Small Oscillation and the Normal Modes

For a system with many degrees of freedom, such as the n-pendulum, the natural frequencies of
oscillation ω are given by the eigenvalue problem with characteristic equation

det(K − ω2M) = 0, (3.26)

where K is the Hessian of potential energy with components

Kµν =
∂2U

∂qµ∂qν
, (3.27)

and M is the inertia matrix with components

Mµν =
∂2T

∂q̇µ∂q̇ν
. (3.28)

Returning to the Lagrangian from equation (3.10), the kinetic energy and potential energy
of the n-pendulum for small oscillations are given by

T =
1

2

n∑
i=1

mi

 i∑
j=1

aj θ̇j

2

(3.29)

U =
1

2
g

n∑
i=1

i∑
j=1

miajθ
2
j (3.30)

From this we can determine the matrices K and M :

Kµν =
∂2U

∂θµ∂θν
=

1

2
g

n∑
i=1

i∑
j=1

miaj
∂2(θj)

2

∂θµ∂θnu
= g

n∑
i=1

i∑
j=1

miajδµνδµj = gaµδµν

n∑
i=µ

mi (3.31)

Mµν =
∂2T

∂θ̇µ∂θ̇µ
=

∂

∂θ̇µ

n∑
i=1

mi

 i∑
j=1

aj θ̇j

 i∑
l=1

al
∂θ̇l

∂θ̇ν
=

n∑
i=1

mi

 i∑
j=1

aµδµj

i∑
l=1

aνδlν


= aµaν

n∑
i=1

mi

 i∑
j=1

δµj

i∑
l=1

δlν

 = aµaν

n∑
i=max(µ,ν)

mi (3.32)

From Assumptions 1 and 2, we can simplify (3.31) and (3.32) as

Kµν = (n− µ+ 1)mgaδµν (3.33)

Mµν = (n−max(µ, ν) + 1)ma2 (3.34)

so the characteristic equation for the natural frequencies of small oscillations of the
n-pendulum is

det((n− µ+ 1)mgaδµν − ω2(n−max(µ, ν) + 1)ma2) = 0 (3.35)

For n = 1 this reduces to

mga− ω2ma2 = 0→ ω =
√
g/a

which is just the frequency of small oscillations for the simple pendulum, as expected. For n = 2,
the double pendulum, we expect 2 natural frequencies to solve the characteristic equation. For

14



3 LAGRANGIAN APPROACH 3.1 Equations of Motion for Finite n

an arbitrary value of n, the number of solutions to the n× n eigenvalue equation will also be
n. As we take n→∞, we will get an infinite number of solutions. We saw this in Section 2.2,
where the frequencies were determined by the roots of the zeroth order Bessel function, of which
there are infinitely many for this reason.

To find the eigenvalues, then, we use Mathematica to solve the eigenvalue equation (3.35) for
increasing n. As seen in Figure 3.1, for increasing n, the mth frequency approaches a constant
value, exactly corresponding to one half the mth zero of J0, as predicted by equation (2.16).

The normal modes are the eigenvectors corresponding to the eigenvalues of equation (3.35).
Using Mathematica we can solve the eigenvalue equation

(K − ω2M)v = 0 (3.36)

for the eigenvectors v. The ith components of the mth eigenvector vm correspond to the values
of the θi coordinate in the mth normal mode. Figure 3.2 shows a plot of the lowest 3 modes for
various values of n plotted on top of the corresponding normal mode of the zeroth order Bessel
function from equation (2.15).

0 20 40 60 80 100
n

0

5

10

15

20

ω
 (
√ g l

)

Natural frequencies of the n-pendulum

Figure 3.1: The lowest 12 natural frequencies ω of small oscillations of the n-pendulum, in units of√
g/`, for increasing values of n. As n→∞, the mth natural frequency approaches 1

2z0m (denoted by
the red horizontal lines), where z0m is the mth positive root of the zeroth order Bessel function J0.

1st mode 2nd mode 3rd mode

Figure 3.2: The lowest 3 normal modes determined by solving the eigenvalue equation (3.36) for the
eigenvectors corresponding to the eigenfrequencies obtained from equation (3.35), for n = 5, n = 10,
n = 15, and n = 20 pendulums. The corresponding mode of the zeroth order Bessel function from
equation (2.15) is overlaid in blue for comparison. As n→∞, the continuous case is approached.
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3 LAGRANGIAN APPROACH 3.2 Equations of Motion for a Continuous Mass-Density Rope

3.2 Equations of Motion for a Continuous Mass-Density Rope

The Euler-Lagrange equations of the form presented in the previous section are a set of n
differential equations for a system with n degrees of freedom. In solving for the equations of
motion for the n-pendulum, we indeed obtained n equations, although our indexing allowed us
to write them all in one. However, if we wish to take the limit n→∞, there will be an infinite
number of corresponding Euler-Lagrange equations, and we can’t exactly solve an system of
infinitely many differential equations. Thus, we must re-derive the Euler-Lagrange equation for
the case of a continuous system with infinite number of degrees of freedom.

3.2.1 The Lagrangian Formulation for a Continuous System

We will closely follow the derivation found in chapter 13 of Goldstein’s Classical Mechanics [2],
however the notation will be adjusted to mimic the derivation of the Euler-Lagrange equations
presented in class.

For a continuous system, we define the Lagrangian of the system to be

L =

∫∫∫
L dxdydz (3.37)

where L is called the Lagrangian density and is the difference in kinetic energy and potential
energy of an infinitesimal piece of the system. For a one-dimensional continuous system, as is our
case, let x = x(y, t) be the coordinate scalar functions describing the system. The Lagrangian
density then may be a function of the coordinate function x(y, t), the position y or time t, as
well as the derivatives with respect to both of these, ∂x

∂t ,
∂x
∂y . That is,

L = L
(
x,
∂x

∂y
,
∂x

∂t
; y, t

)
. (3.38)

We wish to then extremize the action, defined as the integral over time of the Lagrangian

S =

∫ t2

t1

Ldt =

∫ t2

t1

∫ y2

y1

L dydt (3.39)

by taking its variation to be zero

δS =

∫ t2

t1

∫ y2

y1

[
∂L
∂x

δx+
∂L
∂ ∂x∂t

δ

(
∂x

∂t

)
+

∂L
∂ ∂x∂y

δ

(
∂x

∂y

)]
dydt = 0 (3.40)

We simplify the second term by integrating by parts in t by letting

u =
∂L
∂ ∂x∂t

v = δx

du =
d

dt

∂L
∂ ∂x∂t

dt dv = δ
∂x

∂t
dt =

d

dt
δxdt

Thus ∫ t2

t1

∫ y2

y1

∂L
∂ ∂x∂t

δ

(
∂x

∂t

)
dydt =

∂L
∂ ∂x∂t

δx|21 −
∫ t2

t1

d

dt

∂L
∂ ∂x∂t

δxdt. (3.41)

Similarly, we simplify the third term by integrating by parts in y, letting

u =
∂L
∂ ∂x∂y

v = δx

du =
d

dy

∂L
∂ ∂x∂y

dy dv = δ
∂x

∂y
dy =

d

dy
δxdy
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3 LAGRANGIAN APPROACH 3.2 Equations of Motion for a Continuous Mass-Density Rope

and thus ∫ t2

t1

∫ y2

y1

∂L
∂ ∂x∂y

δ

(
∂x

∂y

)
dydt =

∂L
∂ ∂x∂y

δx|21 −
∫ y2

y1

d

ds

∂L
∂ ∂x∂s

δxds. (3.42)

by requiring the variation in the action to vanish at the endpoints, the boundary terms in
(3.41) and (3.42) vanish, and we can write (3.40) as

δS =

∫ t2

t1

∫ y2

y1

[
d

dt

∂L
∂ ∂x∂t

+
d

dy

∂L
∂ ∂x∂y

− ∂L
∂x

]
δxdydt = 0. (3.43)

Since equation (3.43) must be zero for any choice of varied path, the integrand must be zero,
and we obtain

d

dt

∂L
∂ ∂x∂t

+
d

dy

∂L
∂ ∂x∂y

− ∂L
∂x

= 0 (3.44)

which is the Euler-Lagrange equation for a one dimensional continuous system. We have
reduced our system of equations from infinity to 1!

3.2.2 Equations of Motion Using the Lagrangian Density

We will now apply equation (3.44) to our problem of the hanging rope by determining the
Lagrangian density of the system. Consider an infinitesimal chunk of the rope. The arclength of
this piece of rope is given by

ds =
√
dx2 + dy2 =

√
1 +

(
∂x

∂y

)2

dy ≈

(
1 +

1

2

(
∂x

∂y

)2
)
dy (3.45)

where we apply the binomial expansion on the last step for the case of small oscillations. The
potential energy3 stored in this piece of rope is equal to the work done by gravity in moving it
by an infinitesimal angle dθ, corresponding to a height change of

dh = |ds− ds cos(dθ)| = |ds− dy| = 1

2

(
∂x

∂y

)2

. (3.46)

The work done by gravity is due to the tension force, which as before is due to the weight of all
of the rope below the piece in question. So the potential energy of the infinitesimal chunk of
rope is, for constant mass density µ,

dU = dW = Tdh = µ(`− y)g
1

2

(
∂x

∂y

)2

dy. (3.47)

The kinetic energy of the chunk is just

dT =
1

2
dm

(
dx

dt

)2

=
1

2
µds

(
dx

dt

)2

≈ 1

2
µdy

(
dx

dt

)2

. (3.48)

where for small oscillations the arclength ds is the same as the infinitesimal length dy to
second order. The Lagrangian is the difference in the total kinetic and potential energy of the
system,

L =

∫
dT −

∫
dU =

∫ `

0

(
1

2
µ

(
dx

dt

)2

− 1

2
µ(`− y)g

(
∂x

∂y

)2
)
dy. (3.49)

3If we were to simply use the standard dU = dmgy for the potential energy, we would not be taking into consideration the
constraint that all the ‘particles’ are attached together as a rope.
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4 NUMERICAL SOLUTION TO NONLINEAR EQUATIONS OF MOTION FOR FINITE N

Thus the Lagrangian density is

L =
1

2
µ

(
dx

dt

)2

− 1

2
µg(`− y)

(
∂x

∂y

)2

. (3.50)

The Euler-Lagrange equations (3.44) for this Lagrangian density are

d

dt

∂L
∂ ∂x∂t

+
d

dy

∂L
∂ ∂x∂y

−
�
�
�7

0
∂L
∂x

=
d

dt

(
µ
∂x

∂t

)
− d

dy

(
µg(`− y)

∂x

∂y

)
= 0

=
∂2x

∂t2
− g

(
(`− y)

∂2x

∂y2
− ∂x

∂y

)
= 0

→ ∂2x

∂t2
= g

(
(`− y)

∂2x

∂y2
− ∂x

∂y

)
(3.51)

Equation (3.51) is exactly the same as equations (2.7) and (2.9), which we solved by separation
of variables for the oscillation of the rope. Thus we have determined the equations of motion
both for the continuous rope and for the n-pendulum in the limit n→∞ from both a Newtonian
and Lagrangian Mechanics perspective.

4 Numerical Solution to Nonlinear Equations of Motion for Fi-
nite n

As we determined in Section 3.1.1, equation (3.6) gives the full Lagrangian for the n-pendulum:

L =
1

2

n∑
i=1

mi

 i∑
j=1

aj θ̇j cos θj

2

+

 i∑
j=1

aj θ̇j sin θj

2+ g

n∑
i=1

i∑
j=1

miaj cos θj (3.6)

The “VariationalMethods” package in Mathematica includes the function EulerEquations,
for which one may input a Lagrangian and list of coordinates and Mathematica will determine
the resulting Euler-Lagrange equations. The function NDSolve may then be used solve the
Euler-Lagrange equations numerically, given the boundary conditions, to determine a numerical
solution for the motion of each pendulum. The Animate function does a nice job of allowing
one to watch a movie of the pendulum as it oscillates wildly about its pivot point. For any
n > 1, the bottommost pendulum will quickly swing wildly about its pivot point. The way in
which the system goes berserk is extremely dependent on the initial conditions. In the attached
Mathematica notebook, one can observe this phenomena for their desired choice of n, although
I must warn that the calculation begins to take a significant amount of time for n > 30.

To demonstrate the wild behavior of the pendulums, plots of the angular coordinates vs.
time for n = 1, 3, 5, and 10 can be found in Figure 4.1. All of the plots are created with the
initial conditions θi(t = 0) = π/2 and θ̇i(t = 0) = 0.
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Figure 4.1: Plots of the angular coordinate θi for each pendulum bob vs time for (Top) n = 1, (Top
middle) n = 3, (Bottom middle) n = 5, and (Bottom) n = 10. The chaotic nature of the oscillations

becomes apparent around t = 10 to 15s.
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5 CONCLUSION

5 Conclusion

We have extended the analysis for the single, double, and triple pendulum as done in class and
in homework to an arbitrary n-pendulum, by approaching the problem both using Newtonian
and Lagrangian mechanics. We solved for the equations of motion for small oscillations in
the discrete case, and determined the natural frequencies and normal modes of oscillation. In
the continuous case, we determined the equation of motion and solved it using the method of
separation of variables discovering that the mode shapes are zeroth order Bessel functions and
the natural frequencies are multiples of the zeroes of the zeroth order Bessel function J0. We
confirmed this was the case by taking the limit of our solution in the discrete case to obtain
a continuous rope and observered that the eigenfrequencies do in fact approach one half the
corresponding zero of J0, and the normal modes also approach the modes corresponding to the
Bessel functions in the continuous case. Having solved the small oscillations approximation, we
create a Mathematica notebook to run a numerical calculation of the nonlinear solution for the
full Lagrangian derived for the n-pendulum and make an animation of the motion to observe its
chaotic behavior.
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