1.) Two different dielectrics each fill the space between the plates of a parallel plate capacitor as shown below. The first dielectric has a width of d_1 and the second dielectric has a width of d_2. Find the capacitance of the system in terms of K_1, K_2, the area.
2a.) A thin circular ring of radius R has $+Q/2$ uniformly distributed on the top half and $-Q/2$ on the bottom half. What is the value of electric potential at a point P, some distance x away from its center? [10 points]

b.) What is the electric field (E_x, E_y, E_z) at a point P, some distance x away from the ring’s center? [15 points]
3.) Suppose you have a thick conducting spherical shell of outer radius r_o and inner radius r_1. The shell has a total net charge Q and within its cavity is a point charge q. What is the charge on (a) the inner surface of the shell and (b) the outer surface of the shell? [5 points]

c) What is the electric field for $0 < r < r_1$? [5 points]
d) What is the electric field for $r > r_o$? [5 points]
e) What is the electric field for $r_1 < r < r_o$? [5 points]
4.) Find the following currents I_1, I_2, I_3. [20 points]
5) A quarter circular loop of wire carries a current I. Using the Biot-Savart Law, what is the magnetic field at the point C? [10 points]
6) A pair of long straight parallel thin wires (each of radius \(r \)), are a distance \(d \) apart and carry a current in opposite directions. Ignoring the field within each wire, calculate the inductance per unit length \((L/h) \) [Note: \(h \) is very large] [15 points]
Extra Credit: The electric potential for a specific system is given as:

\[V = \frac{by}{(a^2 + y^2)} + xyz + z \frac{1}{(b^2 + x^2)^2} \]

What is the electric field \((E_x, E_y, E_z)\)? [Note: a and b are constants] [10 points]