Lecture 6 DC Circuits.

EMF and Terminal Voltage

Up until now we have had the case where our battery in our circuit has a constant potential difference. In real life, our battery only has a constant voltage when no current moves in the circuit (open circuit).

The preconnection voltage is called the electromotive force (emf) \(E \). For real batteries there exists some internal resistance \(r \).

When the battery is connected to a circuit, current flows. The resistance in the battery will create a current that goes against the emf.

\[
V' = Ir
\]

where \(I \) is current.

The potential difference we see \(V_{\text{batt}} \) is then equal to:

\[
V_{\text{batt}} = E - Ir
\]

Resistors in Series

The current in each resistor is the same.

Blc of charge conservation

\(I \rightarrow \text{squeeze but same current} \rightarrow I \rightarrow \text{bottleneck traffic} \)
we know $V = IR$ since I is constant and $R_1 + R_2 + R_3$

we define:

$V_1 = IR_1$
$V_2 = IR_2$
$V_3 = IR_3$

The voltages for resistors in series add:

$V_{\text{circuit}} = V_1 + V_2 + V_3 = I(R_1 + R_2 + R_3) = V_{\text{batt}} = I\cdot R_2$

$R_{\text{eq}} = R_1 + R_2 + R_3$

Resistors in parallel

charge conservation says I_a at point a equals current at b.

I_a is like water hitting a fork

current splits at this junction into I_1, I_2, I_3 where $I = I_1 + I_2 + I_3$

For resistors connected in parallel the voltage across each is constant.

$V_1 = V_2 = V_3 = V$

$\Rightarrow I = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3} = \frac{V}{R_{\text{eq}}}$

$\Rightarrow R_{\text{eq}} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)^{-1}$
Example:

(a) which bulb burns brighter?

\[
\begin{array}{c}
\text{60W} \\
\text{100W} \\
\text{M} \\
V = 120V
\end{array}
\]

\[\text{V is constant for each }\]
\[\text{voltage of 100W is greater so }\]
\[\text{the 100W bulb is brighter (high P)}\]
\[\text{from } P = \frac{V^2}{R}\]

(b) voltage no longer constant

\[\text{voltage constant,}\]
\[\text{at constant } V\text{ each }\]
\[R_{100} = \frac{V^2}{P} = \frac{120^2}{100W} = \]
\[R_{60} = \frac{120^2}{60W} = \]
\[\Rightarrow R_{100} < R_{60}\]

\[\text{so at constant I power radiated is:}\]
\[P = I^2R \Rightarrow R_{60} > R_{100} \text{ so the 60W bulb is brighter.}\]
Series & Parallel

\[
\text{what current is drawn from battery?}
\]

\[
R_{eq} = \left(\frac{1}{500} + \frac{1}{700} \right)^{-1} = 290 \Omega
\]

in series I is constant.

\[
R_{eq} = 400 + 290 = 690 \Omega
\]

\[
V_{\text{batt}} = I R_{eq} = 690 I = 180 \Rightarrow I = 17 \text{mA}
\]

Kirchhoff's Laws

Two Rules:

1) At any junction point, the sum of all currents entering a junction must equal the sum of all currents leaving junction.

\[
I = I_1 + I_2 + I_3
\]

2) The sum of charges or potential around any closed loop of a circuit must be zero.

Here I is constant so:
Start at a and move clockwise through circuit.

The battery is a positive charge in voltage, the resistor is a negative charge in voltage so we have $V = V_{\text{batt}} - V_1 - V_2$

$$0 = V_{\text{batt}} - IR_1 - IR_2$$

$$\Rightarrow I = \frac{V_{\text{batt}}}{(R_1 + R_2)}$$

adds together in series (we knew this already)

Example:

\begin{align*}
R_1 &= 15\,\Omega \\
R_2 &= 15\,\Omega \\
R_3 &= 15\,\Omega \\
R_4 &= 30\,\Omega \\
R_5 &= 40\,\Omega \\
E_0 &= 45\,\text{V} \\
E_1 &= 8\,\text{V}
\end{align*}

What is I_1, I_2, I_3?
we know here that $I_3 = I_1 + I_2$

We do a closed loop around upper half

$$0 = E_0 - I_3 R_3 - I_3 R_2 - I_1 R_1$$

$$-I_3 (15\,\Omega) + 45\,\text{V} - I_1 30\,\Omega$$

\text{Current at } R_4 \text{ is moving opposite to } I_1 \text{ direction so the sign flips (we have an increase potential)}
\[\Rightarrow 0 = -I_1 \cdot 30 + I_a \cdot 20 + I_0 - 80 \]

\[\Rightarrow I_a = \frac{80 + 30I_1}{21} = 3.8 + 1.4I_1 \]

\[I_a = I_1 - 0.73I_1 \]

\[I_1 = I_3 - I_2 = 1.1 - 3.8 - (0.73 + 1.4)I_1 \]

\[\Rightarrow 3.1I_1 = 2.7 \]

\[I_1 = -0.87A \]

From this \[I_2 = 2.6A \]

\[I_3 = 1.7A \]

Circuits Containing Resistors and Capacitors

(RC Circuits)

![Diagram of RC circuit]

When we close the switch that is time \(t = 0 \). After we close \(Q \) will slowly build up on capacitor until potential diff \(= \varepsilon \).

Close \(S \) \(\Rightarrow \) as \(\varepsilon \) \(= \frac{Q}{C} + IR \)

Current steps

We show this

Close \(S \) \(\Rightarrow \) as \(\varepsilon \)

Current steps

We know \(I = \frac{dQ}{dt} \)

\[\varepsilon = \frac{+dQ}{R} + \frac{Q}{C} \]

Solve for \(dQ \)

\[\Rightarrow \frac{dQ}{(CE-Q)} = \frac{dt}{RC} \]

We integrate from \(0 \to Q \) on left and \(0 \to t \) on right.

Time when \(Q \) is stored on capacitor.
\[\int_0^\infty \frac{d\theta}{(C\varepsilon - \theta)} = \int_0^\infty \frac{dt}{R\varepsilon} \]

\[-\ln(C\varepsilon - \theta) \bigg|_0^\theta = \frac{t}{RC} \]

Multiply by minus:
\[+\ln(C\varepsilon - \theta) - \ln(C\varepsilon) = \frac{-t}{RC} \]

\[\exp \left(\ln \left(1 - \frac{\theta}{C\varepsilon} \right) \right) = e^{-t/RC} \]

\[1 - \frac{\theta}{C\varepsilon} = e^{-t/RC} \]

\[RC = \tau \text{ the time constant} \]

In terms of \(Q \):
\[Q = C\varepsilon \left(1 - e^{-t/RC} \right) \]

Since \(V_c = \frac{Q}{\varepsilon} \)
\[V_c = \varepsilon \left(1 - e^{-t/RC} \right) \]

\[V_c \rightarrow \varepsilon \text{ when } V_c \rightarrow 0 \]

\[I(t) = \frac{dQ}{dt} = \frac{\varepsilon}{R} e^{-t/\tau} I \]

\[I \rightarrow 0 \text{ as } t \rightarrow \infty \]

\[I = -IR + V_c \]

\[\varepsilon = -IR + \theta \Rightarrow I = 0 \]
The circuit we had was charging a capacitor using an emf. Now let's look at discharge.

Suppose capacitor has some V_c on it, it now acts like a battery!!

When S is closed $t=0$

$$V_c = \frac{-e}{-\frac{e}{V_c}}$$

Using Kirchhoff

$$I_R = \frac{\Delta V}{R} = \frac{V_c}{R}$$

$$I \propto \frac{dQ}{dt} =$$ leaves at negative direction

it came in. Remember we had leaving + going to minus now

it is reversed.

$$I = \frac{Q}{C}$$

$$\Rightarrow \frac{-dQ}{d+} = \frac{Q}{C} = 0$$

we integrate from Q_0 to capacitor having some

and we integrate 0 to $+\infty$

$$\ln \left(\frac{Q}{Q_0} \right) = -\frac{t}{T}$$

$$Q = Q_0 e^{-t/RC}$$

$$\Rightarrow V_c = V_0 e^{-t/RC}$$

$$\Rightarrow I = \frac{dQ}{dt} = \frac{Q_0}{RC} e^{-t/RC} = I(0) e^{-t/T}$$

V_c vs. t:

decreases w/ time.
Let's put together both:

\[20V = \mathcal{E} + \frac{V}{C} \]

In position 1 charges capacitor up to \(\mathcal{E} \):

\[Q_0 = C \mathcal{E} \quad \text{then we move to position 2 \Rightarrow discharge capacitor}! \]

\[Q_0 = C \mathcal{E} \quad \text{given } C = 1.0 \mu F \]

\[I = I_0 e^{-t/RC} \quad \mathcal{E} = 20V \]

I suppose current drops \(\frac{1}{2} \) of its initial value in 40ms:

\[\Rightarrow \frac{1}{2} I_0 = I_0 e^{-40 ms/RC} \quad \text{what is } Q_0 \text{ at } t = 0 \]

\[e^{-\ln(2)} = \frac{40 ms}{RC} \]

\[R = \frac{40 ms}{\ln(2)} = 575 \Omega \]

c) what is \(Q \) at 60ms

\[Q = Q_0 e^{-t/RC} = (0.4) e^{-60ms/(87)(1.02 \mu F)} = 7.3 \mu C \]
Electric kill \[P=I^2R \]

\[\Rightarrow \text{most people a current of } 1 \text{mA , A few mA is not known to cause damage in a healthy person.} \]

\[>10 \text{mA causes severe contraction of muscles (can't let go)} \]
\[\text{Death can occur from paralysis of respiratory system} \]

between 80-100mA the heart will contract irregularly & blood will improperly pump.

Larger currents will stop heart, but after remove current the heart will pump regularly again by defibrillators.

Usually warnings are in voltages. \[V=IR \text{ the resistance of skin is } 10^4 \Omega \text{ (wet is } 10^3 \Omega) \]

Say you touch 120V bare foot wet.

\[I=\frac{120}{10^3}=120 \text{mA} \]

Power radiated (say heat) \[=I^2R=(120\text{mA})^2(10^3)=\underline{\text{Ouch!}} \]

Look at Example 26-8 on page 683 of 4ed.