
Solving ablative RT Problem in AstroBEAR

1.Quasi-equilibrium
The quasi-equilibrium in RT problem is defined by the balance of the thermal pressure, Ram 

pressure and the gravity force. In equilibrium, the Euler equations are:
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from the first equation we know that v=0 v0 , which is just the outflow at the bottom. If we 
define the heat flux as:

q=T n ∂T
∂ y

we can then write the equations as:
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with  , v ,  q known on the two boundaries. 

Using parameters (in SI units, Temperature is measured in Joule):
 R = 4.7904e+26
C v=7.186e+26
=3.734e+69

 g = 1.0e+14
 q = -5.876e+18
0=68.1622919147237
v0=−272144.604867564

The solutions to this equation set are posted below:
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2. Euler Fluid Equations with diffusion in c.g.s.
    The Euler equations can be written as:
                 tux vy=0
                 utu2 pxu vy=0
                 v tuv xv2 py=− g
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From the last equation, we have:
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The second term can be written as:
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If we write cv=
1Z 
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,  and measure T in terms of energy, then we have the EOS:

                     
p

−1
=cvT

then the energy equation can be written as:

         
vt

2

2

t
cv T t

v t
2

2
 cvT ▽v tv t▽

v t
2

2
 cvT =▽T n▽T 

Simplify this equation by using the momentum and mass conservations, we get the energy equation 
in the form of:
         cv tTv▽T =−p▽v▽T n▽T 
Notice that in this form, all quantities are in SI with T measured in Joule. So it's actually:
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To convert to the c.g.s units, we have the following conversion factors:
               S=1000G          pS=1/10 pG

               v S=1/100 vG         ▽S=100▽G

               cv
S=1000cv

G
         k S=10−7 kG

Substitute, we find that:
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If we define G=10−7n−2 S , then:
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Using operator splitting method, we need to solve:
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Divide by k and cv in c.g.s., we get:
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then we have the equation ready to be scaled:
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For the flux equation, we have:
                   qS=S k SnT n▽ST
we need a form like:
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we can divide these two equations and use the relations between SI units and Gauss units. The result 
is:
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The scales can be obtained by writing equation tT =▽0T
n▽T  in the forms of scalings:
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simplify this form, we get:
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also, we have:

                  qscale= scaleTscale n1
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Using the rescaled parameters, the Euler equation is solved and the equilibrium is plotted as 
follows:
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