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Abstract

We present discretisation schemes for the heat diffusion equation in strongly magnetised plasmas in 2-d Cartesian

and 3-d cylindrical geometry. The algorithms described do not use field-aligned coordinates, but show, nevertheless,

a strong reduction of the pollution of perpendicular heat flux caused by parallel heat conduction, compared to standard

finite element or other finite difference formulations. Results for test examples show independence of the numerical

error from vi for values of vi/v^ up to 109 in plane and 1012 in periodic cylinder geometry (simulating toroidal connec-

tion). The algorithms appear particularly well suited for dynamic MHD calculations, where the effort of using exactly

aligned coordinates becomes prohibitive.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

The strong anisotropy of the heat conductivity in magnetised, high temperature plasmas poses a chal-
lenging computational problem. For ratios of the heat conductivity coefficients vi/v^ which can exceed

1010 in state of art fusion experiments, pollution by numerical errors can easily swamp the true perpendic-

ular transport. An effective remedy consists in the choice of a coordinate system in which one of the coor-

dinates is aligned with the magnetic field direction. While this is practicable and efficient for the case of

given, stationary fields [1–4] or small magnetic perturbations superposed on closed flux surface structures

[5], a scheme compatible with a time-independent coordinate system is desirable for dynamic, strongly non-

linear MHD calculations [6–11]. The need for a highly accurate scheme is particularly apparent for the sim-

ulation of neoclassical tearing modes [12,13], where the onset requirements for this non-linear instability are
largely determined by the balance between parallel and perpendicular heat transport [14].
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The scheme described in this paper remains – in practically relevant cases – only second-order accurate,

but reduces the pollution of perpendicular by parallel transport dramatically. In fact, for the widely used

analytical test case [9] the numerical error was found to be independent of the ratio vi/v^ up to the (unre-

alistic) tested limit of 1012. We describe the scheme and present tests for two geometries and cases: the stea-

dy state solution in a 2-d Cartesian grid (which can be readily extended to 3-d – by either applying the same
algorithm also in the 3rd direction, or by adding a Fourier expansion – and to the time-dependent case) and

the time dependent problem in a 3-d case in cylinder coordinates, based on a Fourier expansion of the mag-

netic field and the dependent variables in the azimuthal and axial directions. In both cases we compare the

schemes with alternative finite difference or finite element approximations. To explore the range of appli-

cability of the scheme, we have conducted also test-calculations with non-orthogonal coordinates, non-

equidistant grids, spatially varying heat conductivity and magnetic fields with non-divergence free
~b ¼ ~B=jBj.

Our developments originally started with the recognition that the most straightforward, second order
accurate scheme, in the 1-d finite-difference, 2-d Fourier-decomposition case, involved the variable values

in different grid points for the representation of temperature gradients in the time advance for the different

Fourier components. Defining all components of the parallel temperature gradient in the same points on a

staggered grid with respect to the temperatures dramatically improved the convergence behaviour for large

values of vi/v^ and the agreement with known analytic test cases. The extension to the 2-d difference case

was an attempt to explore the consequences of the same principle in a multi-dimensional finite grid formu-

lation. Our reference schemes in this case were on one hand a difference formulation extending the usual

scheme for an isotropic case by terms describing the anisotropy, and on the other the different order finite
element approaches studied by the NIMROD team. Reproducing the test runs described in [9] we were

thereby able to see that our scheme not only performed much better than the bi-linear basis-function

scheme involving the same grid-variable, but – for high values of vi/v^ – compared even favourably with

the much more involved bi-quadratic and bi-cubic schemes. Our symmetric difference formulation is con-

servative and maintains also the property of self-adjointness of the differential heat conduction operator

[15].

As we have carried out the basic analyses primarily for the time-independent 2-d case, the more practical

applications, however, in the 3-d, time-dependent formulation, we present the two schemes in this sequence
in the next two chapters. For transparency we relegate the description of the full algorithm for the 3-d case

to the appendix.
2. Finite difference formulation in a 2-d Cartesian grid

As we concentrate here on the problems arising from the strong anisotropy of the heat conductivity, we

write the temperature evolution equation in a magnetised plasma in the form
3

2
n
o

ot
T ¼ �r �~qþ Q ð1Þ
neglecting terms arising from convection and compression heating. As we concentrate on the difficulties

arising from the term
~q ¼ �n½vk~b~bþ v?ð I
$
�~b~bÞ� � rT ð2Þ
(~b being the unit vector in the magnetic field direction) and assume a time dependent solution to be imple-

mented by an implicit scheme, we illustrate it in the following for the steady state case, where we just bal-

ance the divergence of the heat flux against the volumetric sources Q.
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In an isotropic case, the lowest order conservative finite difference formulation of the heat conduction

operator is
r �~q ¼ 1

Dx
qx;iþ1

2
;j � qx;i�1

2
;j

� �
þ 1

Dy
qy;i;jþ1

2
� qy;i;j�1

2

� �� �
; ð3Þ
with
qx;iþ1
2
;j ¼ �

ðnvÞiþ1
2
;j
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2
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2
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ðT i;jþ1 � T i;jÞ;

ð4Þ
etc., where we have adopted a grid labelling (Fig. 1) with temperatures defined at integer points.

Adding anisotropy to it, requires in addition the knowledge of the temperature gradient o
oy T jiþ1

2
;j and

equivalent terms, which, in the most straightforward manner can be written as
o

oy
T

����
iþ1

2
;j

¼ 1

4ðDyÞ ðT iþ1;jþ1 þ T i;jþ1Þ � ðT iþ1;j�1 þ T i;j�1Þ
� �

; ð5Þ
which clearly implies a significant difference in the evaluation of the gradients in the two directions. We will

label this scheme therefore ‘‘asymmetric’’ in the following.

A more symmetric formulation is obtained by first expressing both components of the temperature gra-

dients (and subsequently of the total parallel heat flux~qk ¼~bnvkð~b � rT Þ) by the function values at the same

grid points
o
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Fig. 1. Grid labelling and elementary cell.
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and expressing the divergence of the parallel heat flux as:
r �~qkji;j ¼
1
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Both the asymmetric and the symmetric schemes can be shown to be conservative, however only the

symmetric scheme corresponds to a difference formulation of the operators div and grad which maintains

the self-adjointness of the operator r � vkð~b � rT Þ~b in the discretised form. In fact, the scheme in this form
can be viewed as a special application of the support-operator algorithm described in [15].

Numerical errors for the solution of the anisotropic heat conduction equation in the limit of large vi/v^
should have two effects: (1) the appearance of unphysical temperature gradients along field lines, and (2) a

finite heat flux perpendicular to field lines, proportional, at given temperature gradients, to vi. Both effects

can be studied and separated by the solution of a test case, where we solved the steady-state version of Eqs.

(1) and (2) over the interval �0.5 6 x,y 6 0.5, for a magnetic field with circular flux surfaces centred either

at x0,y0 = �0.5 (open field line case) or x0,y0 = 0 (mainly closed field line case). Heat sources and Dirichlet

boundary conditions were chosen so as to correspond to the solution T(r) = 1 � r3, with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ

2
q

, and v^ was normalised to 1. The error scaling for the two schemes (Fig. 2)

shows a marked difference between the open and the closed field line cases. In the open field line case,
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Scaling of error, given by err = jTnum(0,0) � Tanal(0,0)j/jTanal(0,0) � Tanal(�0.5,0)j, of the symmetric and asymmetric schemes

id spacing h and different values of vi(v^ = 1, throughout), for circular flux surfaces, for field configurations with either all field

tersecting the boundary (x0 = y0 = �0.5) or predominantly closed field lines (x0 = y0 = 0). Results of the symmetric scheme for

of 100 6 vi < 109 (not shown) for both configurations are indistinguishable on scale of this plot. Also not shown is the error of

etric scheme for the case of all field lines intersecting the boundary, which is even below that of the symmetric scheme: (a)

tric scheme, x0 = y0 = �0.5, vi = 109, (b) symmetric scheme, x0 = y0 = 0, vi = 109, (c) asymmetric scheme, x0 = y0 = 0, vi = 102,

mmetric scheme, x0 = y0 = 0, vi = 103.
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the errors for both schemes are very small and practically independent of vi. In this case all field lines inter-

sect the boundary, and both schemes succeed in enforcing T = const. along field lines, so that the solution

becomes dominated by the boundary conditions. In the case with mainly closed field lines, the field lines still

remain to high accuracy isotherms, but the perpendicular gradient becomes strongly affected by pollution

due to the spurious perpendicular heat fluxes. Whereas the symmetric scheme shows, up to the tested limit
of vi = 109, an error independent of vi (dominated by the discretisation error of the true perpendicular heat

flux proportional to v^), the error for the asymmetric scheme is clearly dominated by pollution, increasing,

in the non-saturated regime, proportionally to vi.
Magnetic geometries of practical interest for plasma transport calculations require, in general, a non-

orthogonal coordinate system in the poloidal plane. To test, whether additional errors will arise in this case,

we have repeated the calculations for the closed flux surface geometry in non-orthogonal (albeit Cartesian)

coordinates, defined by x1 ¼ x� y cos a
sin a ; x2 ¼ y 1

sin a, with Dirichlet boundary conditions defined along the

boundaries of the computational region: � 1
2 sin a 6 x1; x2 6 1

2 sin a. The latter was chosen so as to be tangent
to the same flux-surface as the orthogonal case, taking into consideration the importance of the closed flux

surface region. Decreasing a, at constant number of grid points we expect a trivial increase in error due to

the reduced number of useful grid points (namely those in the closed flux surface region). An additional

error might arise due to the response of the scheme to the non-orthogonality of the grid.

Results reported here refer to a source distribution giving T(r) = exp(�(r/4)2) as analytic solution, having

– except in individual points – non-vanishing derivatives to all orders. At given number of grid points

N ¼ Nx1 ¼ Nx2 , the error of the symmetric scheme indeed increases with decreasing a, remaining virtually

independent of vi/v^ (Fig. 3). It depends, however, much weaker on angle than the ‘‘asymmetric scheme’’,
whose error is smaller in the isotropic case with a = p/2, but increases more strongly with decreasing a, and
even dramatically with increasing vi/v^. In fact, the error of the symmetric scheme can be fully attributed to

the loss of resolution at given N: plotting it against Dx1 = Dx2 the points for different values of a lie on a

universal line (Fig. 4). This is to be expected as the error (being quadratic in distance between points) will be

dominated by the distance of grid points in the least resolved direction, which in this case is proportional to

1= sin a. Remarkable is the fact that for all angles the error of the extremely anisotropic case vi/v^ = 109

(shown in Fig. 4) remains close to that of the isotropic one.
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Fig. 3. Error of calculations using non-orthogonal coordinates for the closed field line case of Fig. 2, as function of sin a, for N = 58.

Results given refer to the symmetric scheme using vi/v^ = 1 and 109, and to the asymmetric scheme for vi/v^ = 1 and 102.
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Fig. 4. Error of calculations using non-orthogonal coordinates for the closed field line case of Fig. 2, as function of grid spacing

h = Dx1 = Dx2 for three different values of a, for the symmetric scheme with vi/v^ = 109.
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The favourable pollution control feature of the symmetric scheme also holds in more general geometry
(including, in particular also a mix of concave and convex field line regions and an X-point). Taking a 2-d

magnetic field configuration derived from a flux function as ~B ¼~ez �rw, and choosing a heat source sat-

isfying Q(x,y) = �v^$
2w(x,y), ensures, together with appropriate boundary conditions, that the true solu-

tion will be a constant on field lines, irrespective of the value of vi/v^ [9]. This test case is also of interest, as

it corresponds to a situation of finite divergence of the magnetic direction vector r �~b. The function chosen

for w(x,y), T(x,y) was sinð2pxÞ � cosð2pyÞ, over the interval �0.5 6 x,y 6 0.5. Fig. 5(a) and (b) show the

results of the symmetric and the asymmetric scheme for the case imposing the analytic solution at the

boundary as Dirichlet type condition. Whereas the symmetric scheme reproduced the true solution accu-
rately over the whole region, again independently of vi, the asymmetric scheme does so only over the region

covered by field lines intersecting the boundary, flattening T nearly completely over the region of closed

field lines. Imposing periodic (rather than Dirichlet type) boundary conditions leaves the solution obtained

with the symmetric scheme essentially unchanged, but flattens T in the asymmetric case now over the whole

computational region. We have compared our error scaling and its dependence on the ratio vi/v^ also with

the very extensive tests carried out by the NIMROD-Team for different order finite element representations.

For these cases the region used is again the unit square �0.5 6 x,y 6 0.5, with sources appropriate to pro-

duce wðx; yÞ; T ðx; yÞ � cosðpxÞ � cosðpyÞ, and Dirichlet boundary conditions. The results of these tests, and
the comparison with the finite element results of [9] are shown in Fig. 6(a)–(c) for ratios vi/v^ = 103, 106,

109. The results of the ‘‘symmetric’’ finite difference scheme also for this case show a pronounced h2 scaling,

but are also virtually independent of the conductivity anisotropy. As consequence, for the largest vi/v^-
values the present scheme not only outperforms the bilinear and bi-quadratic schemes, but even behaves

better than the bi-cubic finite element model.
3. Combined finite-difference and fourier representation for the 3-d case

Multi-dimensional heat transport problems in toroidal confinement systems generally originate from

perturbations of initially closed, nested flux surfaces. It is therefore appropriate to exploit this feature also
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Fig. 5. Numerical solution for analytic test case with a magnetic field defined by flux function wðx; yÞ ¼ sinð2pxÞ � cosð2pyÞ, for vi/
v^ = 109, with Dirichlet boundary conditions on a 60 · 60 grid. (a) Symmetric Scheme, (b) asymmetric scheme.
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in the choice of coordinate system. The simplest, topologically relevant configuration is a ‘‘periodic’’

straight cylinder, with an unperturbed field given by
~Bo ¼ Bot ~ez þ
r
qR

~eh

	 

¼ Bot ~ez �

nr
mR

~eh
� �

þrw0ðrÞ �~ez ð9Þ
in cylindrical coordinates r, h, z. The ‘‘safety factor’’ q(r) here determines the pitch angle of the field lines

and the periodicity length 2pR describes the lowest order torus effect. In the framework of reduced MHD

[16,17], magnetic perturbations to this configurations can be described in terms of a helical flux function w
as
~B ¼ ~Bo þr
X
j

wjðrÞ exp i mjhþ
nj
R
z

� �
�~ez; ð10Þ
neglecting perturbations in the toroidal field. The time-dependent, 3-d, non-linear simulation of neoclassi-

cal tearing modes in this configuration and with these coordinates had, in fact been the original driver of

our code development. The periodicity requirements and the chosen representation of the magnetic field

suggest to use a Fourier ansatz in h and / = z/R also for the solution of the heat conduction equation.

In this section, we outline the scheme used in this case at hand of a very simplified model, which makes
more transparent the steps taken to reduce the pollution of the perpendicular heat fluxes by parallel ones.

The full algebra for the general case, needed also for the applications described later in this section, is
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Fig. 6. Scaling of error for the analytic test case with grid spacing for the symmetric scheme, compared with results of [9] using finite

element formulations, for values of vi/v^ = 103 (a), 106 (b), 109 (c). Note the virtual independence of the error of the symmetric scheme

from the heat conductivity anisotropy (symmetric finite difference scheme: connected dots; bilinear elements: h, bi-quadratic: n, bi-

cubic: s, bi-quartic: r, bi-quintic: .).
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shifted to the appendix. The simple model assumes a magnetic field perturbation with a single helicity
~B1 ¼ rw1ðrÞ exp iðm1hþ n1/Þ �~ez. Assuming that heat sources and sinks also respect this symmetry, also

the temperatures will vary with h,/ only with this combination of m1, n1 and integer multiples. For constant

heat conductivities and plasma densities, the lowest order equations in a Fourier expansion will read
3

2

o

ot
T 0 � v?r2

?T 0 � Q0 ¼
1

2
vk~b

�
1 � rð~b1 � rT 0 þ~b0 � rT 1Þ þ c.c.

� �
; ð11Þ

3

2

o

ot
T 1 � v?r2

?T 1 ¼ vk~b0 � rð~b1 � rT 0 þ~b0 � rT 1Þ; ð12Þ
where the index 0 for T refers to the h,/-independent part (generally not identical with the unperturbed

equilibrium).

This formulation allows to illustrate very well the danger of cutting-off the Fourier expansion at a given

order of Tj. Including only T0, the magnetic field perturbation would produce (using a prime to express
radial derivatives) a term � vkb

2
1rT

00
0 in Eq. (11), which for realistic perturbation amplitudes

(jB1j � O(10�4jB0j)) and heat-conductivity ratios could easily swamp the perpendicular heat conductivity

contribution in the determination of the flux-surface averaged temperature profile. In reality, however, a

variation T1 will appear along the unperturbed field-line direction ~b0, trying to keep the temperature con-

stant along the actual, perturbed field line. Solving simultaneously Eqs. (11) and (12) for T0 and T1 will

allow the latter to adjust, so as to produce this cancellation, and will leave only an order of magnitudes
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smaller net effect upon the radial variation of the averaged profile. Proceeding to higher orders (see appen-

dix and test case reported in Fig. 12) we implement this concept by terminating the expansion at a given

order of the gradients along field lines rather than of the temperature. Eq. (11) also illustrates that in this

configuration, realistic for toroidal confinement systems, the projection of the field lines onto the poloidal

plane determines the danger of pollution of perpendicular transport, so that ðvkB2
polÞ=ðv?B2

torÞ rather than vi/
v^ like in the 2-d case is the relevant parameter to measure the challenge to the numerical scheme.

Pursuing this concept further it becomes evident that in order to allow the cancellation of spurious tem-

perature differences along field lines, it is important to ensure that also in the discretised form, the temper-

ature gradients along field lines, should appear in the same form (i.e. involving the same grid points) in Eqs.

(11) and (12). This would not be ensured by the most straightforward discretisation, which would result

(using Ti(r) now only for the radially depending Fourier coefficient and substituting ~b0 � r by ið~k �~b0Þ;
for transparency we also use here constant ~b0;~b1), for the RHS terms in Eqs. (11) and (12), in
~b
�
1 � rð~b1 � rT 0 þ~b0 � rT 1Þ ¼

b�1;r
Dr

b1;r
Dr ðT

iþ1
0 � T i

0Þ þ
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Þ
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Substituting, however, Eq. (14) by
~b0 � rð~b1 � rT 0 þ~b0 � rT 1Þ ¼ ið~k �~b0Þi
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conserves the order of truncation error, but allows the difference formulations (13) and (15) to be cast into

the form
. . . ¼
b�1;r
Dr

ða� bÞ

. . . ¼ ið~k �~b0Þi

2
ðaþ bÞ;
respectively, with
a ¼ b1;r
Dr

ðT iþ1
0 � T i

0Þ þ
ið~k �~b0Þiþ1=2

2
ðT iþ1

1 þ T i
1Þ;
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0 Þ þ ið~k �~b0Þi�1=2

2
ðT i

1 þ T i�1
1 Þ.
This allows, if the terms arising from sources, time derivatives and perpendicular heat conduction exactly

balance, the total parallel temperature gradients to vanish simultaneously at both intermediate points i + 1/

2,i � 1/2. This feature, which is analogous to the principle applied in Section 2, is conserved also for var-
iable~b (see expressions given in appendix), and turns out to be essential for the strongly reduced pollution

of the scheme presented here.

We have implemented these principles in a code allowing for arbitrary multi-helicity perturbations to the

magnetic field and consequently also the temperatures. The details of the scheme are outlined in the appen-

dix. In the following we present a series of increasingly realistic and relevant test calculations conducted

with this code.



S. Günter et al. / Journal of Computational Physics 209 (2005) 354–370 363
3.1. Comparison with analytic test cases

A simple analytic test case, constituting an extension of the one used in Section 2, can be constructed

assuming a single helicity perturbation of the magnetic field w1 and choosing the power deposition profile

so that Q(r,h,/) = �v^$
2w. With appropriate boundary conditions this ensures T = T(w) and hence

$iT = 0 as a stationary solution. In a non-aligned coordinate system, like used here, this constitutes a

non-trivial test case. For the following tests we have chosen the equilibrium helical flux to be

w0(r) = w0a(r/a)
2((r � rs)/a)

2, w0a = 10�1aB0t, rs = 1.2a and a single field perturbation with the helicity

(m,n) = (3,2) given by w1(r) = w1a(r/a)
2, w1a = 10�3aB0t.

Fig. 7 shows the difference between the numerical results using a simple second order scheme according

to Eq. (14) – labelled ‘‘asymmetric’’ in the following – and the analytical solution T = w of the heat trans-

port equation at half the plasma minor radius
Fig. 7.

analyti

compo
Errð0; 0Þ ¼ log10
T numerical � T analytical

T analytical

� �r¼0.5a

ðm;nÞ¼ð0;0Þ
versus the number of radial grid points for three values of vi/v^. Here, we use for the purpose of illustration
an equidistant grid, although, in general, only the step size in a narrow region (the proximity of islands) is

determinant. As expected the numerical error scales like (Dr)2, and is dominated, for sufficiently high values

of vi/v^ by the parallel conduction term. In fact, over a significant range it increases linearly with vi as ex-
pected from the discussion in Section 2. The association of the error with the 3rd and higher derivatives of

Tj can be also verified by selecting w0(r) = w0a(r/a)
2 (other conditions unchanged), which makes these deriv-

atives vanish. In this case even 50 grid points suffice to bring log10½Errð0=0Þ� down to �11, for vi/v^ = 109.

In this analytic example it is transparent that the numerical error derives essentially from the inability of

the numerical scheme to relax the T i
j so as to make parallel gradients and hence parallel heat fluxes vanish.

Our modified scheme (using the expressions given in the appendix, following the ideas presented in the der-

ivation of Eq. (15)) can do this, and should therefore behave particularly well in this test. In fact, Fig. 8

shows that its numerical error for this case is dominated by the v^-contribution, remaining independent

of vi/v^ up to (unrealistic) values P1014, and equal to the one of the ordinary scheme for very small vi/
v^. It scales again like 1/N2, and its independence from the parallel conductivity holds also for the higher

Fourier components.
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3.2. Tests for general single-helicity cases

The above test case is particularly favourable to our scheme. In many important applications involving

magnetic islands, however, a thin transition layer develops around the separatrix region whose width is

determined by the competition of parallel and perpendicular heat fluxes. For a more realistic test, we

use therefore an unperturbed q-profile given by q(r) = 0.86(1 + (2r/a)4)1/2, and a perturbed flux varying like
either W(3,2)(r) = 10�3aB0t(r/a)

2(1 � r/a)2, leading to the formation of a magnetic island of the width 0.059a

at the q = 3/2 rational surface at about rs � 0.6a, or like W(2,4)(r) = 10�3aB0t(r/a)
2(1 � r/a)2 with no reso-

nance in the plasma. The power source is specified as Q0(r) = �v^$
2(0.95(1 � (r/a)2)4 + 0.05). As reference

for the estimation of the numerical error we use in these cases – for which no analytic solutions exist – the

results of the symmetric scheme with 9000 grid points and 85 Fourier components.

A significant difference exists in the performance of our scheme in the two respective cases (Fig. 9).

Although in both cases its performance is much better than that of the ‘‘asymmetric’’ scheme at high values

of vi/v^ the deterioration of performance at given N with increasing parallel heat conductivity sets in (for
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85 Fourier components.
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the given N-value) about a factor of 100 earlier in the island-dominated case. The origin of the deterioration

in the resonant case can be traced to the necessity to resolve the singular layer, and becomes evident in the

dependence of the error of the resonant (3/2) component of the temperature on N, for a given vi/v^ (Fig.

10). In case of a magnetic island one has to ensure that the width in which the parallel heat transport does

not vanish is well resolved. This is the critical island width [14] wc = a(v^/vi)
1/4(esn/8)�1/2 (with s = (r/q)dq/dr

and e = r/R) for small islands (w < wc) and w2
c=w for w > wc. In our case we therefore have to resolve

w2
c=w ¼ 1.2� 10�2a for vi/v^ = 108, and 3.6 · 10�3a for vi/v^ = 109. Fig. 10 shows that if less than 3 points

are located in the region w2
c=w the numerical error significantly increases. This is evidently a truly physical

limitation which should be countered by a suitable accumulation of grid points in the relevant space region.

Also shown in this Fig. 10 is a case with spatially variable ratio vi/v^, with an assumed variation

vk=v? ¼ ðvk=v?Þo=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c21ð~k �~boÞ

2
q

approximating the effect of a correction to the Spitzer heat conductivity

for finite wave number of the temperature perturbation along the magnetic field [12]. For the case in Fig. 10

ð~k �~boÞ ¼ rs=Rð2=3� r=ðrsqÞÞ, (vi/v^)o = 109 and c1 = 1000 were used. This variable heat conductivity case

also behaves as expected, showing a transition to the well-resolved regime at a value of N lower than would

correspond to (vi/v^)o.
Local accumulation of grid points in the island region is particularly indicated for this problem, and we

have therefore chosen it as a test case for the response of the scheme to variable mesh size. The simple meth-

od of using a discontinuous reduction from of Dr to Dr/N* (integer N*) inside an interval rs � d 6 r 6 rs + d
worked well, provided the jump occurred in a region of small d2

dr2 T ðm;nÞ

��� ���, i.e. far enough away from the is-
land. A more flexible scheme, however, consists in the introduction of a coordinate transformation to a

coordinate q, with dr/dq ! 1 in the uncritical, and dr/dq � 1 in the regions requiring high resolution,

and the use of an equidistant grid in q. Fig. 11 shows the results of this method for the test problem for

a (spatially constant) value of vi/v^ = 1010 and the coordinate transformation dr/dq = 1 � a1{exp(�((r/

a � 0.47)/0.065)2) + exp(�((r/a � 0.56)/0.065)2)}. The cases plotted correspond to a constant interval size

Dr = 1/200 away from the island region. Plotting cases with different a1 against the inverse of the minimum

of Dr: Neff = 1/(Dr)min shows indeed a close agreement to the results of the homogeneously spaced case with

N = Neff up to a certain value of Neff, beyond which no improvement occurs in the inhomogeneous grid
case, as the error is now dominated by the residual error in the region outside the island, where the reso-

lution is kept fixed.
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In all above test cases we have applied the strategy to cut-off the Fourier components at a given consis-
tent order in parallel heat flux (rather than temperature). Fig. 12 shows the consequences of implementing

or not this scheme, again for the resonant ((3/2)-perturbation) test case of Fig. 9.

3.3. Application to multiple helicity perturbations

The sample applications given above refer to magnetic perturbations with a single helicity. As is shown

in the appendix, the method can, however, be readily extended to cases with several Fourier components

and hence to situations where cross-field transport interacts with multiple secondary islands and incipient
ergodisation. As an example we consider here simultaneous field perturbations given by W(3,2)(r) =

2 · 10�4B0t(r/a)
2(1 � r/a)2 and W(4,3)(r) = 2 · 10�4B0t(r/a)

2(1 � r/a)2 in an equilibrium field with

q = 0.2exp(r/(0.3a)), leading to primary islands at the (3/2) and (4/3) surfaces in the plasma. For the chosen

perturbation amplitudes these primary islands do not overlap. Secondary islands appear, however, at the m/

n = 7/5, 10/7 and 11/8 surfaces as evidenced by the Poincare plot of the magnetic field lines (Fig. 13) and an

ergodic region starts to develop around the separatrix of the 4/3 island.
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Fig. 13. Poincare plot of the field line intersection points with the r,h plane at / = 0 for the case of a perturbation field with two

helicities (m/n = 3/2 and 4/3).
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Solving the heat transport equation in this field geometry with a source distribution given by

Q = �v^$
2((1 � (r/a)2)8(r/a)8) shows that still a visible difference exists in the temperature iso-contours be-

tween a case with vi/v^ = 1010 (Fig. 14) and one with vi/v^ = 1012 (Fig. 15) and that it can be resolved by our

code: the 7/5 island appears visible as such only in the higher parallel conductivity situation. More details

on this case and other applications will be given in a follow-up paper.
Fig. 14. Temperature iso-contours for the magnetic field of Fig. 13 and a ratio of vi/v^ = 1010 (corresponding, e.g. to v^ = 1 m2/s and

vi = vSpitzer for Te = 1.2 keV, ne = 5 · 1019 m�3).



Fig. 15. Temperature iso-contours for the magnetic field of Fig. 13 and a ratio of vi/v^ = 1012.
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4. Conclusions

The symmetric difference schemes outlined above hold promise to control the numerical pollution of true

perpendicular heat conduction by numerical, parallel conductivity driven transport over a significant

parameter range. They appear particularly attractive for dynamic calculations, where the implementation

of exact alignment of the coordinate system with the field would be very time-consuming or – when closed

flux surfaces cease to exist – even impossible, and where the required accuracy is limited by the co-existence

of other strong effects. Transport calculations in static ergodic fields have reached a high level of sophisti-
cation [1–4] and are generally accepted to require a much larger numerical effort. We will, nevertheless,

investigate in the future, also to what extend these simple schemes can correctly reproduce also the trans-

port across ergodic layers of finite extent.
Appendix A. Numerical scheme in general (multi-helicity) formulation

In the general case in periodic cylindrical geometry, we still express the magnetic field (reduced MHD
formulation) as
~B ¼ B0t
r

qðrÞR~eh þ~ez

	 

þrw�~ez ðA:1Þ
but write the perturbation field as truncated Fourier series in
W ¼
X
m;n

WmnðrÞeiðmhþn/Þ ¼
X
~k

W~ke
i~k�~n;
with integer m,n, and w�~k ¼ w�
~k . In the following we will use the unit vectors ~b ¼ ~B=jBj � ~B=B0t; the spec-

ification of the perturbation fields in terms of a stream function ensures the divergence-freeness of~B, though



S. Günter et al. / Journal of Computational Physics 209 (2005) 354–370 369
not of~b. The formulae below would therefore also hold in the case of a more general representation of the

perturbation field.

The heat sources and sinks Q and the temperatures are likewise expressed as
Q ¼
X
~k

Q~ke
i~k�~n; T ¼

X
~k

T~ke
i~k�~n.
In finite differences in r and in terms of the Fourier coefficients, the heat transport equation (Eqs. (1) and

(2)) reads
3

2
ni
oT i

~k

ot
¼ �

i
ð~k�~b0Þiþ1=2qiþ1=2

k;~k
þð~k�~b0Þi�1=2qi�1=2

k;~k
2

þ 1
2

P
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0
;~k
00
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0
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00
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with
qiþ1=2
k;k ¼ �

X
k0 ;k00

dðk � k0 � k00Þ niþ1=2ðviþ1=2
k � viþ1=2

? Þ
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�
2;

ðA:3Þ

where we have implemented the same principle for the radial discretisation as in Eqs. (13) and (15). The
above system of equation requires selection of suitable subsets of vector-components ~k in the 2-d Fourier

space and rules how to truncate the inclusion of terms in Eqs. (A.2) and (A.3). The discussion in Section 2,

and the results of the test calculations shown in Fig. 12 highlight the danger of allowing for unbalanced heat

flux contributions to qi by including too high-order terms T~k
00 . We have countered this by cutting the heat

fluxes (Eq. (A.3)) at the same ~k as the temperatures.
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