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Abstract
Here, a model for the nonlinear Rayleigh–Taylor instability (RTI) of a steady
ablation front based on a sharp boundary approximation is presented. The
model includes the effect of mass ablation and represents a basic tool for
investigating many aspects of the nonlinear ablative RTI relevant to inertial
confinement fusion. The single mode analysis shows the development of a
nonlinear exponential instability for wave numbers close to the linear cutoff.
Such a nonlinear instability grows at a rate faster than the linear growth rate
and leads to saturation amplitudes significantly larger than the classical value
0.1λ. We also found that linearly stable perturbations with wave numbers larger
than the linear cutoff become unstable when their initial amplitudes exceed a
threshold value. The shedding of long wavelength modes via mode coupling
is much greater than predicted by the classical RTI theory. The effects of
ablation on the evolution of a front of bubbles is also investigated and the front
acceleration is computed.

1. Introduction

The Rayleigh–Taylor instability (RTI) has great relevance in inertial confinement fusion (ICF)
and astrophysics [1]. In ICF, the low density ablating plasma accelerates the imploding shell
inward and the outer shell surface is unstable to the RTI. Mass ablation is caused by the heat
front propagating through the shell and driven by the laser energy absorbed at the critical
surface.

It has long been known [2] that mass ablation reduces the growth rate of the RT in
the linear regime. However, only recently, self-consistent linear theories [3] have identified
the stabilization mechanisms in subsonic ablation fronts by using complicated asymptotic
matching techniques. Subsonic ablation fronts are characterized by two dimensionless
parameters [3]: the Froude number Fr = V 2

a /gLa and the power indexn for thermal conduction,
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κSp = K̄T n, where K̄ is a constant and T is the plasma temperature. Here g is the inward
target acceleration, La is the characteristic thickness of the ablation front and Va is the average
ablation velocity of the overdense material with density ρa. The analytical stability analyses
are usually based on a single temperature (or one group) diffusive model for the heat transport,
i.e. the heat flux is proportional to the temperature gradient, and the thermal conductivity
follows a power law of the temperature. These simplifications lead to an analytic solution of
the linear stability problem. If the radiated energy is negligible, such as in low-Z materials like
deuterium–tritium (DT), the energy is transported mainly by electronic heat conduction [4].
In this case the power index n = 2.5 (as given by Spitzer and Harm [5]), and the characteristic
thickness of the ablation front is obtained by balancing the enthalpy flux with the heat flux
yielding La = 2K̄T n

a /5ṁav [3], where ṁav ≡ ρaVa is the average mass ablation rate.
The RTI-stabilization mechanisms can be easily identified for ablation fronts with large

Froude numbers (Fr � 1) which are typical of direct-drive ICF capsules with cryogenic DT
ablators. For perturbations with wave number k = 2π/λ, the ablative RT growth rate, γ , can
be written as γ ≈

√
kg + (2kVa)2 − k2VaVb − 2kVa, where kg represents the instability drive,

Vb ≡ Vaρa/ρk represents the blowoff velocity at the distance 1/2k from the ablation front,
ρk ≡ µkρa � ρa is the corresponding blowoff density at 1/2k and the factor µk = (2kLa/n)1/n

is derived from the isobaric equilibrium profiles. The cutoff wave number is determined by
setting γ (kc) = 0 yielding kcg = k2

c VaVb and kcLa ∼ [(2/n)/Frn]1/(n−1) � 1. This result
indicates that the unstable spectrum consists only of modes with long wavelength compared
with the ablation-front thickness La, thus validating the sharp boundary approximation. The
stabilizing term −k2VaVb represents the restoring force acting on the spikes which experience a
larger heat flux than the bubbles due to their closer proximity to the heat source. This enhanced
heat flux leads to a larger blowoff velocity and a stronger ‘rocket effect’ at the spikes. The
overall contribution of the other ablative terms (proportional to kVa) is also stabilizing. They
represent the damping effect of vorticity-convection off the ablation front and ‘fire polishing’.
A simple linear sharp boundary model (SBM) with two incompressible fluids, of densities ρa

and ρh � ρa, was developed in [6]. Such a model reproduces the results of the self-consistent
linear theory when the interface is approximated by an isotherm, and ρh is replaced by ρk ,
for each k-Fourier mode of the perturbation. The use of the SBM with this self-consistent
closure has proved to be very fruitful in linear theory [7] and, as shown here, a SBM can also
be developed to study the RTI deeply nonlinear phase.

In the past few years, several attempts have been made to investigate the features of the
nonlinear RTI at accelerated ablation fronts [8]. These theories rely on the weakly nonlinear
(quasi-linear) approximation of the classical RTI equations (without ablation). The quasi-
linear classical results were extended to the ablative regime by simply replacing the classical
linear growth rates with the ablative ones. In this paper, we present several surprising new
results obtained from the full nonlinear ablative model of [9]. For example, the weakly
nonlinear solution of the ablative model leads to very different conclusions with respect to
the earlier quasi-linear theories based on the extension of the classical RTI model. Some of
these weakly nonlinear results were already addressed in [9] and later confirmed in [10]. Of
greater interest, however, is the highly nonlinear single mode and multimode evolution which
can only be studied with a full nonlinear model such as the one presented here. Such a model
is derived from first principles and closed with an approximation similar to the closure of
the linear SBM. It is applicable to ablation fronts with Froude numbers larger than one (such
as those in direct-drive ICF capsules with cryogenic DT ablators). As the model correctly
captures the physics of the ablative stabilization, it represents a basic tool to study many
physical aspects of the single mode nonlinear ablative RTI as well as to investigate multimode
interaction including nonlinear ablation effects.
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This paper is organized as follows. In section 2 we summarize and discuss the model
equations and the closure presented in [9]. In section 3, the results of the weakly nonlinear
theory are described with emphasis placed on the generation of long-wavelength modes via
mode coupling. Section 4 is devoted to the deeply nonlinear phase when the RTI bubble
velocity saturates. Section 5 is concerned with the finite amplitude instability occurring at
a wave number exceeding the linear cutoff, while section 6 describes the multimode results
related to the bubble competition and bubble front acceleration.

2. The sharp boundary isobaric model

For simplicity, we consider a planar foil of thickness �, subject to an acceleration g induced by
the applied ablation pressure Pa: Pa, g, Va and � are assumed constant over the characteristic
RTI time-scale. Attention is restricted to a region of characteristic thickness ∼k−1 about the
ablation front, where k is a typical wave number of the interface modulation, and it is assumed
that La � k−1 � �. Since the primary stabilizing effect of ablation (rocket effect) occurs [3]
for wave numbers satisfying kg ∼ k2

2VaVb (i.e. ε2
k ≡ kV 2

a /g ∼ (2kLa/n)1/n ≡ µk � 1), we
assume that both ε2

k and µk are small and of the same order of magnitude. We also assume that
the unperturbed flow is stationary and one dimensional. The three orthonormal vectors �ex , �ey ,
�ez, identify the frame of reference moving with the unperturbed ablation front (y = 0). In such
a reference frame, the one-fluid model equations for an ideal gas including heat conduction [3]
can be written in the following form

∂tρ + ∇ · (ρ�v) = 0, ρ(∂t + �v · ∇)�v = −∇p + ρg�ey, (1)

∇ · ( 5
2Pa �v − K̄T n∇T ) ≈ 0, P = ρT ≈ Pa, (2)

where equations (1) represent the continuity and momentum conservation, while equations (2)
represent the isobaric approximation of the energy equation and the ideal gas equation of state.
Here, ρ, �v, P and T are density, velocity, pressure and temperature, respectively, p ≡ P − Pa

is the perturbed pressure (|p| � Pa), K̄ is a constant. The inertial forces are represented by the
effective gravitational acceleration g�ey and no motion occurs in the z direction (�r = (x, y)).
The first of equations (2) is a well-known simplified form of the energy equation based on the
isobaric approximation that relative pressure variations are much smaller than the density and
temperature variations. The second of equations (2) is the ideal gas equation of state with the
temperature replacing the thermal velocity T → 2T/mi for a plasma with ion mass mi. The
sharp ablation front is represented by a surface (ablation surface), which may be arbitrarily
parametrized, and it is located at �r = �ra ≡ (η(α, t), ξ(α, t)). Using the large-n limit, the
resulting large thermal conductivity in the blowoff region leads to an ablation surface that is
approximately isothermal. While the n � 1 expansion can hardly be justified on the basis
that n = 5

2 > 1, it has been shown by several authors that such an approximation leads to
very accurate results even when n is finite and equal to 5

2 . The ablation surface separates two
regions: a region of cold material with high density ρa at y < 0, and a blowoff plasma with a
low density ρh (∼µkρa � ρa) and high temperature at y > 0. Both the cold and hot regions
can be considered unbounded since the RTI develops within a region scaling with the inverse
wave numbers (1/k) which is assumed to be smaller than both the target thickness and the
width of the blowoff region. The solution in the two regions is matched using mass ṁ ≡ ρ�v′ · �n,
momentum p�n + ṁ�v′ and energy 5

2Pa �v′ · �n − K̄T n∇T · �n flux conservation; �t and �n are the
tangent and normal (towards the expanding plasma) unit vectors at the interface, respectively,
and �v′ is the fluid velocity relative to it defined as �v′ · �n ≡ �n · �v − �n · ∂t�ra. The momentum flux
conservation, along �t and �n, gives us the continuity of both the tangential velocity, �v · �t , and
p + ṁ2/ρ ≡ q, respectively.
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2.1. The cold region (Dc)

In this region the thermal transport is small (kKT n
a /ṁav � 1) and the flow field is

approximately potential �vc = ∇φ + Va�ey , while the density and temperature are constant
(ρa, Ta ≡ Pa/ρa). The velocity field must satisfy the boundary condition �vc = Va�ey at
y = −∞ and equations (1) and (2) yield the Laplace and Bernoulli equations for φ. Notice
that the perturbed pressure scales as p ∼ ρagk−1 � ρaV

2
a ∼ ṁ2/ρa. Thus, the momentum flux

along the normal direction to the interface is approximately equal to the perturbed pressure on
the cold side of the interface. Furthermore, since mass is ablated off the interface at a rate ṁ,
the mass conservation at the interface yields ṁ = ρa (�vc · �n − �n · ∂t�ra) thus leading to the
following form of the Bernoulli and kinematic interface equations:

∂tφ +
1

2
((∇φ|a)2 + 2Va∂yφ|a) +

q

ρa
− gξ = 0, at �r = �ra, (3)

�n · ∂t�ra = ∇φ · �n + Va�ey · �n − ṁ

ρa
, at �r = �ra. (4)

The system of equations (3) and (4), yields the position of the interface (ξ ) once q and ṁ

are assigned. Note that by setting q = ṁ = Va = 0, equations (3) and (4) reduce to the
well-known model of the classical RTI with Atwood number (AT = (ρa −ρh)/(ρa +ρh)) equal
to unity.

2.2. The hot region (Dh)

In the hot region, the normal component of the momentum flux, q, as well as the ablation rate, ṁ,
must be determined at the interface. The analysis is greatly simplified by using the n → ∞
expansion leading to a solution dominated by the large heat transport (kKT n

h /ṁav � 1).
Indeed, it can easily be shown that the density and temperature gradients scale as 1/n and they
can be neglected in the n → ∞ limit yielding an approximately flat density and temperature
profiles. Due to the large values of n, the temperature gradients are only retained in the
expression of the heat flux (∼K̄T n∇T ∼ K̄T ∇T n). While the density in the hot region
is much smaller than in the cold region (ρh ∼ µkρa � ρa), and the velocity, vh, is much
larger than in the cold region (vh ∼ ṁav/ρh � vc ∼ √

g/k), the perturbed pressures
are of the same order of magnitude. Additional simplifications of the hot region equations
can be made by noticing that the characteristic RTI time-scale is 1/

√
kg, thus indicating

that the time derivatives (∂t ∼ O(
√

kg)) are much smaller than the convective derivatives,
�vh · ∇ ∼ O(kVa/ρh) � √

kg. Observe that the energy equation (2) can be easily integrated
yielding the flow velocity �vh = �vr + ṁav∇θ/ρh, �vr (∇ · �vr = 0) being the rotational part and
θ ≡ 2K̄T n/5nṁav. The rotational component �vr is induced by the vorticity (ω�ez = ∇ × �vr)

convected to the hot region from the ablation front. Using the new expression for �vh and
the isothermal approximation for the ablation surface, the continuity of the energy flux and
the tangential velocity leads to �vr = �vc at the ablation surface. This result indicates that the
rotational part of the velocity remains small compared with the potential part (= ṁav∇θ/ρh),
throughout the hot region. In the next step, �vh is substituted into the continuity equation (1).
By neglecting both ∂tρh and �vr · ∇ρh, one finds the following eigenvalue problem

�θ � 0, (x, y) ∈ Dh, θ(x, y, t)|a � 0, ∂yθ(x, y = ∞, t) � 1, (5)

where the second boundary condition in equation (5) corresponds to a uniform flow in the
far blowoff region. Then, using the energy conservation through the interface leads to the
following expression for the ablation rate

ṁ � ṁav∇θ · �n|a, (6)
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where ṁav represents the average value of the ablation rate. Notice that because of the
faster ablation at the spike with respect to the tips of bubbles, the instability growth
is damped. The next step is the integration of the momentum equation (1) along the
interface. Using the incompressible approximation, the momentum flux can be written as
q = (ṁ2 − ṁ2

av)/2ρh +
∫

ṁω ds, where the second term is an indefinite integral along the
interface with s being its arc-length. The leading term, qL ≡ (ṁ2 − ṁ2

av)/2ρh, represents
the so-called ‘rocket effect’ which provides a strong stabilizing restoring force on the spikes.
The vorticity, entering in the expression of q, can be obtained from the momentum equation
together with ∇ · �vr = 0. A solution for ω can be found by recognizing that the vorticity
is mainly convected with the potential part of the velocity (∝∇θ) and therefore is only a
function of χ (the harmonic conjugate function of θ , ṁ ds = ṁav dχ). Then, the vorticity can
be determined from the following linear integral equation∫ ∞

0
dθ

∫ ∞

−∞

ω(χ) e−(ikχ+|k|θ) dχ

|∇θ |2 = ṁav

∫ ∞

−∞

∇φ|a · (ik�n + |k|�t)
ṁ|k| e−ikχ dχ, (7)

obtained by using the conformal mapping (x, y) → (χ, θ).

2.3. Closure and ablating surface equations

With the expressions for q and ṁ given above, the model is closed except for the fact that the
leading term of the rocket effect (qL ≡ (ṁ2 − ṁ2

av)/2ρh) contains the density ρh. Effectively
the main shortcoming of the model is that it requires additional information associated with
the flow structure behind the ablation front. Such information cannot be introduced self-
consistently within the frame of a SBM. In the linear SBM (x � χ) the closure is introduced
in Fourier space [6, 7] by means of a rule that reproduces the results of the self-consistent linear
theory: the constant density ρh is substituted for ρk ≡ (2kLa/n)1/nρa, for each k-Fourier mode
of the perturbation. An extension of this simple rule (ρh → ρk) in Fourier space to physical
space can be derived on the basis of the following considerations. Let ṁ = ṁav + δṁ represent
the local ablation rate, with δṁ(χ, t) representing a small departure from the equilibrium value
ṁav, and δṁk = F(δṁ) ≡ ∫ ∞

−∞ δṁ e−ikχ dχ , its k-Fourier transform. Then, the linearized

leading-order restoring force, (ṁ2 − ṁ2
av)/2ρh ≈ ṁavδṁρ−1

h , in Fourier space is substituted
for δqLk = ṁavδṁkρ

−1
k . Thus, in physical space, the perturbed momentum flux can be rewritten

as δqL(χ, t) = ṁavF
−1(δṁkρ

−1
k ), where F−1 is the inverse Fourier transform operator. Note

that δqL can also be expressed as a convolution product (∗), δqL(χ, t) = ṁav(δṁ ∗ ρ−1
bl ) ≡

ṁav
∫ ∞
−∞ δṁ(χ ′, t)ρ−1

bl (χ − χ ′) dχ ′, whereρ−1
bl (χ) ≡ F−1(ρ−1

k ). This closure can be extended
to the nonlinear case in a crude but physically reasonable way by replacing the linearized
ablative term ṁavδṁ with its full nonlinear representation (ṁ2 − ṁ2

av)/2, thus leading to the
following expression of the momentum flux ṁav(δṁ ∗ ρ−1

bl ) → (ṁ2 − ṁ2
av) ∗ (2ρbl)

−1 ≡ qL.
This closure equation completes the description of the full nonlinear SBM whose governing
equations are summarized below:

�n · ∂t�ra = ∇φ|a · �n − Va(∇θ |a · �n − 1), (8)

∂tφ|a +
1

2
((∇φ|a)2 + 2Va∂yφ|a) = gξ − (ṁ2 − ṁ2

av) ∗ (2ρaρbl)
−1 − Va

∫
ω dχ, (9)

where ρ−1
bl (χ) ≡ F−1(ρ−1

k ) = (2π)−1
∫ ∞
−∞ ρ−1

k eikχ dk, φ is the solution of the Laplace
equation in the Dc region (verifying ∂yφ = 0 at y = −∞), θ is obtained from equations
(5) and ω from equation (7). Note, that in the case of periodic symmetric perturbations
with fundamental wave number k, the momentum flux can be written as a Fourier series in
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the χ -coordinate: qL = (2ρk)
−1 ∑

j [ṁ2 − ṁ2
av]j cos(jkχ)/j 1/n, where [· · ·]j represents the

j -Fourier coefficient.
It can be shown that the system of equations (7)–(9) reproduces the linear case [6, 7]

yielding the well-known differential equation ∂ttξk +4|k|Va∂tξk + (ρaV
2

a k2/ρk)ξk −|k|gξk = 0,
for the Fourier component ξk of the interface position ξ(x, t), and the vorticity generated at
the interface, ω = 2∂txξ(x, t).

3. Weakly nonlinear theory

In this section, the weakly nonlinear solution of the ablative RTI model is presented (details
about the analytical derivations will be presented in a forthcoming paper). One of the most
interesting aspects is the nonlinear generation of higher harmonics. It is well known from
the classical RTI theory [11] that during the early nonlinear evolution, the higher harmonics
are produced with phases enhancing the spike growth over the bubble growth and initiating
the bubble-spike asymmetry. In the ablative RTI, such a physical picture is quite different.
In a weakly nonlinear analysis (ξ = ∑

ξj cos(jkx)) up to third order, the amplitudes of the
perturbation fundamental mode ξ1, second and third harmonics are significantly modified with
respect to the classical RTI amplitudes. Starting from a fundamental mode of wave number
k < kc, one can determine the amplitudes of the nonlinearly generated second harmonic 2k

and its feedback on the fundamental contribution leading to

ξ2 ≈
(

1

2
− k̃

)
kξ 2

kL, ξ1 ≈ ξkL − (2 − k̃)(1 − 2k̃)

8(1 − k̃)
k2ξ 3

kL, (10)

where ξkL is the linear amplitude (∼eγ t ) and k̃ = (k/kc)
1−1/n. In the limit case k/kc → 0,

the results of classical RTI [11] are recovered. It follows from (10), that the occurrence of
negative or positive feedback to the fundamental harmonic depends, unlike the classical RTI,
on the wave number: the feedback to the fundamental mode vanishes at the critical wave
number k̃ = k̃∗ ≡ 1

2 . Besides, looking at the spike, as ≈ ξkL + ξ2, or bubble, ab ≈ ξkL − ξ2,
amplitudes, the asymmetry of the shape is reduced or even inverted if k̃ > 1

2 , and hence the
bubble amplitude is growing faster than the linear theory predicts, unlike the classical RTI.
This effect can have dramatic consequences for wave number perturbations close to the cutoff
wave number kc. In figure 1, we have plotted the time evolution of the bubble amplitude (both
time and amplitude are normalized) obtained by numerically integrating equations (8) and (9).
This figure shows the results for several values of the ratio k/kc and for a Froude number
equal to 5. The solution was obtained by assigning a small initial perturbation of the type
ξ(x, 0) = a0 cos(kx) and by numerically solving the full nonlinear model. Observe that the
bubble amplitude follows the linear solution (also plotted in the figure) in the early stages of
its evolution (i.e. the linear phase). After the linear phase, the bubble amplitude grows at a
rate slower (for k < k∗) or faster (k > k∗) than the linear rate and as predicted by the weakly
nonlinear results in equations (10). The critical wave number k∗ separating the two different
types of behaviour, is weakly dependent on the Froude number and approximately equal to
k∗ � 0.5kc. It is also interesting to observe how modes on different sides of the critical wave
number behave during the transition from exponential growth to constant bubble velocity.
Before reaching the constant-velocity regime, the bubble amplitude of modes with k > k∗
evolves from the linear exponential phase into a nonlinear exponential growth. This effect is
clearly noticeable in figure 1 for the case k = 1.6k∗ = 0.8kc, where the nonlinear growth rate,
γNL, is about 0.15

√
kg. Though smaller than the classical value, such a nonlinear growth rate

is significant when compared with the maximum ablative growth rate. Indeed, the maximum
linear growth rate [3], γmax, is about 0.45

√
gkc/4 for this case, which is quite close to γNL.
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Figure 1. Normalized bubble amplitude versus normalized time, for different values of k/kc and
Fr = 5. Solid lines correspond to the full nonlinear results. They were numerically obtained by
integrating equations (8) and (9) of the model. Straight dashed lines were obtained from linear
theory and curved dashed lines from equations (12) (ab = V ∞

b (γ −1 + t − t0)).

The same figure shows that the threshold amplitude for this nonlinear exponential growth is
about 0.02λ thus indicating that the linear phase is limited to very small amplitudes <0.02λ.

Another important aspect of the nonlinear RTI concerns the generation of long wavelength
modes via mode coupling. When two modes of wave numbers k1 and k2 are initially present,
their nonlinear interaction yields the beat mode k12 ≡ |k1 − k2|. The most relevant interaction
is the beating of modes with wave numbers about the wave number (kop) for maximum growth
rate. A weakly nonlinear analysis up to second order yields the following amplitude of the
beat mode, ξ12,

ξ12 = −
(

k12

2

γ2(γ1 + γ2)ξ1ξ2

(γ1 + γ2)2 − γ 2
12

)
× Aabl, Aabl ≡ 1 +

(
kc

k12

)1/n
(1 + n)k1k2g

nkcγ2(γ1 + γ2)
, (11)

where ξ1, ξ2 are the corresponding linear amplitudes, γ1 = γ (k1), γ2 = γ (k2) and
γ12 = γ (k12). The term in brackets is the classical RTI mode-coupling formula [12] while Aabl

represents the ablative effects. In the past, the classical formula (equation (11) with Aabl = 1)
was applied to the ablative regime by simply replacing the linear classical growth rates in ξ1,
ξ2 with the corresponding ablative growth rates. Such a heuristic extension of the classical
theory into the ablative regime, is grossly inaccurate since the ablative corrections in Aabl are
typically large and Aabl is often much greater than unity. Indeed, the nonlinear long wavelength
generation is strongly enhanced by mass ablation as compared to the classical predictions. This
is an important result as long wavelength modes cause macroscopic distortion of the imploding
shell leading to non uniform compression of the hot spot and consequent degradation of the
target performances. A figure of merit has been identified in the ‘mode generation efficiency’
defined as G = −4ξ12/(ξ1ξ2k12). The parameter G provides a good measure of the ablative
effects since G = 1 in classical RTI (in the limit k12 → 0) thus indicating that any significant
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Figure 2. Long wavelength mode generation efficiency (as defined in the text) versus k12/k1. The
thin line corresponds to the weakly nonlinear ablative theory (equation (11)). The thin dashed line
corresponds to the weakly nonlinear classical theory. Thick lines were obtained by numerically
integrating equations (8) and (9) of the model. Dots correspond to ART simulations, and squares
to MULTI two-dimensional simulations.

departure from unity is caused by mass ablation. In order to accurately determine the long
wavelength mode generation efficiency, G is inferred from the numerical solution of the full
nonlinear model (equations (8) and (9)) and its values are compared with the results of full two-
dimensional simulations. Figure 2 shows plots of G versus the dimensionless wave number
k12/k1 for values of k1 � 2kopt, kopt, kopt/10 and Fr = 5. It is important to notice that the
long wavelength mode generation efficiency is much larger than in the classical case. Such a
result is particularly important when applied to the beating of modes about the wave number
of maximum growth rate kopt which is expected to dominate the linear phase. Note that for
k1 = kopt, the long wavelength generation efficiency G can be one order of magnitude higher
than predicted by the classical formula. Also, observe that in the limit k12/k1 → 0, G diverges,
in agreement with the analytical result of equation (11), where G ∝ k

−1/n

12 (n = 5/2).
Figure 2 also shows the analytic formula for G given in equation (11) (thin solid line) and its
corresponding classical value (dashed line) from equation (11) with Aabl = 1. Furthermore, the
results of full two-dimensional simulations carried out with the codes ART (dots) and MULTI
(squares) confirm the accuracy of the theoretical results. Both ART [13] and MULTI [13]
are two-dimensional Eulerian codes solving the hydrodynamic equations including electronic
heat conduction. Numerical solutions of the full nonlinear model show that G is only weakly
dependent on the Froude number thus indicating that the results in figure 2 can be applied to
most cases of interest to direct-drive ICF.

4. Asymptotic bubble velocity

The nonlinear model is also applied to determine the RTI deeply nonlinear phase when
the bubble velocity saturates and the amplitude growth turns from exponential to linear in
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time. Using an analytical approximation similar to the one adopted in [14] for the classical
RTI, the ablative model equations (8) and (9) can be solved for the asymptotic bubble velocity
yielding V ∞

b ≈ √
g/3k − Va. Such a result has also been confirmed by the numerical solution

of equations (8) and (9). It is important to notice that
√

g/3k is the Layzer asymptotic bubble
velocity for classical RTI [14] while Va is the average ablation velocity representing the average
motion of the ablation surface. It follows that the bubble penetration velocity with respect to
the unperturbed target material is equal to the classical value

√
g/3k. This result is particularly

important since it suggests that the ablative RTI behaves like the classical in the deeply nonlinear
regime regardless of the size of the ablative damping in the linear regime. Furthermore,
bubbles with wavelength λ < 6πV 2

a /g are smoothed out by ablation. A simple estimate of the
bubble amplitude, ab, in the nonlinear regime can be obtained by instantaneously switching
the nonlinear evolution from exponential growth to constant bubble velocity at a time t0 in
which the linear velocity equals the asymptotic bubble velocity

ab �
{
a0eγ t , (t < t0),

V ∞
b (γ −1 + t − t0), (t > t0),

(12)

where t0 ≡ (1/γ ) log(V ∞
b /γ a0). Here, the term S(k) ≡ γ −1Vb0 is usually referred to as

the saturation amplitude for one single mode. The classical saturation amplitude of 0.1λ

is recovered in the long wavelength limit k/kc → 0. However, shorter wavelength modes
well into the ablative regime exhibit a saturation amplitude that is significantly larger than
the classical prediction [15]. Indeed, saturation amplitudes of 0.15λ and 0.2λ can easily be
reached by modes with wave number beyond the wave number for maximum growth rate
(k > kopt). This result is particularly important in light of the fact that the output of one-
dimensional ICF implosion simulations are commonly post-processed using Rayleigh–Taylor
models based on the classical linear saturation amplitude of 0.1λ. The simple estimate in
equation (12) is shown in the dotted curves of figure 1 and seem to be in reasonable agreement
with the full nonlinear solution for k < 0.6kc. For wave numbers closer to the cutoff wave
number, the numerical solution indicates a dramatic increase in the saturation amplitude and
the formulae in (12) severely underestimate the saturation amplitude. This discrepancy is
caused by the development of the nonlinear exponential growth which becomes much faster
than the linear growth as the wave number approaches the cutoff.

5. Finite amplitude instability after the linear cutoff

Another interesting result of the nonlinear theory is the discovery of a new instability for wave
numbers beyond the linear cutoff. Modes with k > kc are linearly stable, i.e. an infinitesimally
small perturbation would decay exponentially in time. However, the solution of the nonlinear
model reveals that a sinusoidal perturbation with k > kc can be driven unstable when its
amplitude exceeds a critical value. This can be shown through a weakly nonlinear analysis of
the nonlinear equations. Setting ∂t = 0 in (8) and (9), and expanding ξe(x) = ∑

ξej cos(jkx),
the quasi-linear approximation close to kc yields the equilibrium amplitudes ξej for k̃ > 1:
ξe1 ≈ ±k−1(k̃ − 1)1/2, ξe2 ≈ −kξ 2

e1/4, etc. Obviously such a bifurcated equilibrium is
unstable and perturbations with k > kc can be destabilized if their initial amplitude exceeds

the threshold value |kξ1(0)| >
√

k̃ − 1. Such a finite-amplitude instability is suppressed
when the mode wave number exceeds a critical value denoted as the ‘super-cutoff’. The
expression for the ‘super-cutoff’ can be easily extracted from the asymptotic bubble velocity,
V ∞

b = √
g/3k − Va, indicating that bubbles with wave numbers k > ksc ≡ g/3V 2

a are
smoothed out by ablation. Hence, any surface perturbation with k > ksc must be stable
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Figure 3. Normalized threshold amplitude for the nonlinear instability beyond kc versus the ratio
k/kc, for several values of the Froude number.

(linearly and nonlinearly) regardless of its amplitude. Both the development of the finite-
amplitude instability as well as the presence of the super-cutoff have been confirmed by the
numerical solutions of equations (8) and (9) and by full two-dimensional simulations using
the code ART. The threshold amplitude, athr, for the finite-amplitude instability is plotted in
figure 3 versus k/kc and Fr = 5, 10 and 20. A single mode perturbation with an amplitude
larger than athr is unstable. The threshold amplitude vanishes at k = kc, and increases with the
wave number till it diverges to infinity for k → ksc. Any wave number perturbation beyond
ksc is stable regardless of its initial amplitude.

6. Bubble front evolution

When the initial perturbation is made up of multiple modes, the phenomenology of the nonlinear
stages differs from the single mode results. In classical RTI theory, if the two fluids (light and
heavy) have comparable density (AT < 1), then the RTI is followed by the Kelvin–Helmholtz
instability (KHI) which develops from the spikes leading to turbulent mixing between the
fluids. In this case, some simple mixing models have been able to provide reliable estimates of
the penetration velocity of the fluids and the growth of the mixing region [16]. Oron et al [17]
derived the asymptotic ablation correction to the classical RT gt2 mixing zone growth low, in
the context of a statistical mechanics bubble-merger model valid for small Froude numbers.
However, these models cannot be applied to ablation fronts with large Froude numbers as in
direct-drive implosions. In ICF ablation fronts, the densities ratio is typically small, ρh/ρa � 1.
Hence the flow is mostly laminar and the instability develops a clear structure which remains
far from the turbulent regime during the short ICF time-scales. Furthermore, mass ablation off
the spike prevents the development of the KHI. Instead, the nonlinear multimode ablative RTI
presents many features analogous to the classical RTI with Atwood number unity (AT = 1).
Features such as bubble competition and bubble front acceleration have been extensively
studied for AT = 1 in classical RTI [18]. Here, we carry out similar analyses for the case of
ablative RTI. We first consider the case of an initial array of m bubbles with slightly different
wave numbers and approximately equal amplitude. As a result, we expect to observe the
development of the ‘bubble competition’ effect leading to a further enlargement of the widest
bubbles at the expense of the shorter ones. Several numerical experiments have been carried out
by varying the number of bubbles, wave number and Froude number. Figures 4(a) and (b) show
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versus normalized time squared.

some representative results with time and length normalized with
√

kg and k−1, respectively.
Figure 4 shows the case of Fr = 5 with a box size λ = 2π/k with k � kc/10, and four initial
bubbles (m = 4). Four snapshots of the ablation surface are shown in figure 4(a). Observe
that no noticeable difference in the bubble size develops in the initial stage for t

√
kg < 1.5.

The effect of bubble competition becomes apparent later in time when the widest bubble
begins moving faster due to the larger space available for its growth. On the other hand, the
small bubble moves slowly and shrinks. It eventually disappears after merging with the larger
bubbles. In figure 4(b), the position of the tips of the bubbles is plotted versus t2. Notice that
the front width, defined as the amplitude of the largest bubble, moves with constant acceleration
after the initial stage in which the bubbles are formed. The width of the front h can then be
written as h � βgt2, where β � 0.06 for the present case. The case for m = 8 and the same
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box wave number k leads to a bubble front advancing with the same constant acceleration,
β � 0.06, as in the case of four bubbles. In order to explore the effects of mass ablation, the
box size has been reduced by choosing a box wave number k = 0.4kc. In this case, the four or
eight initial bubbles have wave lengths smaller than the cutoff wave length and therefore are
linearly stabilized by ablation. However, their initial amplitudes have been chosen to exceed
the threshold amplitude for the finite-amplitude instability described in section 5. Thus, the
bubbles initially grow in time but the transient towards the bubble-competition regime becomes
more intricate. Nevertheless, the bubble front can be clearly identified and its acceleration is
still proportional to g. However, the coefficient of proportionality is much smaller than in the
previous case and equal to β � 0.03, regardless of the number of bubbles. Similar calculations
performed with k = kc also show an accelerating bubble front with β � 0.02.

In summary, different computations with varying box wave number, number of bubbles,
Froude number and initial conditions, have all indicated that the bubble front advances with
a constant acceleration proportional to g. Although the values of β show a weak dependence
on the initial conditions, the following general features can be inferred from the numerical
results. The envelope of every number of bubbles (i.e. the bubble front) in a box of a
given size λ = 2π/k advances with the same acceleration. This acceleration reaches the
classical value (β ≡ β0 � 0.06–0.07) in the limit k/kc → 0 where the effects of ablation are
negligible regardless of the magnitude of the Froude number. However, for finite values of
k/kc, the bubble front acceleration decreases with k. In fact, if the box wave number exceeds
the super-cutoff (defined in section 5), all the bubbles within the box are linearly and nonlinearly
stable and the bubble front does not grow. Thus, one can argue that the proportionality constant
β is a function of the box wave number normalized with the super-cutoff (k/ksc) and that β = 0
for k = ksc. In figure 5 we show the results of several computations (β versus k/ksc)with Froude
number equal to 3, 5, 10 and 20, after a large set of numerical solutions of equations (8) and (9)
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for different box sizes (i.e. different k) and different number of bubbles. Note that a simple
dimensional analysis leads to h = Ck(V ∞

b t)2 for the amplitude of the bubble front, where V ∞
b

is the asymptotic bubble velocity given in section 4 and C is a constant of proportionality. The
latter can be determined by requiring that the bubble acceleration reaches the classical value
for k → 0. A simple manipulation yields C = 3β0 thus leading to the following final form of
the bubble front amplitude

h = βgt2 ≡ β0g

(
1 −

√
k

ksc

)2

t2 (13)

with ksc = g/3V 2
a . Observe, in figure 5, the excellent agreement between the formula obtained

from (13) and the results of the numerical computations. A qualitatively similar expression
was obtained by Oron et al [17] for the case of small Froude number.

7. Conclusions

We have described a two-dimensional fully nonlinear model of the ablative RTI including all
the relevant physics pertaining to ablation fronts with large Froude number. This model can
be applied to investigate the nonlinear evolution of the RTI in direct-drive ICF capsules with
cryogenic DT ablators, where the cutoff of the unstable spectrum occurs for long wavelength
perturbations compared with the thickness of the ablation front. Several features of the
nonlinear stage of the ablative RTI have been discussed. It is found that the long wavelength
generation by mode coupling is enhanced by ablation with respect to the classical predictions.
Modes with wave number exceeding the linear cutoff are found to become unstable when their
initial amplitude exceeds a threshold value. Full stability is only achieved when the wave
number is greater than a critical value (larger than the linear cutoff ) representing the so-called
super-cutoff. Furthermore, linearly unstable perturbations with wave numbers close to the
linear cutoff undergo a two-stage exponential growth where the linear stage is followed by a
faster nonlinear exponential growth. For the bubble, the exponential growth saturates when
the bubble reaches a constant velocity phase where the bubble tip penetrates into the heavy
fluid at the classical velocity

√
g/3k. In addition to the single mode results summarized above,

multimode analyses have been carried out. The most interesting results concern the effect of
ablation on the evolution of the bubble front originated from an initial set of similar bubbles
within a fixed computational box. It is found that the bubble front h accelerates with a constant
acceleration proportional to g (h = βgt2). Differently from the classical results, the constant
of proportionality β depends on the box size and vanishes when the box wave number equals
the super-cutoff. In summary, the nonlinear model presented here is a valuable tool to study
many physical aspects of the ablative RTI and can also be used to carry out more quantitative
assessments of the ablative effects on the RTI evolution in direct-drive ICF implosions.

Acknowledgments

JS acknowledges the hospitality of the LLE. This research was supported by the CICYT of
Spain (C97010502, FTN 2000-2048-C0301, FTN 2001-3845), by the EURATOM/CIEMAT
association, by the Secretarı́a de Estado de Educación y Universidades de España (Programa
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