Early History of Computer Architecture

- 1963 IBM 7094, 1 MIPS
- 1964 CDC 6600, 9 Mflops
- 1968
 - CDC 7600, 40 Mflops
 - Intel founded
 - Rand proposed ARPA net
- 1971 IBM 360/195, cache memory
- 1975 Cray I, 133 Mflops
- 1992 DEC Alpha
- Techniques used
 - pipelining, lookahead, SIMD
 - multi-bank memory, cache

1K x 1K Matrix Multiply

- Machine and compiler (tested around 2003)
 - SGI, MIPS R12K 250MHz, MIPSpro compiler
 - Intel, Intel Pentium4 2GHz, GCC compiler
 - IBM, Power4 1GHz, Xlc compiler
 - Sun, Ultra5 360MHz, Sun compiler

<table>
<thead>
<tr>
<th></th>
<th>Intel 2GHz</th>
<th>IBM 1GHz</th>
<th>Sun 360MHz</th>
<th>SGI 250MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>no opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>loop opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Case study

- Matrix multiply
 - \(C(J, I) = C(J, I) + A(J, K) \times B(K, I) \)
- For pipelines
 - unroll J loop by 4
- For a vector machine
 - unroll J loop by 64
- On Sun Starfire
 - parallel do for I loop
- On Intel Paragon
 - parallelize J loop
- On Cray T90, 32 vector processors
 - vectorize J and parallelize I

Lessons learned

- Explicit representation of parallelism in a source language is not sufficient. Whenever the program is tailored to a specific architecture, it loses efficiency when ported from one machine to another.
- All parallel forms can be derived from initial sequential source by relatively simple transformations
- Increasing lifetime of software and decreasing lifetime of hardware, program optimization should be best left to the compiler.

Summary

- Uniprocessor performance
 - key challenge
 - sustaining the instruction and data supply
 - hardware solution
 - pipelining, lookahead, vector, VLIW, GPU
 - memory hierarchy
 - software challenge
 - automatic optimization
- Synchronous parallelism
 - e.g. \(A[1n] = A[1n] + B[1n] \)
 - read all values before computing on them
- Automatic vectorization next week (the Allen-Kennedy algorithm)