From picoseconds to galaxies

Building electronics

for Relativistic Heavy Ion Collider

and for Dark Matter Search

Wojtek Skulski

Department of Physics and Astronomy
University of Rochester

Outline

- Introduction.
- Electronics for PHOBOS at RHIC.
 - Time Equalizer electronics.
 - Universal Trigger Module for on-line trigger.
- Research and student projects at UofR.
- Electronics for Dark Matter Search.
- Tiled Diffraction Gratings at LLE.
- Summary and acknowledgements.

Electronics and software help achieve scientific goals

- My electronics and software developments are driven by science.

 Tools to help achieve scientific goals rather than goals in themselves.
- The tools are meant to be used in mission-critical applications.
- Therefore, no compromises are allowed concerning their quality.
- Electronics development required all of the following:
 - Schematic design, board layout and board assembly.
 - Hardware testing and debugging.
 - Software for embedded microcontroller.
 - Firmware for on-board FPGA.
 - GUI design and programming.
- The "one-man show" brings coherence to my designs.

Electronics for Phospies

PHOBOS experiment at RHIC

Relativistic Heavy Ion Collider, Brookhaven National Laboratory

PHOBOS @ RHIC

Scientific goals:

Investigate hot, dense nuclear matter, that could have existed about 1µsec after the Big Bang. Discover and characterize quark-gluon plasma.

Time-of-flight counters (240 units) built at UofR Physics.

Fast trigger detectors made of scintillating plastic + phototubes.

Silicon tracking detectors (150,000 channels)

Time Equalizer

Cerenkov T-zero detector arrays

- Developed by the UofR Time-of-Flight group: Frank Wolfs (PI), Wojtek Skulski, Erik Johnson, Nazim Khan, Ray Teng.
- Two circular arrays of 16 Cerenkov counters, ~60ps resolution each counter.

Situation before Time Equalizer

- Individual Cerenkov T-zero detectors have a very good resolution of ~60ps.
- However, the time-of-arrival of signals from individual detectors was not aligned in the Counting House after propagation over long cables.
- The attainable spatial resolution would be adversely affected.
- What is plotted: time-of-arrival of a signal, translated to spatial domain (after taking the detector geometry into account).

Interaction vertex definition (cm)

The purpose of the Time Equalizer

- I proposed, designed, and built the Time Equalizer in order to:
- Align timing signals from individual T-zero detectors.
- Preserve good timing resolution of individual detectors.
- Enable remote operation without entering the experimental area.
- Details:

_	Number of channels	16
_	Signal in and out	ECL
_	Delay step	10 ps
_	Number of steps	256
_	Shortest delay range	2.5 ns (in 256 steps)
_	Delay range can be adjusted by	swapping resistors
_	Formfactor	CAMAC

Final version of the Time Equalizer

Four such boards are installed at PHOBOS

Response of an individual channel to a pulser

Result: improvement of vertex definition

Detector delay not adjusted.

 Detector delay individually adjusted using Time Equalizer.

Interaction vertex definition (cm)

Universal Trigger Module

for

Universal Trigger Module for PHOBOS

Goal: vertex and centrality definition in real time

PHOBOS @ RHIC

- Analog signals: Paddles, T0, ZDC.
- Logic signals from conventional NIM.
- Signal processing: on-board FPGA.
- Accept/reject event within about 1 µsec.

Centrality from paddle and ZDC.

Vertex definition from TACs.

TO OR Δt ,

Paddle Δt ,

ZDC Δt .

Interaction vertex is located inside silicon detector

The purpose of the Universal Trigger Module

- I proposed, designed, and built the UTM in order to:
- Provide PHOBOS with a programmable trigger logic module.
- Base the level-1 trigger decision on both analog and logic signals.
- Meet stringent timing constraints for level-1 trigger.
- Reduce the complexity of present "random trigger logic".
- Details:

```
Number of analog inputs 8
Number of logic I/O 41
Architecture continuous waveform digitizing
Time step 25 ns
Digitizer precision 1024 ADC counts (i.e., 10 bits)
Digital "processing power" 300,000 logic gates
```

JTAG connector ADC 40 MHz * 10 bits (8 channels) RAM 500 kB micro processor RS-232 → USB

Analog
signal IN
8 channels
with
digital offset
and gain control

ECL clock IN (optional)

Diagnostic OUT 40 MHz * 10 bits

Logic connectors NIM 16 lines IN, 8 lines OUT

16 bidirectional TTL lines + 1 in (pool of extra logic I/O)

FPGA

Status of the Universal Trigger Module for PHOBOS

- Technical requirements were met.
- Hardware, firmware, and software working and tested.
- One board loaned to University of Illinois at Chicago (UIC).
- Firmware will be customized at UIC for PHOBOS trigger.
- Master Thesis for Ian Harnarine, UIC.

R&D and student projects at Physics and Astronomy

Single-channel, 12-bit DDC-1

Designed and built by WS.

Used in several student projects during last 2 years.

A predecessor of the Universal Trigger Module.

Fast reconstruction DAC 65 MHz * 12 bits

Education and R&D projects at Physics and Astronomy

- <u>S.Zuberi</u>, *Digital Signal Processing of Scintillator Pulses in Nuclear Physics Techniques*, Senior Thesis, Department of Physics and Astronomy, University of Rochester. Presented at Spring APS meeting, April 2003, Philadelphia, PA.
 - •Awarded the Stoddard prize for the best Senior Thesis in the Department.
- <u>D.Miner</u>, W.Skulski, F.Wolfs, *Detection and Analysis of Stopping Muons Using a Compact Digital Pulse Processor*, Summer Research Experience for Undergraduates, Department of Physics and Astronomy, University of Rochester 2003 (unpublished).
- P.Bharadwaj, Digital and analog signal processing techniques for low-background measurements, summer project 2004.
- F.Wolfs, W.Skulski, (UofR), <u>Ian Harnarine</u>, E.Garcia, D.Hofman (UIC), *Developing* an efficient triggering system for PHOBOS at RHIC, ongoing.

Particle ID from CsI(Tl)

Senior Thesis by Saba Zuberi

Best Senior Thesis 2003
Dept. of Physics and Astronomy
University of Rochester

← Traditional slow-tail representation

1 cm³ CsI(Tl) + phototube Single-channel digitizer DDC-1 at 48 Msamples/s * 12 bits natTh radioactive source

← PID = TAIL / TOTAL

Note energy-independent PID

W.Skulski Laboratory for Laser Energetics, Rochester, 22 September 2004

Detection and analysis of stopping μ-mesons[#]

*Daniel Miner
University of Rochester
Summer 2003 REU

- Example of pulse processing& analysis
- •Table-top experiment
- •Several observables from one signal

Detection and analysis of stopping µ-mesons

Daniel Miner, 2003 Summer Research Experience for Undergraduates

Waveform from a BC-400 5"x6" scintillator shows m-meson capture and subsequent decay. After 4% capture correction the measured and accepted lifetimes agree to within 0.35%.

Waveform from plastic scintillator

Time between leading and trailing pulses

W.Skulski Laboratory for Laser Energetics, Rochester, 22 September 2004

Electronics for Dark Matter Search

The biggest mystery: where is almost Everything?

- Most of the Universe is missing from the books...
- ... should we blame Enron?

Source: Connecting Quarks with the Cosmos, The National Academies Press, p.86.

The 1st smoking gun: galactic rotation is too fast.

• Gravitational pull reveals more matter than we can see.

Source: Connecting Quarks with the Cosmos, The National Academies Press, p.87.

The 2nd smoking gun: large-scale gravitational lensing.

- Light from distant sources is deflected by clusters of galaxies.
- Visible mass cannot account for the observed lensing pattern.
- Reconstructed mass distribution shows mass between galaxies.

Observed lensing.

(a)

Reconstructed mass distribution.

Source: Connecting Quarks with the Cosmos, The National Academies Press, p.89.

Who are the suspects? How to find them?

- Nobody knows, but there are candidates predicted by the theory ...
- Axions: light particles that may explain CP violation.
- Neutralinos: heavy particles predicted by SUSY.
- We focus on the latter.
- The neutralino is neutral, weakly interacting, and as massive as an atom of gold.
- Occasionally it will bounce off an ordinary nucleus and produce some ionization.
- We will wait for the occasion at Boulby mine in the UK.
- We will use a two-phase liquid xenon detector named Zeplin.

Underground low-background laboratory

Cosmic particles stopped by 1 km of rock.

Dark Matter particles penetrate freely.

The principle of 2-phase xenon detector

Figure from: J.T.White, Dark Matter 2002. http://www.physics.ucla.edu/hep/DarkMatter/dmtalks.htm

Figure from: T.J.Sumner *et. al.*, http://astro.ic.ac.uk/Research/Gal_DM_Search/report.html

Recorded signal from a 2-phase xenon detector

- Signal/background discrimination is derived from ratio S1/S2 and from S1 shape.
- Objectives: measure the areas of S1 and S2 pulses and analyze the shapes.
- The "intelligent waveform digitizer" is an ideal tool to meet the objectives.
 - Low noise (see next slide).
 - Large dynamic range.
 - On-board user-defined data processing.

UTM has intrinsic noise below 1 mV

Gain=1, noise below 1 LSB

Gain=8, noise ~3 LSB (peak-peak)

Waveforms recorded with UTM

Low noise translates to low threshold = 5keV

Pulse-height histogram measured with UTM

Dynamic range = 18 bits, resolution < 0.2 keV

Short filter, pulser resolution 0.37 keV

Long filter, pulser resolution 0.16 keV

Pulser peak = 179,000 ==> 18 bits

Plans for Dark Matter electronics

- Motivated by excellent performance of the UTM,
 - I proposed to develop a digitizer board for Dark Matter Search.
 - 16 channels, 12/14 bits, 65 megasamples per second.
 - On-board Digital Signal Processor (800 mega-operations per second).
 - Remote control and diagnostics.
 - Low cost per channel.
 - Integration with existing infrastructure (VME).
- Status: schematic 75% finished.
 - Prototype can be ready this Winter.
- Applications other than Dark Matter.
 - Gamma-ray spectroscopy, neutron/gamma discrimination.
 - Arbitrary waveform processing.

Tiled Grating Assembly at LLE

Adaptive Optics Control Software for Tiled Diffraction Gratings

Laboratory for Laser Energetics, University of Rochester

• Goal: align positions of tiled diffraction gratings in a closed loop.

- Interferogram acquired from the CCD camera.
- Calculation of tip, tilt, and piston.
- Calculation of actuator steps.
- Recording of history of tip, tilt, and piston.
- Acquisition and recording of Far Field.
- Open-ended and modular design:
 New features added as needed.
- Internal variables and matrices available for inspection.
- Intuitive GUI and graphics.
- Robust: run-time crash does not happen.

Adaptive Optics Control Software for Tiled Diffraction Gratings

- Intuitive GUI and graphics.
- •Internal variables and matrices available for diagnostic.

Adaptive Optics Control System for Tiled Diffraction Gratings

Record of a control run with motors engaged. Two out of three motors (motors A and B) were driven by (+50,-50) steps, then software was allowed to take control.

Summary

- Development of TGA software at LLE has been a success. Software is intuitive, open-ended, and robust.
- Electronics development required all of the following:
 - Schematic design, board layout and board assembly.
 - Hardware testing and debugging.
 - Software for embedded microcontroller.
 - Firmware for on-board FPGA.
 - GUI design and programming.
- Time Equalizers are being used in a mission-critical application.
- Waveform digitizers are under development for PHOBOS, Dark Matter Search, in-beam spectroscopy, and other demanding applications.
- Several student projects and table-top experiments were completed.

Possible applications at LLE

- <u>Software</u>: control and data processing systems that are robust, open-ended, and graphically rich.
- <u>Time Equalizer</u>: accurate alignment of fast timing pulses.
- <u>Waveform digitizers and digital signal processors</u>. Their function is defined by embedded firmware and software (FPGA and DSP).
 - Pulse-height spectroscopy.
 - Pulse shape analysis.
 - Particle discrimination (e.g., gamma/neutron).
 - Real-time processing of arbitrary waveforms.
 - User-defined data acquisition and processing.

Acknowledgements

- SkuTek Instrumentation.
 - Joanna Klima, WS (Principal Investigator for electronics).
- University of Rochester.
 - Frank Wolfs, Ray Teng, Tom Ferbel (Physics), Jan Toke (Chemistry).
 - Joachim Bunkenburg, Larry Iwam, Terry Kessler, Charles Kellogg, Conor Kelly, Matthew Swain (LLE).
- Robert Campbell (BAE Systems).
- Wolfgang Weck and Cuno Pfister (Oberon Microsystems).
- PHOBOS Collaboration.
- Students.
 - •Erik Johnson, Nazim Khan, Suzanne Levine, Daniel Miner, Len Zheleznyak, Saba Zuberi, Palash Bharadwaj.
- My work was supported by grants from NSF and DOE.