
LECTURE 2 - Statistical Ensembles for Jammed Granular States

Notes based on Henkes, O’Hern and Chakrabory, PRL 99, 038002 (2007), Henkes and
Chakraborty , PRE 79, 061301 (2009), and Henkes, PhD thesis, Brandeis

Equilibrium - microcanonical to canonical

We quickly review the steps one takes in ordinary equilibrium statistical mechanics, in going
from the microcanonical to the canonical ensemble.

In the microcanonical ensemble, energy is conserved. One assumes that all states with the
same total energy E are equally likely, and computes microcanonical averages by averaging
observables over all states with the same E, using equal weights. For N particles in a box
of volume V , one counts the number number of states Ω(E, V,N) with total energy E. The
temperature is defined by 1/T = ∂S/∂E, with S(E) = ln Ω(E) the entropy.

Consider now a small subsystem with N particles in volume V , and the subsystem is in
contact with a big reservoir with which it can exchange energy. The reservoir contains
NR � N particles in a volume VR � V . The total system of subsystem + reservoir is treated
in the microcanonical ensemble. Since energy is additive, the total energy ET = E + ER is
fixed. One assumes the subsystem and the reservoir are uncorrelated and so the number of
states of the total system factorizes,

ΩT (ET ) =
∑
E

Ω(E)ΩR(ET − E)

One then expands for E � ET ,

ΩR(ET − E) = exp{ln ΩR(ET )− [∂ ln ΩR/∂ET ]E} ∼ exp{−E/TR}

In equilibrium we know that the temperatures of the subsystem and reservoir equilibrate,
T = TR, and so if we assume that the probability to find the subsystem with energy E is
proportional to the number of states in which the subsystem has energy E and the reservoir
has ET − E, then we get the canonical distribution,

P (E) ∼ Ω(E) exp{−E/T}

Edwards volume ensemble for granular matter

Consider a jammed granular system of N rigid, incompressible, particles confined to a box
of volume V . At a fixed packing fraction φ, there will in general be many possible distinct
jammed states. Because the granular system is at T = 0, it will not on its own explore its
phase space of allowed states unless it is physically perturbed (stirred, vibrated, sheared,
etc.). Experiments on vibrated granular systems suggest that such systems do obey repro-
ducible behavior, i.e. if vibrated with some frequency and amplitude, then allowed to relax,
the system explores a well defined reproducible set of states.
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To develop a statistical mechanics for such granular material, Edwards borrowed the above
ideas from equilibrium, but now applying the arguments to the system free volume as the
conserved quantity that takes the place of energy. He noted that for rigid particles the total
free volume is obviously conserved, and that it is additive over subsystems. If Ω(V,N) is the
number of distinct mechanically stable states of N particles in a box of volume V , Edwards
defined the compactivity X(V ) by

1/X = ∂ ln Ω/∂V

Asserting that all mechanically stable states are equally likely, the above thus defines the
microcanonical volume ensemble for granular materials.

Consider now a small subsystem in contact with the reservoir consisting of the large rest of
the system. Since free volume is additive and conserved, if one makes the assumption that
the number of states factorizes as the product of number of states of the subsystem times
the number of states of the reservoir, one can complete the steps to the canonical ensemble
and argue that the probability that some small subsystem of the granular material will be
in a state ν with free volume vν is given by

Pν ∼ exp{−vν/X}

The validity of Edwards’ assumption, that all mechanically stable states with the same
free volume are equally likely, remains in controversy. In the absence of more information,
however, it is not clear what else to try! It is used in the same spirit as a maximum
entropy principle - if one has a complex system, and knows only the average value of certain
observables, one assumes that the probability distribution pν for possible configurations ν
is the one that maximizes the entropy S = −

∑
ν pν ln pν subject to the constraints of what

average values are known. The resulting distribution has the same canonical ensemble form
as above, with the Lagrange multiplier that enforces the constraint of the known average
quantity playing the role of an inverse temperature. Whether this assumption is valid or not
is something to be tested experimentally (or numerically) in different physical situations.

The Edwards ensemble is best applied to rigid frictional particles. If particles are not rigid,
but can deform and press into each other, then free volume is not strictly conserved. If
particles are rigid but frictionless, the only mechanically stable states occur at the single
packing fraction φJ described by X = 0. Only for frictional rigid particles can mechanically
stable states be found over a range of packing fractions φ and one can have finite values of
compactivity X (see Nature paper by Makse cited in Lecture 1).

Stress ensemble

To describe an ensemble for frictionless deformable (soft core) particles one needs a different
conserved quantity to take the place of free volume. One candidate is the total force moment
tensor, which we now consider.
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We consider the simplest case of frictionless spheres interacting with a pairwise soft core
potential, Vij(rij), when they touch (i.e. rij = |rj − ri| < Ri + Rj), and zero otherwise. We
allow for polydisperse spheres with differing radii Ri.

The interaction energy is then

U =
1

2

∑
i,j

Vij(rij)

and the stress (or pressure) tensor is given by

σ̂ =
1

2V

∑
i,j

rijFij

with rij = rj − ri the separation from particle i to particle j, and Fij the contact force from
particle i acting on particle j. If α and β denote spatial components, then

σ̂αβ = σ the shear stress, and σ̂αα = p the pressure

Also

p =
1

d
trace σ̂ =

1

d

1

2V

∑
i,j

rij · Fij =
1

2V

∑
i,j

rijFij

where d is the dimension of the system and the last equality follows since, for spherical
particles, the contact force is always in the radial direction.

Consider now the total force moment tensor defined by

Σ̂ = V σ̂ =
1

2

∑
ij

rijFij

We will show that Σ̂ is a conserved quantity - if one fixes the boundary of the system, then
no local rearrangements of interior particles can change the value of Σ̂. We will also show
that Σ̂ is additive over subsystems. Thus Σ̂ obeys the two essential conditions needed to
create a statistical ensemble.

Denote dij as the displacement from the center of particle i to the point of contact with
particle j. One then has rij = dij − dji

dij dji

rij

grain i grain j
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Then, using Fij = −Fji we have,

Σ̂ =
1

2

∑
ij

rijFij =
1

2

∑
ij

(dij − dji)Fij =
1

2

∑
ij

(dijFij + djiFji) =
∑
ij

dijFij =
∑
i

σ̂i

where
σ̂i =

∑
j

′
dijFij

is the microscopic stress tensor for particle i (here the sum is over all particles j in contact
with i).

One can then define the stress tensor for a connected volume V as

Σ̂V =
∑
i∈AV

σ̂i

We now show that Σ̂V only depends on the boundary of V (Ball and Blumenfeld, PRL 88,
115505 (2002)). The calculation is simplest in 2D, where we will now call the volume A,
the area. Consider a cluster of neighboring grains as shown below, where i, j, k, l, m label
grains, and ν, µ, λ, τ label the voids surrounding grain i.

One can define height variables h that sit on the centers of each void, as follows. Define the
height on void ν as hiν ≡ h0, an arbitrary constant vector. Then define

hiµ − hiν = −Fij

where µ is the void progressing counterclockwise from void ν, and Fij is the contact force at
the contact that separates voids ν and µ. Thus

hiµ = hiν − Fij = h0 − Fij

Proceeding similarly,
hiλ = hiµ − Fik = h0 − Fij − Fik

hiτ = hiλ − Fil = h0 − Fij − Fik − Fil

hiν = hiτ − Fim = h0 − Fij − Fik − Fil − Fim = h0

where in the last equation we used force balance, Fij + Fik + Fil + Fim = 0. Thus the
condition of force balance, from the requirement of mechanical stability, allows us to define
a single valued function h on the voids. We can similarly construct h at all void sites.

Then
σ̂i =

∑
j

′
dijFij =

∑
j

′
dij(hiν − hiµ) =

∑
j

′
(dik − dij)hiµ =

∑
µ

′
giµhiµ
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Figure 1: adapted from Henkes PhD thesis

σ̂i =
∑
µ

′
(tiµ + siµ)hiµ

where g, t and s are as defined in the figure above.

The last expression represents σ̂i in terms of a counterclockwise sum around the boundary
of the area Ai associated with grain i (bounded by the blue arrows in the above figure) of
the height variables h.

If one now computes for area A

Σ̂A =
∑
i

σ̂i =
∑
i∈A

∑
µ

′
(tiµ + siµ)hiµ

one sees that the contributions from the interior boundaries in area A cancel pairwise (i.e.
adding the terms from going counterclockwise around the boundary of grain i, and the
terms from going counterclockwise around its neighbor grain j, there is a cancelation on the
segments going through the voids common to grains i and j). Thus Σ̂A is determined just
by the height variables h along the boundary of area A, and is insensitive to the positions
of the particles in the interior of A.
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Figure 2: from Henkes PhD thesis

Similarly, if area A = A1 + A2, then one finds Σ̂A = Σ̂A1 + Σ̂A2 .

We have thus shown that Σ̂ is (i) additive over subsystems, and (ii) depends on on the
boundary of the system. For a system in a box with fixed boundary conditions, Σ̂ is therefore
conserved. For a system in a box with periodic boundary conditions, Σ̂ is a topological
invariant. The value of Σ̂ therefore cannot be changed by local rearrangements of particles
(one would need some coherent global rearrangement). Although the above demonstration
was done in 2D, it can be shown that the same conclusion also holds in 3D.

Σ̂ thus has the two properties need to try and create a statistical ensemble. This is called
the stress ensemble.

Consider a box of volume V with N particles in it. Let {ν} be the set of mechanically stable
states with a given fixed value of Σ̂.

As with the Edwards ensemble, we will assume a maximum entropy principle that all states
ν with the same value of Σ̂ are equally likely.

[One can get by with a somewhat weaker condition. Suppose the system is a composite
system composed of two subsystems, S = S1 +S2. Let ν = ν1 + ν2 be the state consisting of
ν1 in subsystem S1, and ν2 in subsystem S2. Let βν1 and βν2 be the probability weights that
S1 and S2 are found in states ν1 and ν2 respectively. Then if βν is the probability weight that
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S is found in state ν, we need to have the factorization property βν = βν1βν2 . See Henkes
and Chakraborty, PRE]

If Ω(Σ̂) is the number of states with force tensor Σ̂, then define

α̂αβ ≡
∂ ln Ω

∂Σ̂αβ

α̂−1 is now an effective temperature dual to Σ̂ and it was called by Edwards the angoricity
tensor.

If we have the simpler case of isotropic compression with no shear, then the force tensor is
diagonal, Σ̂αβ = pV δαβ. Denote Γ = pV . We can then define the scalar angoricity α−1 by

α =
∂ ln Ω

∂Γ

Consider now a subsystem of the box that contains m particles. Viewing the remainder of
the box as a reservoir, we can make the same transition to the canonical ensemble as done
before. If the state ν of the m particles has a value Γν , then the probability this state will
occur will be

Pν ∼ exp{−αΓν}
and the probability to find the m particles in some state with a value Γ is

P (Γ) ∼ Ω(Γ,m) exp{−αΓ}

where Ω(Γ,m) is the number of states of the m particles which have the the value Γ.

Numerical support for this conclusion, with a value of α that is uniform throughout the
different subsystems (m particle clusters) of the box was given in Henkes, O’Hern and
Chakraborty, PRL.

The partition function for the canonical ensemble of N particles is therefore a function of
the angoricity

Q(α) =
∑
ν

e−αΓν

The state ν is defined by the geometric positions of the particles, as given by the separations
of the contacting particles {rij}, and the contact forces {Fij}. We can write the partition
function as

Q(α) =
∑
{rij}

∑
{Fij}

exp{−α
2

∑
ij

rijFij}δ(force balance)δ(force laws)

where we made use of Γ = pV = 1
2

∑
ij rijFij. Here δ(force balance) ensures that the Fij are

related to the rij via the conditions of force balance, and δ(force laws) ensures that the Fij

are related to the rij via the force law Fij = −dVij(rij)/drij.
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Now at the isostatic point (and only there) one has the special situation where the force
balance equations uniquely determine the Fij, i.e. there is a one-to-one relation between the
sets {rij} and the sets {Fij}. One can therefore use force balance to eliminate the variables
{rij} and write the partition function just in terms of the {Fij}.

Q(α) =
∑
{Fij}

exp{−α
2

∑
ij

rij({Fij})Fij}

where the rij implicitly depend on the Fij via the force balance constraints.

However, at the isostatic point, the particles are only just touching each other - not yet any
sizeable compression into each other. Therefore all rij → 2R, the diameter of a particle (we
assume a monodisperse sample for simplicity). We thus get

Q(α) =
∑
{Fij}

exp{−αR
∑
ij

Fij} =
∏
ij

∫ ∞
0

dF e−αRF

where the product is over all pairs of contacting particles i, j. The forces Fij thus decouple
from one another and one can sum over each Fij independently. For Nziso/2 contacts we
thus get

Q(α) =

(
1

αR

)Nziso/2
We can now get the equation of state. From Q(α) =

∑
ν exp{−αΓν} we have,

〈Γ〉 =
−∂ lnQ

∂α
=
Nziso

2α
or α =

Nziso
2〈Γ〉

This same equation of state has been found numerically in Henkes, O’Hern and Chakraborty,
PRL.

Using the definite α = ∂ ln Ω/∂Γ we also get

α = ∂ ln Ω/∂Γ = Nziso/2Γ ⇒ Ω(Γ, N) ∼ ΓNziso/2

and so the probability to find the system in a state with Γ is

P (Γ) ∼ Ω(Γ, N) exp{−αΓ} = ΓNziso/2 exp{−αΓ}

This also has been found numerically.

Finally, we have for the probability distribution of single contact forces,

P (F ) ∼ exp{−αRF}
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giving an exponential distribution. In experiments and simulations, one finds that P (F )
appears to be exponential over some range of F , however it is not clear it if may be decaying
faster than exponential at the large F tail.

Above calculation only works at the isostatic point. Other recent calculations in the “force
ensemble” (Tighe, van Eerd and Vlugt, PRL 100, 238001 (2008)) have treated the hyperstatic
case above jamming and find that there that the force distribution is Gaussian.

WARNING: The above results rested heavily on the assumption of equally likely states,
and the factorization of density of states between a subsystem and the rest of the system.
However at isostatic jamming, if jamming is indeed like a critical point, there may be a
diverging correlation length ξ. If so, it is not clear how well these assumptions will apply as
subsystems may always be correlated to the rest of the system via the diverging ξ.
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