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Abstract When a system jams it undergoes a transition from a flowing to a rigid state. Despite

this important change in the dynamics, the internal structure of the system remains disordered

in the solid as well as the fluid phase. In this way jamming is very different from crystallization,

the other common way in which a fluid solidifies. Jamming is a paradigm for thinking about

how many different types of fluids – from molecular liquids to macroscopic granular matter –

develop rigidity. Here we review recent work on the jamming transition. We start with perhaps

the simplest model of frictionless spheres interacting via repulsive finite-range forces at zero tem-

perature. In this highly-idealized case, the transition has aspects of both first- and second-order

transitions. From studies of the normal modes of vibration for the marginally jammed solid,

new physics has emerged for how a material can be rigid without having the elastic properties

of a normal solid. We first survey the simulation data and theoretical arguments that have

been proposed to understand this behavior. We then review work that has systematically gone

beyond the ideal model to see whether the scenario developed there is more generally applicable.
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This includes work that examines the effect of non-spherical particles, friction and temperature

on the excitations and the dynamics. We briefly touch on recent laboratory experiments that

have begun to make contact with simulations and theory.
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1 INTRODUCTION

William Butler Yeats bemoaned that “ Things fall apart; the centre cannot hold;

Mere anarchy is loosed upon the world...”. Equally calamitous is that things get

stuck and often seemingly at the worst possible moment–they lose the ability to

flow so that no further rearrangement is possible. This can occur as particles get

wedged tightly together in a pipe on a factory floor or as molasses refuses to pour

from a container as the temperature drops in winter. Of course, falling apart

and getting stuck are just approaching from opposite directions this catastrophic

transition in the dynamics, known as the jamming transition. Our goal here is

to review some progress that has been made in seeing if the concept of a jam-

ming transition has a more general applicability (in the purely physical realm!)

than had previously been realized and whether it can unite our understanding of

different ways in which a flowing material or liquid can gain rigidity.

A liquid with low viscosity solidifies into a glass when the temperature is low-

ered; a flowing foam becomes rigid when the applied stress is lowered; a colloidal

suspension loses the ability to flow when the density is increased. In each of

these cases, a different control parameter is varied to bring the system into the

rigid phase yet the structure does not change appreciably at the transition. Both

phases are amorphous and no structural “order parameter has been identified

to tell the two apart. A common framework could prove useful for revealing

connections between these seemingly disparate phenomena.

A theory for jamming phenomena must account for the extraordinary increase

in relaxation times associated with the “transition”. However, this dramatic

slow down itself poses experimental problems and makes it difficult to study

the very phenomena being investigated. There is no (first-order) jump as in
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crystallization nor is it possible to approach very closely the point at which the

relaxation times might appear to diverge. The laboratory transition is determined

by kinetics: the definition of the glass-transition temperature, Tg, depends on

the choice of an arbitrary time (or equivalently, viscosity) scale (1, 2). If an

experiment is carried out more slowly, a supercooled liquid remains fluid to a

(slightly) lower temperature so that Tg decreases. Similar behavior occurs in the

onset of rigidity in a driven system such as a foam: more patient measurements

produce lower values of the yield stress, Σy. Such transitions are therefore not

sharp (1); experiments, always done on a laboratory time scale, cannot produce

a unique value for either the glass-transition temperature or the yield stress.

Even with fourteen decades of dynamic range in frequency, experiments have

not been able to verify or refute the possibility that there is a underlying sharp

finite-temperature transition.

One important advance in the study of jamming is that, at least for one ad-

mittedly idealized model described below, there is a well-defined transition where

an order parameter can be defined. In this simplified case the physics is begin-

ning to be put on a firm foundation. This physics is not merely an extension of

previously known results but contains new elements. It is presently a subject of

considerable controversy whether this jamming transition, interesting as it is, will

be relevant to more realistic systems and whether it has the explanatory power

to deal with the complexities of glass formation. However, a solid understanding

of the physics in one region of phase space is an advance that offers the hope that

this understanding can be enlarged at least to the region around it.

Our review of jamming starts by considering the “spherical cow” model of ideal

spheres at zero temperature and zero shear stress. These frictionless spheres
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interact with repulsive pair potentials that vanish at a well-defined distance that

defines their diameter. Because we restrict ourselves initially to zero temperature,

the system is always in mechanical equilibrium where the forces on all particles

balance. At low enough packing fraction, the particles are free to push each other

apart so that there are no overlaps. In this case, the particles are free to move

in response to any stress on the system - it behaves as a fluid. At higher packing

fraction, the particles are forced to overlap and the system is jammed - any

infinitesimal force will be resisted by the force network between the spheres. At a

critical value of the packing fraction the system is precariously perched between a

liquid and a solid state. This sharp transition itself is unusual in that it exhibits

both a discontinuity, as in a first-order transition, and power-law scaling, as in

an ordinary critical point. Moreover, the properties of the marginally-jammed

solid, just above the transition, differ from those of ordinary elastic solids.

This particular transition can be placed on a so-called “jamming phase dia-

gram” (3), as shown in Fig. 1. The advantage of looking at it in the context of

such a diagram is that it allows one to see how this transition might relate to

more realistic materials such as granular matter or glasses. The phase diagram

has three axes specifying the relevant control parameters: T (temperature), 1/φ

(the inverse density or packing fraction of particles), and Σ (shear stress). The

region near the origin (in green) is jammed and the region far from the origin

represents material that can flow. The lines in the (T − 1/φ) and (1/φ − Σ)

planes represent the generic dynamical glass transition and yield stress, respec-

tively. Those curves are drawn to show that as the density is increased, one

normally expects that a system will become more rigid. The shape of the jam-

ming surface will vary from system to system; the purpose of this diagram is to
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identify the important control parameters for jamming and to see how different

systems might relate to one another. We note that the control parameters are not

necessarily thermodynamic variables (i.e., the shear stress can drive the system

into a flowing state) yet they do control the rigidity of the system. Note that the

jamming surface is not sharply defined in the dynamics as discussed above. The

transition for ideal sphere systems is denoted by “J” in Fig. 1 and lies at zero

temperature and shear stress at a density φc at which the spheres just begin to

have unavoidable overlap.

In this review, we take the point of view that by studying in detail this transi-

tion and the properties of the marginally-jammed solid, we can obtain a deeper

understanding of the nature of jamming transitions and of amorphous solids in

general. Particular attention will be paid to the normal modes of vibration in

the jammed solid. If the zero-temperature solid is to lose rigidity due to an in-

finitesimal decrease in packing fraction, it must do so by creating at least one

soft mode (i.e., a mode with zero frequency). This is how a solid under shear

stress fails (4, 5). But in that case, the failure produces another solid and not

a fluid with very different properties. We therefore expect that the complete

loss of rigidity at J should be more catastrophic and should not be reflected in

the behavior of just a single soft mode. The low-frequency modes of the solid

should display a characteristic signature as the jamming/unjamming transition

is approached.

It turns out that this signature is indeed dramatic. The shape of the vibrational

spectrum and nature of the low-frequency modes at the unjamming threshold

are completely different from those ordinary solids. This result has implications

for the behavior of glasses at low temperature as well as for other amorphous



The jamming transition 7

systems. As the temperature is raised evenly slightly above zero, the lowest

frequency modes will be the dominant excitations. Thus they not only control

how the marginal solid falls apart due to a small decrease in density, but also

how it responds to a small increase in temperature or applied stress.

Section II summarizes the properties of the transition and of the marginally-

jammed solid. The remainder of the review is organized around different ways

of perturbing the system around point J. In Section III, we discuss work on

extending the results to nonzero temperatures and shear stresses, respectively.

This is the first step towards exploring the connection between the transition

at point J and the glass transition or the development of a yield stress in ideal

spheres. In Section IV, we discuss generalizations of the ideal sphere model to

explore the extent to which the behavior of ideal spheres is applicable to more

realistic systems. Finally, in Section V we discuss open questions that are the

subject of active research.

2 Properties of the zero-temperature jamming transition

Numerical simulations suggest that the zero-temperature jamming transition of

ideal spheres, point J in Fig. 1, is a special transition with aspects of both

first- and second-order behavior and with multiple diverging and vanishing length

scales associated with its approach. Despite its unusual nature, this transition

still controls many of the properties of the system in its vicinity in the manner

of an ordinary critical point.

The analysis that follows is centered around ideal spheres or discs in two and

three dimensions, which interact via the following pairwise potentials:

V (rij) =
ε

α
(1 − rij

σij
)α, (1)
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where σij = (σi + σj)/2 is the average of the diameters of particles i and j. The

case α = 2 corresponds to harmonic repulsions between particles while α = 5/2

corresponds to Hertzian repulsions in three dimensions and α = 0 corresponds to

hard-sphere repulsions.

2.1 Isostaticity and scaling near point J

The order parameter that characterizes the transition is Z, the average number

of overlaps a particle has with its neighbors. At low density, Z = 0 since if

particles are not forced to be in contact, they will push each other apart leaving

no overlapping particles. In order to have any overlap, a particle must be held

in place by neighbors on all sides, so overlapping particles must span the entire

system. In consequence, Z must jump discontinuously from Z = 0 to a nonzero

value, Zc at the transition packing fraction, φc. For frictionless spheres, Zc turns

out to be the minimum possible value needed for mechanical stability (7–10),

due to the following argument. A mechanically stable system must have force

balance on every particle so that for N spheres in the connected backbone in d

dimensions, the number of equations that must be satisfied by the inter-particle

forces is Nd. According to Maxwell’s criterion for rigidity (6) the number of

inter-particle forces, NZ/2, must be at least the number of equations (assum-

ing no degeneracies). This leads to the condition Z ≥ 2d. For particles with

finite-ranged repulsions at the onset of jamming, however, the amount of overlap

between particles in contact must also vanish. This introduces NZ/2 equations

that must be satisfied by the dN particle coordinates. Thus, at the jamming

transition, one also has the condition d ≥ Z/2. The two conditions can only be

satisfied by Zc = 2d.
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When the system is compressed above the transition, the coordination number

Z increases above Zc. The excess number of contacts scales as (9,11,12)

Z − Zc ∼ ∆φβ≈1/2, (2)

The existence of isostaticity at the transition implies a diverging length scale

(10,13,14). Consider a system that is compressed to a packing fraction ∆φ above

the transition. Such a system has an excess of Z − Zc ∼ ∆φ1/2 contacts beyond

those needed for mechanical stability. If a chunk of material of size � is cut

from the d-dimensional system, there will be �d−1 boundary contacts missing.

If the total number of contacts in the chunk, Ntot, is below the isostatic value,

Niso = NZc/2, there will be zero-frequency modes (floppy or soft modes). The

number of soft modes is therefore given by the difference between the contacts

cut at the boundary of the chunk and the extra contacts in the bulk of the chunk:

Nsoft ≈ c1�
d−1 − c2(Z − Zc)�d, (3)

where c1 and c2 are constants that depend on the geometry of the chunk. The

“cutting length” �� is the size of the chunk at which Nsoft vanishes, so that the

excess number of contacts in the bulk is equal to the number of missing contacts

at the perimeter:

�� ∼ ∆φ−ν≈−1/2. (4)

Below ��, the system looks isostatic but above ��, the system is over-coordinated

and should behave as a normal elastic solid. This length scale was observed in

simulations probing fluctuations in the response of a packing to a point force or

to a small inflation of a single particle, as shown in Fig 2.

Above φc, the elastic moduli vary as power laws with increasing packing frac-

tion, ∆φ = φ − φc (9, 11, 12). The pressure, p, the bulk modulus, B and the
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shear modulus, G all vanish in the unjammed regime at φ < φc. The elastic

constants are conveniently expressed in terms of the effective elastic constant for

the interaction, keff , given by the second derivative of the pair interaction, V ′′,

which scales as keff ∼ ∆φα−2. The moduli scale as B ∼ keff and G ∼ keff∆φ0.5.

Note that the ratio

G

B
∼ ∆φγ≈1/2 (5)

does not depend on the interaction potential and vanishes at the transition.

The behavior of the coordination number Z − Zc in Eq. 2 is reflected in the

pair-correlation function, g(r). At the transition, there is divergent first peak

in g(r) due to a delta-function at contact with amplitude Zc; this arises from

the Zc neighbors per particle that are just in contact there (15). As the system

approaches the transition, the overlap distance, or the width of the first peak in

g(r) on the small-r side, �w, vanishes as (15)

�w ∼ ∆φ, (6)

while the height of the first peak diverges (15) as g1 ∼ ∆φ−1.0 . In addition,

the pair-correlation function near the jamming transition has the functional form

g(r) ∝ √
r − σ for r above but close to the sphere diameter, σ (16). When

integrated, this yields Eq. 2 (12). Similar results were observed for hard spheres

approaching φc from below (17).

There is a vanishing frequency scale associated with the vibrational spectrum.

Consider the chunk of size � cut from the system at the isostatic transition. As

argued earlier, each of the �d−1 bonds that is cut at the perimeter of this chunk

yields a floppy mode. If these modes are assumed to be extended, we can use

each one to create a trial vibrational mode for the chunk when it is compressed to

some ∆φ above the transition. Each trial mode is assumed to be a floppy mode
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distorted by a plane wave that satisfies the boundary condition that the mode

amplitude vanishes at the boundary of the chunk where the bonds were cut. This

distortion leads to an energy cost of O(1/�2), so that the corresponding mode has

frequency ω ∼ √
keff/m

√
1/�2 ∼ √

keff/m O(1/�). For a chunk compressed to

∆φ, the onset frequency of “anomalous” modes corresponding to floppy modes

shifted upwards in frequency upon compression should be determined by the

cutting length, �� ∼ ∆φ−0.5, as defined in Eq. 4; this frequency then scales as

ω∗ ∼
√

keff

m
∆φz≈1/2, (7)

If we assume that the modes are plane-wave-like below ω∗, so that they obey

the dispersion relation ω = ck, where c is the speed of sound and k is the wavevec-

tor, this yields two length scales � ∝ 1/k, corresponding to the longitudinal and

transverse sound speeds, determined by the bulk and shear moduli, respectively,

with �� ≈ c�/ω
∗ ∼ ∆φ−ν=−1/2 consistent with the cutting length of Eq. 4. This

length scale has also been observed in the dispersion relation (18, 19). At fre-

quencies above ω∗, many wavevectors contribute to the anomalous modes, but

the lowest wavevectors that contribute are of order 1/�∗.

There is also a new length scale (18)

�† ≈ ct/ω
∗ ∼ ∆φ−ν†≈−1/4, (8)

which also marks the mean-free path of vibrations at the crossover between weak

and strong scattering at ω� (19–21).

There appears to be another diverging length scale whose connection to the

length scales introduced above is not understood. The finite-size shift of the

position of the jamming transition, φc, yields a length scale that apparently di-

verges as |φ − φc|−0.7 in both 2- and 3- dimensions (9). The same exponent
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shows up in simulations in which a hard disk is pushed through a packing below

φc (22). Finally, the same exponent has been observed for correlations of the

transverse velocity on athermal, slowly-sheared sphere packings near the jam-

ming transition, (23) but only for certain models of the dynamics (JJ Remmers,

unpublished). It is not known whether the exponent is really different from 1/2

or not.

In summary, we have a transition consistent with a discontinuity in the coor-

dination number and a diverging length scale. Such as a transition is known as

a random first order transition (24). The apparently rational values of the ex-

ponents for the jamming transition and the fact that the numerically-calculated

exponents are the same in two and three dimensions suggest that the transition

is mean-field-like. An Imry-Ma-type argument due to Wyart (10) suggests that

the upper critical dimension of the jamming transition should be two. If one

includes disorder in the coordination number that could lead to additional soft

modes, the number of soft modes in a cut chunk of size � in Eq. 3 is modified:

Nsoft = c1�
d−1 − c2(Z − Zc)�d + c3δZLd/2 (9)

where δZ characterizes the amount of disorder. Evidently, disorder does not

affect the transition if d/2 ≤ d − 1, or equivalently, if d ≥ 2.

To understand the interplay of isostaticity and disorder, it is useful to study

isostatic systems with no disorder. A recent analysis (25) considers periodic

isostatic lattices in d = 2 stabilized by next-nearest-neighbor bonds. By tuning

the strength of the next-nearest-neighbor bonds to zero, the systems are taken

towards an isostatic structural transition. One can identify a cutting length,

��, and crossover frequency, ω�, that scale as expected. However, the ratio G/B

varies among systems, periodic or disordered, exhibiting isostatic transitions (25–
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27). In the square lattice with randomly added next-nearest-neighbor bonds (27),

G/B varies as (Z−Zc)2, not Z−Zc as for the jamming transition (Eq. 5 and 2),

while for a randomly diluted network, G/B is constant with Z − Zc (26). This

suggests that isostaticity alone is not enough to determine the universality class

of the structural transition.

The particular behavior displayed by the jamming transition—a discontinuity

and subsequent power-law increase with β ≈ 1/2 in the number of interacting

neighbors, a divergent susceptibility (or inverse ratio of shear to bulk modulus)

with γ ≈ 1/2 and two diverging length scales with exponents ν ≈ 1/2 and

ν† ≈ 1/4—is rare but has been seen in several models. Remarkably, all of these

models correspond to ones that have been proposed for the glass transition or

that capture glassy dynamics (24, 28–33), in the mean-field limit. Another class

of models known as k-core percolation (34) and its variants, called “jamming

percolation,” (35–40) also displays the same behavior in the mean-field limit as

the jamming transition (40). These models yield some insight into the connection

of one class of models with glassy dynamics, namely kinetically-constrained spin

models (31), to the jamming transition. In k-core percolation, which maps onto

kinetically-constrained spin models (41, 42), sites are populated randomly with

probability p. The “k-core” is the set of occupied sites with at least k occupied

neighbors, each of which has at least k neighbors, and so on. In jammed packings,

on the other hand, each particle in the connected cluster must be locally stable

with at least d+1 neighbors to hold it in place; each of these neighbors must have

at least d+ 1 neighbors, and so on. This analogy between k-core percolation and

jamming is not an exact mapping, because the former model is a scalar model,

not a vector one. As a result, the global constraint that there must be at least 2d
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neighbors per particle on average is not satisfied in k-core percolation because it

is a scalar model, not a vector one. Consequently, the two models do not exhibit

the same behavior in d = 2 (38, 39), but are apparently similar enough to have

the same behavior in the mean-field limit.

Finally, there have been several suggestions for a “statistical mechanics” of

stable packings, starting with Oakeshott and Edwards (43–47). This approach

suggests a field theoretical analysis of the packings (46) which, when combined

with empirical arguments, leads to a proposed phenomenological mean field the-

ory for the jamming transition (48).

2.2 Location of point J

Each mechanically stable configuration corresponds to a local minimum in the

potential-energy landscape. For ideal spheres, the properties of different minima

are remarkably similar so that to a large extent, the properties of a minimum are

dictated by its energy. Now consider a given local minimum with some energy

V . As the system is decompressed, V decreases and eventually reaches V = 0.

At this density, φc, the state corresponding to the energy minimum has reached

its jamming threshold and is isostatic.

Different minima or mechanically stable configurations can have different jam-

ming thresholds, φc. The width of the distribution of jamming thresholds vanishes

in the infinite system-size limit, so that nearly all distinct states jam at the same

density (9,12). This density is φJ ≈ 0.84 for two-dimensional bidisperse packings

of disks, and φJ ≈ 0.64 for three-dimensional packings of monodisperse spheres,

close to random close-packing density, φrcp.

However (9,12), we know (49) that there is a small tail of states at higher and
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lower densities. Because there is a distribution of jamming thresholds even in the

thermodynamic limit, different protocols can yield different results by weighting

states differently. For example, equilibrating a sample at a finite temperature

before quenching to T = 0 can lead to an increase in its jamming threshold density

above φc. Depending on the preparation history of the system, the jamming

transition of an ensemble can therefore occur over a range of densities (50, 51).

Such a range in the case in which the densest close-packed state is assumed to be

disordered is shown in Fig. 7.

2.3 Harmonic properties of the marginally-jammed solid at T=0

A defining characteristic of the vibrational spectrum of elastic solids is that at

sufficiently low frequency, the vibrations are plane wave sound modes. This

behavior gives rise to the familiar Debye scaling of the vibrational density of

states with frequency, D(ω) ∼ ωd−1, for a solid in d dimensions. One of the

most striking features of marginally-jammed sphere packings at φ = φ+
c is that

they violate this Debye law. Instead, D(ω) is simply a plateau (?) down to zero

frequency in both d = 2 and d = 3. As shown in Fig. 3, the plateau persists upon

compression but only down to a low-frequency cutoff, ω�, that increases with ∆φ

as in Eq. 7 (18). We note that in amorphous solids, modes in excess of the Debye

prediction for plane-waves arise at a frequency called the boson peak frequency;

thus, our system has a boson peak frequency of ω�.

These modes arise from soft modes at the jamming transition. The variational

calculation (10, 13, 14) outlined above Eq. 7 describes the frequency shift of the

soft modes upon compression. The number of soft modes created by the cutting

a chunk of size � scales as N� ∼ �d−1. If one assumes that the modes upon



16 Liu & Nagel

compression can be viewed as plane-wave distortions of the soft modes, which

vanish at the edges of the boundary, the resulting modes are shifted upwards to

frequencies up to ω� ∼ 1/�, as argued above Eq. 7. The total number of modes

in the chunk scales as �d. Thus, the density of states must satisfy

∫ ω�

0
dωD(ω) ≈ N�

�d
∼ 1

�
∼ ω�. (10)

Clearly, this is satisfied if D(ω) ∼ const, independent of ω. This argument

suggests that the observed constant behavior of the density of states should persist

down to zero frequency at the jamming transition (Fig. 3).

Another question concerns the structure of the normal modes, shown in Fig. 4.

In the vicinity of ω� the modes are highly heterogeneous and resonant, with large

displacements of a few particles superimposed on a plane-wave-like background.

The modes become progressively more heterogeneous and “quasi-localized” as the

frequency is lowered (Fig. 5(a) and Fig. 4(b)). There is no appreciable difference

in the magnitude of the participation ratio for the lowest-frequency modes at

the different compressions, suggesting that quasi-localized modes exist even at

the jamming threshold. Similar modes have been observed in other disordered

solids (52–59). Above ω�, the modes become more extended (Fig. 4(c)) with

contributions from a very broad range of wavevectors (19, 60). These are the

anomalous modes, presumed to originate from the soft modes at the isostatic

jamming transition. At high frequency, the modes are highly localized (Fig. 4(d)),

as expected.

The nature of the modes affects their contribution to the thermal conductivity,

κ, as quantified by the energy diffusivity, d(ω). The quantity d(ω) is defined as

follows. A wave packet peaked at ω and localized at r spreads over time and can

be characterized by d(ω), given by the square of the width of the wave packet
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divided by time at long times. (In a weakly-scattering three-dimensional system,

d(ω) = c�(ω)/3, where c is the sound speed and �(ω) is the phonon mean-free

path.)

For sphere packings, the diffusivity was calculated using the Kubo approach (19,

20). At low frequencies, the diffusivity behaves as for weakly-scattered plane

waves. Above a crossover frequency that scales as ω�, d(ω) is nearly frequency

independent, consistent with theoretical expectations (10,19,21). Such a regime,

postulated to exist in glasses to explain the temperature dependence of the

thermal conductivity (61), thus arises from properties of the jamming transi-

tion (19, 20). The scaling of the crossover from weakly-scattered plane waves

to strong scattering can be understood by assuming continuity of the mean-free

path in conjunction with the scaling laws for the shear and bulk moduli (19,20).

Recently, dynamical effective medium theory (62,63) has been used to study the

dynamics of a square lattice with randomly-placed next-nearest-neighbor springs

(27) and random isotropic off-lattice systems near the isostatic limit (21). Both

calculations yield a characteristic frequency ω∗ ∼ Z − Zc above which the den-

sity of states D(ω) and the diffusivity d(ω) exhibit a plateau. In the isotropic

case (21), both the zero-frequency bulk and shear moduli vanish as Z − Zc

in agreement with static effective medium calculations for rigidity percolation

(64) so that their ratio is constant, unlike Eq. 5. In addition, both D(ω) and

d(ω) exhibit a plateau above a frequency ω∗ ∼ ∆Z, in agreement with numeri-

cal results (12, 18–20). If the starting point is a periodic isostatic system(27),

the frequency-dependent shear modulus, C44(ω), satisfies the scaling relation

C44(ω)/C44(0) = h(ω/ω∗). This model also yields l∗ ∼ (∆z)−1 in agreement

with the cutting arguments discussed above Eq. 4 (10,13,14).
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2.4 Anharmonic properties of the marginally-jammed solid at

T=0

In order to consider how a solid disintegrates and loses rigidity, either at high

temperature or under a mechanical load, we must push beyond the harmonic

approximation and consider the anharmonic response of the solid. It has not

been generally appreciated that on approaching the unjamming transition, the

barriers between nearby configurations shrink to zero so that anharmonic effects

will also diverge.

The existence of low-frequency quasi-localized modes (Fig. 5(a)), suggests that

the structural stability of jammed solids might be very different from that of

ordinary crystals, according to the following argument. Because such modes

have a somewhat localized character, the same energy input into one of them, as

compared to an extended mode, would drive some particles to have much larger

amplitude of oscillation. In addition, the relative displacement between a particle

and its neighbor will also be very large because the high displacements contain

very high wavevector components.

Application of shear stress can push a mode frequency downwards until it

reaches zero (5). At that point the system must rearrange into a new stable

configuration. Compressive stress can have the same effect. For crystals, the

shift of frequency with compression is typically small and negative. For disordered

sphere packings, however, the shift is highly negative (65) for the low-frequency,

low-participation ratio modes shown in Fig. 5(a), indicating that such modes are

highly unstable to compression. Another measure of the anharmonicity is how

far a given mode can be excited (leaving all the others alone) before the system

goes unstable (65). Fig. 5(b) shows that the low-frequency quasi-localized modes
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are the most anharmonic.

3 EFFECT OF TEMPERATURE AND STRESS ON POINT J

The progress on understanding the jamming transition discussed in Sec. II was

possible because properties can be studied cleanly at zero temperature. Each

mechanically-stable configuration corresponds to a metastable energy minimum

whose properties can be studied simply by using energy minimization. Work-

ing at T = 0 is appropriate for granular systems and foams, where the energy

for even small rearrangements of the configuration is many orders of magnitude

greater than the thermal energy at room temperature. However, for molecular

glasses, temperature is obviously relevant. In this section, we review work that

has been done to connect the zero-temperature jamming transition at point J to

phenomena at nonzero temperature.

3.1 Effect of temperature on length scales near point J

The jamming transition at point J is marked by diverging length scales and a

vanishing length scale, the overlap distance. One strategy for understanding be-

havior at nonzero temperature is to track these lengths and watch their evolution

as temperature T increases from zero. The effect of T on the overlap distance

has been studied numerically and experimentally (66). It has been shown that

�w φ−φv(T ), consistent with the scaling of Eq. 6 at zero temperature. Indeed, re-

cent results suggest that above φv(T ) the elastic moduli also scale with φ−φv(T )

as they do at zero temperature (67). This suggests that the behavior at φv(T ) is

a vestige of the jamming transition at T = 0. The vestige has been observed ex-

perimentally on two-dimensional bidisperse systems of NIPA particles by Zhang,
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et al. (66).

3.2 Sphere systems in thermal equilibrium

While the zero-temperature plane in the jamming phase diagram (Fig. 1) can be

studied by energy minimization, the unjammed region can be studied numerically

by standard methods such as molecular dynamics simulations. Here we focus

on equilibrium properties of the repulsive sphere systems characterized by the

potentials of Eq. 1, approaching the jamming surface from high temperature.

Such systems exhibit typical glass-transition behavior, with a relaxation time

that increases with decreasing T at fixed pressure, p. For colloidal systems such

as hard-sphere suspensions, on the other hand, p or φ is typically varied at fixed

T . Recent molecular dynamics simulations (68) show that in the limit of low

pressure, the relaxation time, τ , along many different trajectories in the T − φ

plane, can be scaled onto a single master plot as a function of the ratio T/p.

Ref. (68) argues that this collapse should hold for all repulsive potentials that

vanish at a finite distance, as long as pσd/ε is small, where σ is the particle

diameter and ε is the scale of the interaction energy. However, the low-pressure

limit for soft spheres is equivalent to the hard-sphere limit, where ε → ∞. In

this limit, the data collapse shows that the glass transition and the colloidal glass

transition are actually the same phenomenon.

Point J for soft spheres corresponds to the double limit pσd/ε → 0, T/pσd → 0.

This also corresponds to the infinite-pressure limit (pσd/T → ∞) of hard spheres.

This equivalence explains why the properties of the maximally-random jammed

state of hard spheres (69) are identical to the properties of soft spheres at point

J. It also tells us that we can learn about the effect of temperature on point J by
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studying hard spheres just below the jamming transition.

Brito and Wyart (70–72) proposed an important conceptual extension of the

results for athermal soft-sphere systems above point J to those of hard-sphere

systems below point J. The analogy is valid at times long compared to the col-

lision time of the hard spheres but short compared to the rearrangement time.

Although each particle has many neighbors, it does not necessarily collide with

all of them. Following earlier work for granular materials (73), one can define

a contact network of particles that experience many collisions with each other.

The coordination is Zc at the transition and increases as Eq. 2 below φc (70).

Each particle in this network has an average position and fluctuates around this

average position as it explores its free volume. From the free-volume entropy, one

can obtain a dynamical matrix for the system. Thus, the vibrational behavior

discussed in Sec. II.B-C has been extended to hard spheres below the jamming

transition (71,72).

3.3 Effect of stress on the jamming transition

The rheology near point J was first studied by Olsson and Teitel (23) using the

bubble model introduced by Durian (11, 74) for modelling foams. They found

that the viscosity, η ≡ Σ/γ̇, where Σ is the steady-state shear stress and γ̇ is the

shear rate, exhibits scaling collapse onto two branches, one above and the other

below the critical jamming density, φc (see Fig. 6). This data collapse suggests

that the jamming transition is indeed critical.
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4 BEYOND THE IDEAL SPHERE MODEL

Up to now, we have focused on the behavior of packings of frictionless spheres

interacting via purely repulsive, finite-ranged potentials. Clearly, no system in

nature is so ideal and it is important to understand the extent to which the re-

sults apply to more realistic systems. To this end, several groups have explored

generalizations such as non-spherical particle shapes, friction, and long-ranged

interactions, including attractions. Here we will show that each time a more gen-

eral system has been investigated, it has been possible to understand it, despite

subtleties that have invariably emerged, in terms of the transition at point J.

4.1 Ellipsoidal particles

The intuition developed in Sec. II.A suggests that the coordination number at the

jamming transition should be the isostatic number, which depends on the particle

shape. Once rotational degrees of freedom are introduced, the isostatic number in

three dimensions increases from Ziso = 6 to Ziso = 10 for ellipsoids of revolution,

or spheroids. Thus, on the basis of the arguments in Sec. II.A., one might expect

the number of contacts at the jamming transition, Zc, to jump discontinuously

from 6 to 10 as the shape of the particles is perturbed infinitesimally from a

sphere to a spheroid. In fact, this is not what is observed (75, 76). The number

of interacting neighbors at the transition increases continuously as the shape is

varied (75–79).

This conundrum has recently been resolved (80). The isostatic number for

spheres was obtained without considering the rotational degrees of freedom, which

give rise to rotational soft modes that can be viewed as being localized on each

sphere. As the spheres are deformed into spheroids, these soft modes are grad-
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ually recruited into the vibrational spectrum at nonzero frequencies. At small

distortions from a sphere, ε , the resulting predominantly-rotational modes form a

new band that lies below the band of predominantly-translational modes found for

spheres. The onset frequency of the upper band of modes scales as ω� ∼ Zc(ε)−6.

This is exactly the same scaling that was observed for compression (see Eqs. 7

and 2), except that in this case the extra contacts are created not by compressing

the particles together, but by deforming their shape. Similar results were found

in two dimensions (81).

These results indicate that while changing the particle shape gives rise to new

physics–in this case a new band of rotational modes–the scenario developed in

Sec. II for point J is surprisingly robust. The scaling of the contact number at the

jamming transition of ellipsoids can be predicted from the scaling of the contact

number for spheres under compression. Thus, the singular case of spheres, like

other singular points, controls a wide swath of behavior in its vicinity.

4.2 Frictional spheres

If the spheres have static friction, then in addition to the inter-particle normal

forces, fn, discussed so far, there can also be tangential forces, ft, up to a thresh-

old set by the usual friction law ft ≤ µfn, where µ is the friction coefficient. The

presence of tangential forces introduces torque balances conditions for a stable

system, and changes the counting of the number of degrees of freedom. The result

is that the isostatic number in the case of frictional particles is Zµ
iso = d + 1 in d

dimensions. Since d+1 < 2d for d ≥ 2, this means that at the jamming threshold,

mechanically stable packings of frictional spheres can exist over a range of values
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of Z, namely

d + 1 ≤ Zc ≤ 2d. (11)

In the case of frictionless particles, different mechanically stable packings cre-

ated with different initial conditions have the same properties, described in Sec.

II. A. Thus, the scaling of the elastic moduli, coordination number, and other

quantities depends in the same way on the degree of compression above the jam-

ming threshold, ∆φ, for different configurations. In the case of frictional particles,

this is no longer the case because at the jamming threshold, different configura-

tions can have different values of Zc with different φc (16, 82–84). Nonetheless,

it was found (84) that the static shear modulus obeys the expected scaling for

point J with Zc replaced with Zµ
iso. From this result, one would therefore expect

that only packings with Zc ≈ Zµ
iso would be marginal with many low-frequency

vibrational modes as for frictionless spheres (84) (see Sec. II.B). Standard pro-

tocols produce mechanically stable packings with Zc ≈ Zµ
iso only for extremely

high values of the friction coefficient, µ → ∞ (85,86). Thus, it would appear that

most stable packings of frictional particles with more realistic values of µ would

not resemble the marginally-jammed packings of frictionless particles.

This turns out not to be true, for the following reason (85,87). Depending on

how a frictional packing is prepared, there might be nm contacts with tangential

forces that are just at the Coulomb threshold, ft = µfn. Thus, ft for these con-

tacts are constrained and do not contribute to the number of degrees of freedom.

The counting can therefore be generalized to (85,87)

Z ≥ (d + 1) +
2nm

d
≡ Zm

iso. (12)

for mechanically stable packings. According to this criterion, all packings with

Z close to Zm
iso will be marginal, with many low-frequency excitations coming



The jamming transition 25

from the slipping of tangential contacts that just exceed the Coulomb threshold.

Thus, packings at any value of the friction coefficient µ can be prepared to be close

to this generalized isostaticity criterion (87), which is approached at the lowest

density that can typically be accessed for a given µ (86). Packings prepared very

gently therefore tend to be marginal in this sense (87), and have properties very

similar to those of frictionless sphere packings near the jamming threshold.

4.3 Long-ranged interactions

For long-ranged interactions, the number of interacting neighbors is technically

infinite. For long-ranged repulsive interactions, point J–defined as the jamming

threshold, below which no particles are interacting–must lie at zero density. For

spheres with long-ranged attractions, point J does not even exist–it lies inside the

vapor-liquid coexistence curve, at least for binary Lennard-Jones mixtures (9).

Thus, long-ranged interactions have a non-perturbative effect on the jamming

transition. It is possible, however, that the jamming transition might still in-

fluence behavior. For systems with interactions that decay with distance, for

example, one would not expect weak interactions with distant particles to have a

strong effect on the vibrational properties. Indeed, it was found that a variational

approach could be used to predict the boson peak frequency, ω�, even in systems

with long-ranged interactions, and that the value of ω� is primarily determined

by the strongest bonds in the system, whose number is not much larger than the

isostatic value (88). Thus, the vibrational properties of such systems are similar

to those of ideal spheres not far above point J.
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4.4 Networks

Phillips (89) recognized long ago that isostaticity is important to many of the

properties of network glasses (90–92). In such systems, bond-bending interactions

can be viewed as giving rise to additional constraints, beyond those discussed in

Sec. II. The proximity to the isostatic point can be tuned by varying the com-

position of a network glass; this gives rise to rich phase behavior and unusual

properties near the isostatic point. Recently, Wyart (10, 93, 94) has extended

the variational analysis introduced in Sec. II to examine the vibrational spec-

tra of networks near isostaticity, such as rigid tetrahedra connected by flexible

joints (95), used to model silica.

5 IMPLICATIONS FOR REAL GLASSFORMERS: OPEN QUES-

TIONS

Compared to other jamming systems such as foams, emulsions, colloidal suspen-

sions of spherical particles and granular bead packings, real glassforming systems

arguably resemble ideal spheres the least. The constituent molecules or atoms

are not spherical, they have long-ranged attractions, and they may have 3-body

interactions such as bond-bending interactions in network glasses. The work

reviewed in the last section suggests that point J may shed light on the vibra-

tional properties of glasses. In this section, we will discuss the connection of the

properties of marginally-jammed sphere packings with the low- to intermediate-

temperature properties of amorphous solids, and the possible connection of the

jamming transition to the glass transition.
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5.1 Jammed sphere packings and amorphous solids

We have gone on at some length to describe the new physics that is controlled by

the critical nature of point J. These have included structural properties appearing

in the pair distribution function g(r) and the presence of a new class of normal

mode excitations. In studying the properties of these excitations, it has become

clear that they have much to tell us about the low-temperature properties of

glasses. They produce a large excess number of excitations (known as the Boson

peak) and they are poor transporters of energy. The onset frequency of the

Boson peak in the density of vibrational states, ω�, would show up as a peak in

the heat capacity at temperature T ≈ h̄ω�. Similarly, the small and constant

energy diffusivity associated with the modes above ω� should give rise to a linear

increase of the thermal conductivity above T ≈ h̄ω�, crossing over to a constant

at T ≈ h̄ωmax, where ωmax marks the Debye frequency, or the upper limit of the

vibrational spectrum (19).

Real amorphous solids universally exhibit this very same behavior in the inter-

mediate temperature regime, from 1K to room temperature (96). In this regime,

the thermal conductivity, κ(T ), has a plateau followed by a nearly-linear rise at

higher T , crossing over to a constant; this behavior is in sharp contrast to that of

crystalline materials in the same temperature range (97). In addition, the ratio

C(T )/T 3 of the heat capacity to the expected T 3 dependence predicted by the

Debye model for crystalline solids exhibits a characteristic peak, also known as

a Boson peak (96, 98), which is not seen in crystals. However, the origin of the

plateau in the thermal conductivity and the question of whether the plateau is

related to the Boson peak in the heat capacity remain controversial.

In jammed sphere packings, it is clear that the Boson peak in the heat capacity
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is tied to the onset of linear behavior in the thermal conductivity through the

frequency ω�. The fact that ω� is only weakly affected by long-ranged interac-

tions (88) and also emerges in models of network glasses (93, 94) as well as in

ellipsoid packings (80) suggests that it is a robust feature that may well appear

in real glasses. Thus, the jamming scenario predicts that it is not a coincidence

that the Boson peak in the heat capacity occurs in the same temperature range

as the end of the plateau in the thermal conductivity.

This still leaves open the question of the origin of the apparently universal

behavior of amorphous solids at low temperature. There, the heat capacity in-

creases approximately linearly in T (96), instead of as T 3 as expected, while the

thermal conductivity increases as T 2 instead of as T 3 as it does for crystals (99).

It is believed that these features arise from the scattering of phonons from two-

level systems (96, 100). However, two-level systems are not yet understood in

physical terms.

The recent discovery (65,71) that anharmonic effects in jammed sphere pack-

ings are very different from those in crystals may open new doors. The low-

frequency modes of jammed systems are, by many measures, considerably more

anharmonic than the high-frequency ones. The large anharmonicity coupled with

the strong quasi-localization of low-frequency modes may give rise to the excit-

ing possibility of local melting and concomitant dynamical heterogeneities (71,

101). It may be possible to identify two-level systems and shear transformation

zones (102, 103). We suggest that this is one of the most exciting avenues to

explore in the near future.
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5.2 Point J and the glass transition

One question of current controversy is whether there is a connection of point

J to the glass transition. There have been a number of papers that have re-

cently suggested that the jamming and the glass transition are separate phenom-

ena (50, 104). For example, Fig. 7(a) shows a scenario in which there is a true

thermodynamic glass transition at nonzero T/p, labeled as K, which is clearly

distinct from the line of J-points at T/p = 0. An alternate scenario is depicted in

Fig. 7(b), in which there is no thermodynamic glass transition at nonzero T/p.

Note that in both cases, it is assumed that the close-packed state is disordered,

which is not the case for monodisperse or bidisperse systems.

Recent simulation results by Xu, et al. (68), discussed in Sec. III.B, demon-

strate that it is still far from clear which of these two scenarios applies to finite-

dimensional systems. The functional form of the collapse function for the re-

laxation time determines whether there is an intervening thermodynamic glass

transition (if the function diverges at a finite value of T/p) or whether the relax-

ation in the vicinity of the jamming point is governed by the jamming transition

itself (if the function diverges only atT/p = 0) (68). Equivalently, for hard spheres

one may ask whether the relaxation time diverges when the pressure diverges or

when it is finite (33,105). If it diverges at a finite pressure, then the glass transi-

tion and jamming transition are distinct; if it diverges at infinite pressure, then

the only thermodynamic glass transition is the jamming transition.

The results of Ref. (68) show that it is not possible to determine which scenario

is correct with the dynamical range available to simulations. Experiments on

glassforming liquids cannot determine where the relaxation time diverges with

14 orders of magnitude of dynamic range, and simulations and experiments on
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hard-sphere-like colloids can only probe about 5 decades. In addition, we have

no fundamental understanding of the form of the equation of state or relaxation

time scaling functions. Thus, this question seems unanswerable at the present

time.

We must also ask what happens to the dynamics when we go beyond the ideal

sphere model. For example, do attractive interactions completely disrupt the

scaling scenario for the relaxation times that appear near point J for repulsive

interactions? Recent studies (106) suggest that the density dependence of the

relaxation time is very different for systems with attractions than for systems

with only repulsions. Nevertheless, our experience with liquids (107) suggests

that the physics can be dominated by repulsions. The understanding of the

effect of attractions is an area of active research.

5.3 Conclusion

Jamming provides a fertile field for future research. It should be clear from this

review that there are many parallels between phenomena observed in computer

simulations of jammed sphere packings and those observed in amorphous systems

existing in the laboratory. The parallels appear despite what must be admitted

are the drastic idealizations used in the canonical model of jamming: a collection

of frictionless spheres interacting via repulsive, finite-ranged, two-body potentials

at zero temperature. Many issues still remain to be answered that focus on

different aspects of the jamming scenario.

Over the last decade, most of the research on the jamming transition was

on simulated systems where the interactions could be very tightly controlled,

with the notable exception of experiments on emulsions and foams measuring the
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scaling of elastic moduli (108,109). Recently, however, a number of experiments

have been performed that are capable of testing some of the predictions of the

simulations. These include experiments that focus on structural features (66,

110–113), experiments on rheology near the jamming transition (114–116) and

experiments on granular systems near the transition (110,111,117–119).

Moreover, a number of reports have recently come out of experiments that are

designed to measure the distribution of low-frequency anomalous modes in col-

loidal samples that have densities that are adjusted to vary through the jamming

transition (66,120) (M. Gardel, unpublished). These experiments will be able to

test whether the picture of the vibrational properties obtained from simulations

on idealized spheres applies to real systems.

Our conclusions are highly optimistic. Recent discoveries in jammed particle

packings have opened new doors into understanding how amorphous systems

behave in general. A number of studies suggest that many properties of glasses

may be governed by the proximity to a novel and unusual critical point that

marks the jamming transition of frictionless spheres at zero temperature. This

new physics is still being unraveled.
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Figure 1: Jamming phase diagram. Outside the shaded region, at high temper-

ature, T , applied shear stress, Σ and high inverse density, 1/φ, the system is

unjammed and can flow; inside the shaded region the system is jammed. The

point ”J” marks the jamming transition for ideal spheres at zero temperature

and applied stress.

p=10-2 p=10-6

Figure 2: Response to a force loaded at the center with blue (red) lines indicating

an increase (decrease) on each bond. The thickness of each line is proportional

to the change in force. Left: system at a higher compression with pressure

p = 10−2; right: system close to the transition with p = 10−6. Forces are affected

to a distance that scales as ��.
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Figure 3: Density of vibrational states for three-dimensional ideal sphere packings

with harmonic repulsions at various compressions, ∆φ (18). The density of states

approaches a constant as ∆φ → 0.
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Figure 4: Vibrational modes of a d = 2 packing of N = 2000 particles at ∆φ =

10−4. (a) The density of states, with vertical lines indicating frequencies of the

modes in (b-d). (b) a quasi-localized mode, (c) an extended anomalous mode

and (d) a localized mode at high frequency.



42 Liu & Nagel

0

0.2

0.4

0.6

p(
ω
)

1 1.5 20 0.5 2.5ω
10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

V
m
ax
(ω
)

ω1 1.5 20 0.5 2.5

(a)

(b)

Figure 5: (a) Participation ratio p(ωi) = (
∑

n
|en,i|2)2

N
∑

n
|en,i|4 of the vibrational modes,

where en,i is the displacement of particle n in mode i. (b) energy barrier Vmax

encountered along each mode before falling into another energy basin. Data are

for a configuration of N = 1000 particles at ∆φ = 0.1. The modes with the

smallest participation ratios have the lowest barriers to rearrangements.

Figure 6: Scaling plot showing inverse viscosity scaled by ∆φβ vs. shear stress

rescaled by ∆φ∆. The two branches of the scaling function, corresponding to

φ < φc and φ > φc, respectively, are collapsed by the same exponents, consistent

with behavior near an ordinary critical point. After Ref. (23).
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Figure 7: A “jamming state diagram” in the plane of inverse packing fraction,

1/φ, and the ratio of temperature to pressure, T/p. At zero temperature, different

trajectories (blue lines) corresponding to different cooling or compression rates

lead to T = 0 states with different φc. The fastest cooling rate (highest blue line)

leads to the lowest critical packing fraction. (a) Diagram constructed for mean-

field ”random first-order models” that have a thermodynamic glass transition

labeled by K that is distinct from the line of J-points. After Ref. (50). (b)

Alternate version of the diagram for systems that do not have a thermodynamic

glass transition but have a close-packed state that is disordered.


