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The elastic-wave scattering by a flat crack can be represented by an integral expression involving

displacement and strain on the surface of the crack. We have explored the use of a modified static
solution as an approximation to the displacement field of a penny-shape crack in the long-wavelength
regime and then studied numerically how well it connects with the low-freqency limit of the diffraction
regime. Comparisons between this and several other existing approximations are made. We conclude that
this quasistatic approximation is useful practically in both the long-wavelength and beginning diffraction

regime.

PACS numbers: 03.40.Kf, 46.30.Nz, 91.30.Fn, 62.30.+d

. INTRODUCTION

The calculation of the scattering of ultrasonic waves
is a fundamental problem in the nondestructive detec-
tion of cracks in elastic materials. Using the ideali-
zation that a crack is a region of fixed size and shape
on which certain boundary conditions for the displace-
ment field are specified, various approximate solu-
tions in both the high- and low-frequency limits can
be obtained.

This paper will present a review of some of the ex-
isting approximations for the scattering of a normally
incident longitudinal wave off a circular crack and
then present a new quasistatic approximation for the
long-wavelength limit. This new approximation is the
only one we know of which clearly gives rise to the
long-wavelength Rayleigh limit for the scattered pow-
er. As current transducer frequencies are such that
for cracks with diameters on the order of 100 p
probing is limited to the long-wavelength region, we
feel this approximation is a significant step in the
nondestructive analysis program.

There exists considerable literature on the problem
of scattering of elastic waves by a circular crack;
most of these have been summarized by Kraut.! Re-
cently, the formal theory of scattering has been ex-
amined from an integral equation viewpoint to obtain
concise asymptotic quantities which relate directly to
experiment.?

In addition to the new approximation we report in
the present study, we considered those given by
Filipczynski, 3 a modified Kirchhoff approximation,
the “half-space” approximation of Miller and Pursey, *
one proposed by Mal, 1s5 and the Keller theory for
shear-free media. ¢

In Sec. II, we reduce the basic integral formula
for scattering of elastic waves to a form useful for
cracks. We then examine the form it takes for
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several of the above referenced approximations in
Sec. III.

In Sec, IV, we discuss the low-frequency limit
(quasistatic) and the results when exact static-elastic
solutions for the crack strain field are introduced as
leading approximations., An important result is that
the correct long-wavelength Rayleigh limit is ob-
tained.

Computed results are compared for the various
approximations.

We conclude that the quasistatic approximation is
a realistic formulation for computing the scattering
from a crack, in a form useful for experimental
application.

Il. SURFACE-INTEGRAL REPRESENTATIONS

The problem of elastic waves scattered by a void
in a homogenous infinite medium is defined as
follows. 12 The displacement field u;(r) satisfies the
wave equation

(2.1)

(standard notation for space and time derivations is
used; C;;,,; is the elastic tensor and p is the density
of the medium). For harmonic time dependence, Eq.
(2.1) reduces to

Ciinte,j1= Py

Ciinittn, 1+ Pwu;= 0., (2.2)
Consider the situation of Fig, 1, with V the volume
enclosed by a surface T=8+5", where § is the sur-
face of the defect and §’ is a circumscribing surface
generally taken to be at infinity. To characterize a
scattering problem, we have to specify certain

, FIG. 1, Surface of integration
S used in Kirchhoff and quasi-static
approximations.
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Sy
s FIG, 2. Surface of integration used in
Miller and Pursey approximations,

boundary conditions on § and §’. Since we are inter-
ested in a scattering solution with a given incident

wave %, we impose

u;(¥) ~ul(x) forres’, as § —o. (2. 3a)

The nature of our scatterer imposes the boundary
condition on S. For a weak (disbonded) crack, we
require

(2. 3b)

where n 4 is the outward normal to the surface of the
crack, This condition means that all components of
the force on the surface S vanish.

Oyn5=Cijmhsy, =0 forre s,

Equation (2. 2) with boundary conditions (2. 3a) and
(2. 3b) uniquely determines the scattering solution.

Throughout this work, we shall use a convenient
surface-integral representation of the scattering
equation. Represent

(2.4)

then, for any point r& V, where V is bounded by a
surface ¥, we can write

up, ()= Cuszzdz' 7318 m® = g, p(r)
= Zem,p (=T )u§(®)]. (2.5)

Note that the surface T need not be a connected sur-
face (see Fig. 1). Here, u§ »(r')=0us(r’)/07}, and
gim(r—1') is the Green’ s function that satisfies the
equation

uy (0) =0 d() +u§(7) ;

(2.6)

Equation (2.5) is the starting point for various approx-
imate treatments.

Cisnilim i+ PO Eim= = 6;,0(E~T') .

To specify Eq. (2.5), we need the solution for Eq.
(2.6), i.e., the Green’ s function g;,(r~1’). To give
the correct dependence for the asymptotic displace-
ment field, we must choose a solution of Eq. (2.6)
which generates outgoing scattered waves, i.e., for
exp(—iwt) time dependence, g~ exp(ikR). Other than
this requirement, any solution to Eq. (2.6), and, in
particular, the infinite medium Green’ s function, is
adequate for use in Eq. (2.5). Alternatively, depend-
ing on the particular geometry of the surface Z, it
may be possible to find a Green’ s function satisfying
such boundary conditions on I that will eliminate
terms in the integral (2.5) and, thus, simplify the
problem.

Two types of surfaces will be considered, that of
Figs. 1 and 2. For both, we want no contribution
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FIG, 3. Geometry of scattering., Inci~
dent wave is along 2, 6, and ¢ specify
the point of observation of the scat-
tered field,

from 8§’ to u® as & —~», so we impose the additional
condition that g;;(R) ~exp(ikR)/R as R —~=.

One final comment on Eq. (2.5) should be made.
While the volume formulation yields an integral equa-
tion for the (total field) solution of the scattering
problem, since Eq. (2.5) nowhere involves the inci-
dent wave »?, it is not an integral equation, but
rather a representation of «®* on Z.

11l. REVIEW AND COMPARISON OF EXISTING
APPROXIMATIONS

To explore and compare various approximations
here, we have considered only normally incident
longitudinal waves. The scattered wave is given, in
the far-field limit, by?

uS=PAlexpliar)/v] +6Blexplipr) /1. (3.1)

Here, a and g are the longitudinal- and transverse-
wave vectors [g= (v /vy) @, where v, and vy are the
longitudinal~ and transverse-wave velocities], Sym-
metry requires the transverse part to be solely in the
8 direction, The results of various approximations
specify the dependence of A and B on the scattering
angle 8, the wave vector of the incident wave o, and
the radius of the crack, a. The scattering angle 6

and the geometry of the scattering situation are shown
in Fig. 3.

The scattered power into solid angle df is given by

db_dpy adPr, (3.2)
ap dp
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FIG. 4, Total scattered power in Filipczynski approximation,
ag=0to 1, 6=0°to 180°,
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We now quote the results of various approximations
and present plots of scattered power as a function of
aa and 6.

(a) Filipczynski® approached the problem by a sepa-
ration of variables in an axially symmetric oblate
spheroidal coordinate system for the long-wavelength
limit. His results are

Ala,0)= —iag, cosd , (3.4a)

B(a,0)=iB¢g sind, (3.4b)
where , .
__2a_(ca) _ _2a (ga)

P4~ T 371+ 2@/ P’ 8= T3r1+2@/Q)R (3,5)

Note that for low a, the scattered power ~ab (Figs.
4—6).

(b) Modified Kirchhoff. This approximation uses
Eq. (2.5) with Z of Fig. 1 as the starting point. De-
note the illuminated side of the crack by 5§ and the
other side by S*. The contribution of the crack can be
written in terms of jumps across S:

us 1) = Cyp [ A5 nilgiml® = ) 103, ]

= Zumy @ =T i}, (3.6)
where [#5] denotes the jump;
[usl=us(r € $*) —uS(r' € §7). (3.7

Since the jump in the incident field «° is trivially
zero, the “weak crack” boundary condition imposes

Copnns 1, 1=0, (3.8)
and, thus, Eq. (3.6) reduces to
us(r)= — Cijklfsds' ”;gkm,l'(r - ) [usl, (3.9

where C;p =A6;;0,, +1(8;,0;;+6;,6;,) for a homogene-
ous isotropic medium.

For a circular crack and longitudinal wave incident
along the axis of symmetry, the integration over the
angular variable can be done (we assume that under
these circumstances only (5] = 0 and that this jump
depends only on the radial variable r). We obtain
from Eq. (3.9), in the far-field limit,

,A|2=%2 (’ﬁfﬁ—;ﬁi@) 2]1(0:),2, (3.10)
|B|2= 8 cos?s sin’ | 1(8)|?, (3.11)

FIG. 5, Longitudinal scattered power in Filipczynski approxi-
mation, aa=0to 1, §=0° to 180°,
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FIG. 6. Transverse scattered power in Filipczynski approxi-
mation, ¢a=0to 1, #=0°to 180°,

where
I('y)=f0"rd'rAu(r)J0('yr sing) (3.12)

and Au(r)= [u$] is the jump (in the z component) of the
displacement field over the crack.

Our modified Kirchhoff approximation now consists
of making the following guess for Au(r). On the back
side of the crack §*, we take x=0. On the illuminated
side S-, we postulate a reflected wave ug which will
give a zero total stress on §, For a plane incident
wave in the positive z direction, the simplest choice
is one giving a standing wave,

ug=exp(—ik2)z, (3.13)
where z=0 is the plane of the crack.

The total displacement is then

u=u;+ug
= [exp(ikz) + exp(~—ik2)]z
=2 cos(kz)z, (3.14)
and the strain is
uy,;= = 2k sinkzd; 36; 3
=0 (3.15)
on the crack surface $-.

This guess corresponds to a ray picture with the
waye fronts remaining parallel to the surface of the
crack. As in geometric optics, this approximation
is expected to be good only in the high-frequency
limit,

Using these assumptions, one gets for the jump in
displacement across the crack,

Aulr)=2,

which when used in Eq. (3.12) gives the results

0<r=a (3.16)

A+ 21 cos?e\? (J1(aa sing) \?

2= 2,4

,A, aa( A+2u ) aa sing ) ’ (3.17)
242 el <inZo (J182 sinn!)))2

| B|?=4f%a* cos®d sin 9( Basid ) (3.18)

where J,(x) is the Bessel function of order unity and
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FIG, 7. Total scattered power in modified Kirchhoff approxi-
mation. @a=0to 1, 6= 0° to 180°,

for small x

Jilx) ~3x. (3.19)
Thus, we have for small ¢,

apP | .2

Jo ot (3.20)

The modified Kirchoff approximation presented -
here differs from the standard Kirchhoff approxima-
tion’ by use of the exact boundary condition (3. 8) and
the postulation of a reflected wave on the illuminated
side of the crack. The standard Kirchhoff approxima~
tion neglects these and assumes the jump in dis-
placement and strain across the crack to be equal to
the displacement and strain of the incident field at
the surface of the crack, thus modeling scattering
from a perfect absorber (Figs. 7—9).

(c) Keller” has developed an extension of geometric
optics to include diffraction. His approximation for
the acoustic case (i.e., shear-free medium) gives
the amplitude as

_afiJi(ea sing) _Jgloa sinf)
A(9)-2< -0 ) (3.21)

sin(9/2) cos(6/2)

This result was compared to the modified Kirchhoff
approximation in a shearless medium for an aa of
15, The results are virtually identical and are given
in Fig. 10.

(d) Miller and Pursey treated the problem of the

FIG. 8. Longitudinal scattered power in modified Kirchhoff
approximation. ®a=0to 1, 8=0° to 180°,
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FIG, 9. Transverse scatterd power in modified Kirchhoff ap-
proximation, @a=0to 1, 6=0° to 180°,

field due to an oscillating normal stress applied over
a circular region of radius a on an otherwise free
surface of a semi-infinite elastic medium., The ap-
proximate boundary conditions on the z=0 plane are

Cs3;54;,;=1 for r=a,
Ca345%,;=0 for r>a,
Cia1%:,5= Cosi i, 4

=0 for0=y<ew,

This problem relates to our scattering problem as
follows. Using Eq. (2.5) with T as in Fig. 2, if we
can find® a Green’ s function g such that g, ,(z=0)=0,
then Eq. (2.5) reduces to

uS (1) = Cyny fm as’ N8 1nlhS, 1 » (3.22)

\
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FIG, 10. Kirchhoff versus Keller approximation for ¢a =15,
6 =0° to 90° in a shearless medium,
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where S is the surface of the crack, and S, is the re-
mainder of the x-y plane. Assuming now (for z=0%)

S = g0
U= —Up,y on S

=0 ons,, (3.23)
we get the Miller-Pursey solution for foward scatter-
ing (extended, by symmetry, to 90° <0 <180°), whose
form for low aea is given in Kraut’ s review article.
The scattered power varies as a? (Fig. 11).

IV. QUASISTATIC APPROXIMATION (Ref. 9)

We return now to Egs. (3.10) to (3. 12). The modi-
fied Kirchhoff approximation consisted of making
some guess for Au(y») in Eq. (3. 12) that would be
reasonable for high frequencies.

The quasistatic approximation now consists of
making what we believe to be a good guess for Au(7)
in the long-wavelength limit. Before making this
approximation, we note that certain general conclu-
sions can be reached from Egs. (3.10)—(3, 12) with-
out specifying Au(7). (a) The scattered power is sym-
metric about the z=0 plane. (b) The transverse
scattered power vanishes at 6 =0°, 90°, and 180°,

For small aa and B/a ~ 2, it is reasonable to as-
sume that Re[Au(7)] and Im[Au(»)] do not change sign
in 0<r<a. Also note that Jy(x) is a positive and de-
creasing function for 0 <x <aa, Then we have the
following: (c) The transverse scattered power has
absolute maximum B2, at 6 ~45° and 135°. (d) The
longitudinal scattered power will have absolute maxi-
mum value 42, at 6=0° and 180° and a nonzero ab-
solute minimum A2, at 6=90°. (e) Order-of-magni-~
tude estimates of various scattered power ratios are

A% /BL.,=0(0.1),
A% /AL =0(1) = 0(10) .

These general features are exhibited by Mal’ s re-
sults® as contained in Fig. 5 of Kraut.

To obtain a good guess for Au(r), we consider the
static problem defined by (note: o;=C;; 4%, ;)

4.1)

01,5 =0

FIG, 11. Longitudinal scattered power in Miller-Pursey
approximation,’
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FIG. 12, Total scattered power in quasistatic approximation,
aa=0to 1, 6=0°to 180°,

with boundary conditions

0;;=00, atz=i,

03;,=0 on crack. 4.2)
Defining o§; by

0 =aY+0f,, (4.3)
then the static problem for ¢ takes the form

05,;=0 (4.4)
with boundary conditions

05%=0 atz=xtw

of;= —of, on crack. 4.5)

This problem has been solved!®; the solution yields
Au(y) of the form

Aulr)=Qoda(l - #/a?)1/2, 4.6)

where @ is a constant. !® For our quasistatic approxi-
mation we use the long-wavelength limit of the inci-
dent stress field as our ¢?; for a longitudinal plane
wave, this is

r=a,

o =ia(A+2p) ,
and we get

Aulr)=Q’ac(1—+2/a?)i/?, 4.7)
Dropping the dimensionless constant @', we get, upon
substitution into Eq. (3.12),

I(y) =Olaf0“rdr (1- rz/aQ)l/zJo(yrsinﬁ)

_ 1 [sintya sin6) .
= T sin% [ vasing costva sm"’]

Substitution into Eqs. (3.10) and (3.11) yields the

scattered power which for low o goes as

ap |

daQ

and agrees with the long-wavelength Rayleigh limit
(Figs. 12—14).

V. SUMMARY

The problem of scattering of elastic waves off a
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FIG, 13, Longitudinal scattered power in quasistatic approxi-
mation, @a=01to 1, §=0° to 180°,

circular crack has been studied extensively. The
modified Kirchhoff approximation is expected to be
good in the high-frequency limit, The Keller theory
is also expected to be good in this region, but has yet
to be extended to a medium with nonzero shear. The
results, however, in the low~frequency region are
less satisfactory. The Filipczynski approximation
appears inconsistent with the general results of Sec.
IV in the shape of the transverse power distribution
and in the relative magnitudes of transverse and
longitudinal power. The Miller-Pursey approximation
starts off by assuming Kirchhoff-like (and, hence,
high-frequency-like) boundary conditions, but yields
a convenient analytic result only in the low-frequency
limit. It also appears inconsistent with the general
results of Sec. IV, concerning the shape of the longi~
tudinal power distribution. The results of Mal agree
with the general results of Sec. IV; however, they
are expressed in terms of numerically calculated
amplitude functions which are less convenient to deal
with than an analytic expression,

Since the low-frequency region is of current experi-
mental interest, it is important to put the theory in
this region on firm ground. We feel that the quasi-
static approximation achieves this goal. By using the
integral representation formulation and the physical~
ly reasonable assertion that the opening and closing
of the crack Au(») cannot vary rapidly with », we
achieve general criteria for solutions to the problem.
These criteria place strict limits on the form of the
solution and are very useful in comparing contending
approximations. By plugging in the most natural
guess for Au(v), e.g., the static solution, we arrive
at a simple analytic expression for the scattered
power. This solution trivially meets all the afore-
mentioned conditions, It also clearly obeys the fre-
quency dependency of the long-wavelength Rayleigh
limit (w?) for the scattered power. Comparing the
angular dependence of the scattered power for the
quasistatic and modified Kirchhoff approximations
(which are expected to be good for entirely different
frequency regions, ) the only major difference appears
in the overall frequency dependence. While Eqgs,
(3.10)—(3. 12) show that this must be the case for aa
close to zero, it is surprising how well they continue
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FIG. 14, Transverse scattered power in quasistatic approxi-
mation, aa=0 to 1, 6=0° to 180°,

to agree up to an «a of unity. Thus, the quasistatic
approximation maps nicely onto the modified Kirch-
hoff approximation and should prove useful over a
fairly large range of frequencies.

The results presented are in simple analytic form
and, thus, should be useful and convenient for com-
parison with experimental data and suggesting what
experiments will best test the theory.

Since the static solution for a pure shear stress on
a circular crack is also known, this solution could be
used in the integral representation presented to model
a normally incident transverse wave. Combining the
pure static shear solution with the pure static com-
pressional solution yields approximations for arbi-
trary angle of incidence of transverse or longitudinal
waves., Generalization to elliptically shaped cracks
should also be straightforward.
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