Determination of crack characteristics from the quasistatic
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We extend the work of a previous paper to give a long-wavelength approximation for
elastic wave scattering by an elliptical flat crack. Explicit formulas for the far-field
scattered amplitudes in this approximation are given for various experimental
configurations. These formulas are then applied to give a simple inversion procedure.
The orientation and eccentricity of the crack are readily determined from unnormalized
scattering data. The size may be determined from an absolute intensity measurement.

PACS numbers: 43.20.Bi, 62.30.+d, 03.40.Kf

I. INTRODUCTION

The scattering of ultrasonic waves off cracks in elastic
materials and the inversion of such scattering data to yield
information as to the nature of the crack is an important
technique for the nondestructive testing of elastic materials.

Current transducer frequencies are such that for cracks
with a diameter on the order of 100 i probing is limited to
the long-wavelength region and direct imaging of the scat-
terer is not possible. In this paper, we therefore consider the
problem of long-wavelength scattering off an elliptical crack
and present an inversion scheme whereby all features of the
elliptical crack may be determined from the long-wave-
length scattering data.

In a previous paper,' henceforth referred to as I, we
reviewed the problem of scattering of a normally incident
longitudinal wave by a circular crack and presented a new
quasistatic approximation found to be good in the long-
wavelength region. In Sec. II of this paper, we formally ex-
tend this approximation to the case of longitudinal and
transverse waves at an arbitrary angle of incidence scattered
by an elliptical crack.

Explicit formulas are presented for the far-field scat-
tered amplitudes in this approximation for several cases of
experimental interest. In Sec. II1, we apply the results of Sec.
II to the particular case of backscattering from a longitudi-
nal incident wave and show how this scattering data can be
inverted in a simple fashion to determine all features of the
elliptical crack. The orientation and eccentricity of the crack
are obtainable from unnormalized scattering data. Determi-
nation of the size requires an absolute intensity
measurement.

We conclude that even in the long-wavelength limit it is
straightforward to determine all information as to the nature
of the elliptical crack.

Il. QUASISTATIC APPROXIMATION FOR
ELLIPTICAL CRACKS

The integral representation formalism for scattering as
applied to cracks and the basic motivation and justification
for the quasistatic approximation has been presented in 1.
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Proceeding as in I, we model the crack as a stress-free surface
of fixed shape. One can express the far-field scattered ampli-
tudes in terms of the vector®
ik3 ~ ’ —+ i3 i
filk)=——=C;F; | ds'n;[u,]exp(—ik-'),
4mpw s

(1

where n | is the outward normal of the side $* of the crack, @
is the frequency of the incident wave, and C ;; and p are the
elastic tensor and density of the medium. [/} is the jump in
the / th component of the displacement field across the
surface

[u)]=u,(FeS)— u (FeS) . @)

In terms of the vector f'the far-field amplitude for the
longitudinal scattered wave is

A, (A=FF fi(a) 3
and for the transverse scattered wave is
B, (Ay=(6,—FF)f(B), 4)

where ¢ and B are the longitudinal and transverse wave vec-
tors corresponding to w and point from the center of the
crack to the point of observation.

For the case of an elliptical crack lying in the xy plane
with major axis along x in a homogeneous isotropic medium.

Cipy =A8 ;6 1y +4(8 46 ji +6 46 1), ©

+
ni=68;.

In the static limit [« ] is proportional to T, where 7, is
the stress tensor on the surface of the crack in the coordinate
system specified above. The exact solution for [/] in the
static case can be obtained from the work of Eshelby®

2 2\1/2
[u1]=C1T13(1—’ X y_) s

a b
[uz]=C2T23(1 et i; - Z—j)]/z; (6)
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where for the ellipse bounded by (x*/a*)+ (3*/b*)=1 and
a > b we have
e 2

4 1-0°
= —_— O s O ’
Ew Y K72 U

Cy

)

where
M=E )+ ~I— " (K0 —E @),
-0 «

= E (x) T _1_ E (©)— K"K (x)
: e 1—o «' K? '

k=(1-b*/a*)""* k' =b/a.

For a=b,
m(2—0)
Ta1-o0)
Here o is Poisson’s ratio, y is the shear modulus, Y is
Young’s modulus, and E («) and K («) are complete elliptic

integrals of second and first kind, respectively, with modulus
K.

=12

For an incident wave u,=p exp(ik,-r-cf ) with polariza-
tion § propagating in direction d, the stress 7'; will have the
form

T)3=17,5ik; exp(ik,r), (8)
where

i3 :CBijﬁidAj'

In the quasistatic approximation, we assume that at low
k , the relations given by Eq. (6) are still accurate enough to
use in the integral Eq. (1). Substituting Eq. (8) into Eq. (6)
and then Egs. (6) and (5) into Eq. (1) results in

3

kk,; . R
fi(k)=— Ik, —k){pue,mi(6 4746 5F )
4mp

C()2

+#C27’23( 5 i2f3+5 iSFZ)
‘1’637'33(/1 ;[ +2,U—(S ,-3;3)] s (9)

where

i
1(y=2mab [ drr(1=r) "y sind,
(¢]

X(@* cos’,+b * sin‘p, ) ?]

= 27rab—1—(s—m—4— cosd ),
a4\ A4

A=@P+b2)".
We now substitute this f'vector into Egs. (3) and (4) to get

. @’k
A= -7

—I(k; —a){ess(A+2u cos’d)

dmpw
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+u $in26(c,7,, COSP +C,7; sing )}, (10)
Bk,
B= — ~I (k; —Bu
dmpw

X € [ 273 51020 — 0826 (¢171:C08¢ + 272 sing )]

+é, cosf (c,mucosp — 171 sing )}. an

Here the angles specify the point of observation with respect
to the coordinate frame of the crack. Note that the ampli-
tudes are proportional to & 7, so that the approximation
obeys the long-wavelength Rayleigh limit with power pro-
portional to &*.

In order to put these formulas to use we must now cal-
culate 7 for various experimental configurations.

For an incident wave coming in at polar angles ¢ ; and
@ ; with respect to the coordinate frame of the crack we con-
sider the three polarizations given by the axes of the primed
coordinate system shown in Fig. 1. #’ is the direction of the
incident wave, £ lies in the plane of the crack and is ortho-
gonal to 7', and §' completes the right-hand coordinate
system.

We consider the three cases:
(1) Longitudinal incident wave polarized along Z'.
For an incident displacement field of unit amplitude,

u,=2" exp(ik ;2")

we have

)

FIG. 1. Geometry of scattering. Incident waves travels along 7, and is polar-
ized along £, §/, or £'. The crack lies in xy plane with major axis along .
Scattered field is given as a function of spherical angles with respect to the
unprimed coordinate system.
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T, =W sin28 ; cosg ;,

T,y =4 8in26 ; sing ,, (12)

Tu=A+2u cos*d,.

(2) Transverse incident wave polarized in plane of crack
along x'. For u,=x" exp(ikz') we have

Tu=M cosd; sing ,,

Tyn=—p cosd ,; cosg ;, (13)

73, =0.

(3) Transverse incident w[ave polarized out of plane of
crack along §'. For u,=§" exp(ikz’) we have

T = cos20 ; cosg ;,

Tn=p c0s28, sing ;, (14)

Ty = —p sin26 ;.
In order to compare with the experiment one now chooses
the appropriate 7 , listed above. Substituting them into Eqgs.

(10) and (11) completely determines the far-field amplitudes
in the quasistatic approximation.

lil. INVERSION OF SCATTERING DATA

Equations (10) and (11) predict scattering amplitudes
at all angles for any given incident wave. They contain more
information than is needed for the purpose of determining
the nature of the elliptical crack. We therefore restrict our-
selves to the case of backscattering from a longitudinal inci-
dent wave. This corresponds to the experimental case of a
movable transducer emitting a longitudinal wave and mea-
suring the longitudinal and transverse waves reflected back
(pulse echo mode). Substituting Egs. (12) into Egs. (10) and
(11) and setting 6=6, and g =g, we get,

_a'k .
40,0)=—2"0 1 (k, —a)es(A+2u cosd):
4mpar’
+u?8in?20 [¢,+ (¢, —c)) sin’p 11, (15)
Bk, .
B,0p)=——-1(k,—B){cy sin26 (1 +2u cos*d)
4mpw?
—14?5ind8 [c; +(c,—c)) sinp ]}, (16)
B,(60)= —2 1k~ By
i 4mpw? ! #
X cos@ sin28 sin2¢ (¢, —c,). a7

Here B, and B, are the components of the transverse
amplitude polarized out of the plane of the crack and in the
plane of the crack, respectively. The arguments 8 and ¢
specify the position of the transducer with respect to the
coordinate frame of the crack (unprimed frame in Fig. 1).

If we rewrite these expressions in terms of the dimen-
sionless parameters k ;a and b/a, we find the relationships
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FIG. 2. Scattered squared amplitudes versus & for the values ka=0.2,
b/a=0.1,1=7.76, u=4.41, and ¢ =0", 45°, and 90°. Note that |B  |’=0
for @=0° and 90°.

A (k {9a,b ):aA GC ,‘a,l,b/a),
(18)
By, (k;ab)=aB 0.0 (k,a,1,b/a).

These dimensionless squared amplitudes,

|4 (k .a,1,b/a) | 2 etc., are plotted versus & for values of
¢=0°, 45°, and 90°, and a value of k ;a =0.2 and b/a=0.1,
using the elastic constants for titanium A =7.76 and y =4.41
(see Fig. 2). Although we have plotted the amplitudes for the
particular values of k ;,a and b/a given, one can show that
the shapes of these curves will stay roughly the same as we
change these parameters. Furthermore, the relative heights
ofthe [4 |*and | B , | curves will remain the same while the
ratioof | B, |*/|B 4 | decreases to zero as b/a goes to unity.
This last observation is a consequence of the fact that the
amplitude B , is a measure of the asymmetry of the system
with respect to rotations about the 7 axis. For a circular
crack (b/a=1), B, must be zero as there is no preferred
sense of rotation.

If we divide Eq. (17) by Eq. (16), we see that the ratio
B /B , goes like (¢, —c,)/c;. The dependence of this quanti-
ty on b/a is shown in Fig. 3.

With these observations we conclude that amplitudes
with the basic shapes and relative heights as shown in Fig. 2
are the signature of a crack scatterer. In particular the condi-
tion |4 |? maximaland (B ,|% |B, |*=0 locates the direc-
tion of normal incidence, §=0°. The orientation of the crack
within the xy plane can be determined by noting that for any
0<45, |B, | 2 is a minimum for @=0°. From Fig. 2, one sees
that this measurement is most sensitive for 8~ 30°.

S. Teitel 5765

Downloaded 08 Apr 2004 to 128.151.144.135. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



0.48

0.42+

0.364

0.12

0.06-

FIG. 3. (c,—c;)/c, plotted versus b/a. A =7.76 and u=4.41.

Having determined the orientation of the crack, we now
turn to the determination of the ratio »/a. As mentioned
before, the ratio of amplitudes B /B , provides a measure of
b/a by way of Fig. 3. However, owing to the large difference
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FIG. 4. Scattered squared amplitudes versus @ for the values 6= 30",
ka=0.2,b/a=0.1,A=7.76 and p=4.41.
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in heights of these amplitudes, an accurate experimental
measurement of this ratio using current techniques might
prove difficult. We turn, therefore, to the ¢ dependence of
the amplitudes. The squared amplitudes, |4 (ka,1,b/a)|’,
etc. are plotted versus @ for values of 8=30°, ka=0.2, and
b/a=0.1, using A =7.76 and u =4.41 in Fig. 4. The ¢ depen-
dence of these amplitudes is again a measure of the asymme-
try and hence b/a of the crack. For a circular crack (b/a=1)
with rotational invariance about Z, all amplitudes must be
independent of @. As b/a is changed from unity, an addition-
al oscillation in ¢ is introduced, the height of which is deter-
mined by b/a. Looking in particular at the curve for | B, | 2
we can compute from Eq. (16) the ratio AB /B ;... For
small ka the ¢ dependence of the I (k,— ) terms may be
ignored, so for 8=30",

AB:
0__ AB {2+ AB ), (19)
B g) min B min k B min
where
AB c\—cC;

B 2004/u+G/2) 1=

This determines a unique relation between this ratio
and b/a (see Fig. 5). As the ratio AB §/B } ..;,, should be
readily measurable (perhaps by means of a differential tech-
nique), b/a can thus be determined.

Finally, in order to determine the size of the crack we
look at the ka dependence of the amplitudes. For small ka
(£0.4) the term [ (y) in Egs. (15)—(17) is slowly varying and
may be replaced by the value 7 (0). If this is done, the only ka
dependence left in the amplitudes is the overall multiplica-
tive factor (ka)* and hence we have,

Ak ab)=ad & a,1,b/a)=ad’A (k ,1,b/a).
Since k, is known and b/a may be determined as above,

A (k,1,b/a) may be computed. If an absolute measurement
of A (k,a,b) can be made, a can then be determined.

0.201

O T T T R T
0 02 0.4 0.6 0.8 Ko

b/a

FIG. 5. The ratio AB2/B ., versus b/a. A=7.76 and p =4.41.
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One can hope to extract the size @ from unnormalized
measurements by probing at higher £ and not making the
approximation / (y)=1(0). For example, if one looks at the
longitudinal backscattered amplitude at 6=90° and ¢ =0",
and scans through k, the quasistatic approximation keeping
1 () predicts a peak at about k,ga~1.4. While is is not clear
how good the quasistatic approximation is at this high a
k ,a, one can expect this condition to at least provide an
order-of-magnitude estimate for the size of the crack.

IV. CONCLUSION

In conclusion, we feel that the quasistatic approxima-
tion is an accurate and valuable approximation in the long-
wavelength limit. Detailed formulas are provided for the far-
field scattered amplitudes for several experiment configura-
tions. The particular case of backscattering from an incident
longitudinal wave is examined in detail. We summarize the
simple procedure the quasistatic approximation yields to de-
termine the characteristics of the elliptical crack from back-
scattering data for an incident longitudinal wave.

(1) The transducer is moved about until the reflected
transverse amplitudes vanish and the reflected longitudinal
amplitude is maximal. This locates the direction of normal
incident, i.e., =0, and determines the plane of the crack.
Knowing the plane of the crack one can now define the direc-
tions for the in-plane (B,) and out-of-plane (B,) transverse
polarizations.

Move the transducer up to some € < 45° and scan
through the angle @. | B | ? will be minimum when @ =0".
Thus the orientation of the crack is determined.

(3) Move the transducer up to §=30" and scan through
the angle @ to determine the ratio AB2%/B 2. . Figure 5

&,min*
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(with A and y appropriate to the material in question) then
yields the ratio b/a and the eccentricity of the crack is
known.

(4) If the absolute intensity |4 (k ;,a,b )| can be mea-
sured, compute the amplitude |4 (k ;,1,6/a) |* from Eq.
(15). The relation

'A (k i’avb)lz _
|4 (k;,1b/a) |?

then determines a.

6

Thus even in the long-wavelength region where imag-
ing of the scatterer is impossible, one can deduce in a simple
way all information regarding the nature of the elliptical
crack.
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