The distorted wave Born approximation: application to elastodynamics
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An approximate theory for scattering of elastic waves by general shaped defects has been
developed. A defect of arbitrary shape can be represented by a sphere S and a remainder volume
R. Using the exact solution for a sphere and treating R as a perturbation, the solution
corresponding to the distorted wave Born approximation is obtained. This solution contains
nontrivial frequency dependence and phase information. Preliminary comparisons with

experiments are presented.

PACS numbers: 03.40.Dz, 62.20.Dc
I. INTRODUCTION

The problein of elastic wave scattering by material im-
perfections has received considerable attention in recent
years. In particular, the possible use of ultrasonic waves to
characterize defects has attracted theoretical and experi-
mental attention.' The aim of these research efforts is to
develop reliable inversion procedures® that yield properties
of the defect such as location, composition, shape, and orien-
tation.* The information thus obtained, together with frac-
ture mechanics considerations,” can be used in the context of
Nondestructive evaluation (NDE], to predict the lifetime of
various parts, and to yield reliable accept-reject criteria.

To develop good inversion procedures, reliable solu-
tions of the direct problem, namely, the ultrasonic power
scattered by known defects, are most important. However,
owing to the complexity of the problem, exact solutions are
available only for a limited number of scatterer geometries.®
Therefore theoretical analysis must rely on various approxi-
mation schemes.

A large number of approximation methods exists. The
so-called quasistatic approximations’ are valid for low fre-
quencies only, i.e., when the wavelength 4 of the incident
elastic wave is much larger than the characteristic defect size
ali.e., ka<l, wherek = 27/4 ). These approximations can be
extended to yield reasonably reliable information up to
ka ~ 1. However, in order to implement them, the solution of
the static problem must be known; therefore these methods
are limited to dealing with simple shapes only.

In the opposite limit, i.e., ka> 1, solutions based on ex-
pansion in (ka)~'/? were developed for scattering by cracks.®
These solutions are based on ray tracing, and come under the
name of “geometrical theory of diffraction.” Analytic ex-
pressions obtained by this method indicate that the regime of
validity may extend to the intermediate ka regime. However,
so far for elastic waves the approach is limited to cracks only.

The first Born approximation® was used extensively to
extract information about the physical features of the scat-
tered power that are relevant for defect characterization.
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This approximation, however, is valid only in the limit of
very weak scattering; for strong scatterers (such as cavities)
the region of validity is for ka = 1, the frequency dependence
of the scattered power is unreliable, and so is the phase
information.

A rather promising approach is that of truncated eigen-
function expansions.'®'' Although methods based on this
approach yield reliable information for a wide range of ka,
available computer storage space limits their use to defects
that possess axial symmetry.

We have set out to formulate an approximation to the
elastic wave scattering problem that yields reliable frequen-
cy dependence and phase information in the low and inter-
mediate ka regimes for quite general shaped volume defects.
We hope that such an approximation will be useful to study
effects of nonregular defect surfaces and yield data to be used
in inversion procedures. We also hope to use the results to
check concepts such as an “effective spheroid” that has been
suggested to represent general shaped defects.

Our approximation scheme differs from the existing
ones in that it uses shape perturbations as a small param-
eter—namely, the deviation of the actual defect shape from
spherical. We use the exactly soluble case'? of scattering by a
sphere as our zeroth-order approximate solution. To calcu-
late the approximate solution to first order in the shape per-
turbation, we use these exact solutions. This procedure is an
adaptation of the distorted wave Born approximation™
(DWBA) to elastodynamics.

The general formalism is presented in Sec. II. As shown
there, one needs the Green’s function of an infinite medium
with a spherical defect. This Green’s function is needed only
in the asymptotic far field regime; its evaluation in terms of
plane waves scattered by a sphere is given in Sec. II1. The

R=S+R

FIG. 1. A general shaped defect R can be
represented as a spherical defect S and a
“remainder” volume R.

R

© 1981 American Institute of Physics 4363

Downloaded 08 Apr 2004 to 128.151.144.135. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



Green'’s function is incorporated in the DWBA expression
and the far field scattering amplitudes are presented in Sec.
IV, where numerical checks and results for a nonspherical
defect are also given. Section V summarizes our results, with
special emphasis on possible uses in the NDE context.

Il. THE DISTORTED WAVE BORN APPROXIMATION:
GENERAL FORMALISM

The DWBA is based on a perturbative solution of the
integral equation for the scattered field. A derivation of the
volume integral formulation of the elastodynamic scattering
problem was presented by Gubernatis ef al.'* In this paper
we follow the notation of that reference.

Consider the differential equation for the propagation
of elastic waves in a medium, characterized by (position de-
pendent) elastic tensor C;;, and density, p, given by

(Cyuattns).; + p’u; =0, (2.1)

where u; is the displacement field and w/27 the frequency.
Repeated indices are summed over; the symbol @ ; stands for
aa/ax,. When spherical coordinates are used, we will em-
ploy notation such as a , for da/dr. We assume that a single
defect is embedded in an infinite medium; both defect and
medium are isotropic, e.g.,

Cijt = A88,; + by + 6,6

The geometry of the problem is shown in Fig. 1. The
coordinate dependence of C;, and p can be expressed as

C(r) = C%+ 64(r)5C,

plr) = p° + 6 (r)op, 2.2)
where 8, (r) = 1, if reR, and zero otherwise. The defect R is
separated into two regions: a spherical one (S') and a remain-

der volume R,'® such that R = S + R. The one can define
functions €¢(r) and Ox(r), so that

O (r) = Os(r) + Ok(r). (2.3)
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FIG. 2. Backscattered longitudinal power from a spherical cavity of radius
a, in Ti, for incident longitudinal waves of wave number a,. Exact results
(solid line) are compared with the results of the DWBA, obtained from the
solution of a smaller sphere of radius 5a/6, and treating the difference be-
tween the two spheres as a perturbation.
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FIG. 3. Phase angle of the backscattered longitudinal wave from a spherical
cavity of radius g, in Ti, for incident longitudinal waves of wave number a,,
Exact results (solid line) are compared with the results of the DWBA, ob-
tained from the solution of a smaller sphere of radius 5a/6, and treating the
difference between the two spheres as a perturbation.

We now consider as our unperturbed problem the case
where only the spherical defect S is present. To do this,
define

CS(r) = C° + 64(r)5C,

(2.4)
p*(r) = p° + O5(r)dp,
and we can obviously write
C(r)=C%r) + 6x(r)6 C,
(2.5)

plr) = p°(F) + Oxlr)ép
Using now (2.5) in (2.1), the scattering equation takes the
form

(Coutiny); +p0’u, = — Ogbw’y,
— (Or6C it 1), ;- (2.6)

If the right-hand side of (2.6) is zero, the solutions of this
equation are the waves scattered by a spherical defect, ob-
tained previously by various authors. These solutions are
readily evaluated numerically. To introduce notation used
later, the solution of the spherical scattering problem, evalu-
ated at point r, corresponding to an incident wave with wave
vector k and polarization € is denoted by u{(r,k,é€).

The solution of Eq. (2.1) or (2.2) satisfies an integral
equation. The derivation of such a volume integral equation
was discussed in detail by Gubernatis, Domany, and Krum-
hansl,'* to which the interested reader is referred. Here we
only mention that standard boundary conditions are used,
i.e., continuity of displacement and normal stress (for elastic
inclusions) and vanishing normal stress (on the surface of a
cavity), together with u(r)—u’(r) as 7— oo, where u” is the
incident field.

Proceeding in a similar fashion as Gubernatis ez al.,"*
we obtain the following integral equation for the solution of
(2.1) or (2.6):
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FIG. 4. Longitudinal power vs scattering angle for a spherical cavity of
radius ¢ in Ti, and incident longitudinal wave of wave number a, = 0.6/a.
The exact result (solid line) is compared with that obtained for a spherical
cavity of radius 54/6; the difference between “full” and “intermediate”
DWBA is discussed in the paragraph that follows Eq. (4.9).

u,(r.k,€) = ui(r,k.€) + Spar® f_dr’gfm (r,r')u,, (' K,€)
R

—6Cm f_dr’ sk (OE Vg e (UK, €E), {2.7)
R

where u,,,, = du,/dx,,.
Note that the integration extends over the remainder region
R only, and that the Green’s function that appears in the
integrand is g3 (r,”’), the spherical Green’s function. This
function is the solution of the equation
C}ikfgrzmﬂ + psafg‘fm = —6,,6r—r'}. (2.8)
The spherical Green’s function describes the response
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FIG. 5. Longitudinal backscattered power from an Al sphere of radius @ in
Ti, for incident longitudinal waves of wave number «,,. Exact results (solid
line) are compared with those of the “full” and “intermediate” DWBA,
obtained from the solution of a smaller sphere of radius }a, and treating the
difference between the two spheres as a perturbation.
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at point r to a point-source force field located at point r’, in
an infinite medium in which a spherical defect is embedded.
Note that since C* and p * are not translationally invariant,
£%(r,r’) is not function of the difference r — r’ only. Only a
single component of this function has been derived previous-
ly.'® The exact integral equation (2.7) serves as the starting
point of our approximation procedure. The scattered field u;
(r,k,€} can be expanded in a power series in the volume per-
turbation R; to first order, the solution is given by

uPWBA(r,k,G) — u}g(l',k,f) + 6pw2f_gfm (r’r,)u.'s‘" (r"k,e)
R

— 8C it j_dr' e (g, (ke (2.9)
R

This is the distorted wave Born approximation. It is
analogous to the first Born approximation (BA). However,
the BA uses the defect-free infinite medium as the zeroth-
order approximation, and treats the entire defect as a pertur-
bation. In contrast, the DWBA uses the scattering by a
sphere S as the zeroth-order solution; only deviation from S,
namely R is treated perturbatively.

The aim of our theory is to yield an expression for u; (r)
in the far field, (i.e., r— o) limit. Many experimental situa-
tions correspond to this limit (i.e., when the source and re-_
ceiver are at a distance » much larger than the wavelength A
or the defect size a). In this limit, the scattered displacement
field has the form

u,-(r) = fiAeirlor/r + (éiBg + ‘Z:B.a )eiﬁor/r,

where a, and f3, are the longitudinal and shear wave
numbers.

Since we are interested only in the far field limit, we
need g3 (r,r') only in the limit r— o (i.e., response at o to
point source at r’ near the sphere). In this limit we were able
to evaluate g3 (r,t'), and therefore the amplitudes 4, By, and
B, in the DWBA.

(2.10)
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FIG. 6. Phase angle of backscattered longitudinal waves from an Al sphere
of radius a in Ti, for incident longitudinal waves of wave number a,,. Exact
results (solid line) are compared with those of the “full” and “intermediate”
DWBA, obtained from the solutions of a smaller sphere of radius 4a, and
treating the difference between the two spheres as a perturbation.
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FIG. 7. Scattered longitudinal power, as a function of the scattering angle,
for Al sphere of radius a in Ti, with @, = 1. Exact results (solid line) are
compared with the “full” and “intermediate” DWBA, based on an Al
sphere of radius la. The scattered power from this “inner sphere” is also
shown.

Ill. THE SPHERICAL GREEN'S FUNCTION

To evaluate g;(r,r') we use the principles of superposi-
tion and reciprocity.'” Our method yields the function for
r— oo F, which is precisely the one needed in Eq. (2.10) since
the point of observation, r, is assumed to be at infinity for
calculation of scattering amplitudes and cross sections.

First note that if the infinite medium Green’s function
£°(r',r) can be expanded in terms of plane waves,

gg(rlyr) = 2 J d kA](l‘,k,e')u?(l",k,G),

where u?(r' k,€) are plane wave solutions of the (homogen-
eous medium) wave equation, the spherical Green’s function
will be given by

(3.1)

g = > J d kA, (r k,€)ui(r k,e), (3.2)
€
where u}(r' k,e€) is the solution of scattering the incident
plane wave u(r',k,€) off a sphere. (The index € stands for the
various possible polarizations.} Therefore, once the expan-
sion coefficient 4;(r,k,€) are known, the spherical Green’s
function can be constructed, in principle, by superposition of
solutions for the incident plane wave scattering problem. In
general it is not trivial to find the 4;(r,k,€} needed to expand
gg (r',r); however, when the “source” position r— oo 7, the ex-
pansion for the 4, is simple. To see this, note'*

5.3 2 PR iR B.R

0,80¢™" _ 5',-5,-(3—— _ £ ), (3.3}
R R R

with R = |r — 1’|, 8, = 9/0x;, and @] = pyw’/(Ao + 2k),

B2 = pyw/it,. In the limit r— oo 7, this expression becomes

iBor
! e — ByFr’ ]
Ampwgl(r',x) = B3 pa B (8 — PiFy)

4apw’gl(r',x) =

+ap S e (3.4)
r

Fiof; .
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Introducing now three unit vectors é €.6'=F6=6, and
&% = ¢, this reads

47Tp0a)2gf}(r',r—>oof) — Bg (eiB”r/r)e — iﬁn?-i'(é\j@é“? + é\].‘ié\?)

+ ajle/rie ““Iréle). (3.5)

This expression has the form of (3.1}, with only three incident
plane waves

u'(r' k,€) = & ~ T, (3.6)

needed to expand g°. The coefficients 4, can be read off as
given by

1 ikr
Ayrke) = ——— & L k25[k + y e, (3.7)
dmpowr r
where
Yoll) = g, 70(2) = 74(3) = By (3.8)

Finally, in this limit, the spherical Green’s function reads

4mp g} (K 1—rco )

ivalelr
—vecf
= J
€

where u7[r', — y,(€)r,€] is the solution for scattering by a
sphere of a plane wave with polarization €, wavevector y,(¢),
incident in the — 7 direction, evaluated at point r'.

Inspecting Eq. (2.9) we note that in order to evaluate
uPWBA(r) in the far field, i.e., r— o0, we need g° with the point
of observation at « . To obtain this function, we use reciproc-
ity,"” e.g.,

Yol€Pul [, — vole)Fre] 3.9)

r

g;(a,b) = g;:(b,a), (3.10)
to get
£ ) 1 L, efmier €
(r—o0,r’) = e; €)”
! 477770“’2 Ee: ! r Vole)
Xud(r', — yole)r.e) (3.11)
180
140
100
w 60
-
2
Z 20
0 -2
Q- o}
z
—60 —— - —— — INNER SPHERE m
—— — — —— INTERMEDIATE DWBA
-0 - FULL DWBA B
—— —— OQUTER SPHER
140} OUTER SPHERE
- A I L L 1 1 1 l
1805 20 80 120 160

SCATTERED ANGLE

FIG. 8. Phase angle of scattered longitudinal wave as a function of the
scattering angle, for Al sphere of radius a in Ti, with a, = {. Exact results
{solid line) are compared with the “full” and “intermediate” DWBA, based
on an Al sphere of radius {a.
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FIG. 9. Nonspherical defect; spherical cavity of radius 400 & in Ti, to which
a hemisphere of radius 200 . has been added. Direction of incidence is
denoted by 6,.

IV. THE DISTORTED WAVE BORN APPROXIMATION—
FAR FIELD SCATTERING

Equation (3.11) is exactly the result needed to obtain
displacement amplitudes for r— oo 7. Inserting it into Eq.
(2.9) one obtains for a plane wave incident along the — 7
direction, with polarization €® and wave vector — y,(€°)7,:

iiDWBA[l', _ YO(GO)"!)’GO]
=8 [r, — y(€)P,€] + 3 Evole)
X(D, + D, + D),
where

D, = op f dr'ul [v', — yole)fel,
dmp, Jr

Xufn (l", - 70(50)"9’60)’

ivole)r

’
4.1)

D= 2 | aru,. v, — nielhe)
4mpyw’ Jr

Xuiy [, ~ vol€)P€]

S
|

— 25 , , .
= —4——%— f_dr & [r', — vole)P €]
TPe0*® JR

X ek [T, — 1ole")P€], (4.2)

with
e}i = 1/2[ufk: + ui‘i’] .

The form of Eq. (4.1) is quite easy to interpret. The contribu-
tion of the volume perturbation R to the scattering appears
in the proper far field form, with the well-defined indepen-
dent polarizations é € = (7,6,¢ ). The amplitudes associated
with these polarizations are expressed in terms of the spheri-
cal scattered solutions for two incident plane waves; one is
the real physical incident wave, and the second a plane wave
incident along the direction of observation, with the polar-
ization of the desired scattered wave. The integrands are the
appropriate scalars, that can be constructed from two such
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FIG. 10. Longitudinal backscattered power from the defect of Fig. 9, vs aa,
where a is the radius of the large sphere and a, the wave number of the
incident longitudinal wave. The angle of incidence is 8, = 0, i.e., the “bub-
ble” is shadowed by the sphere. Scattering from the sphere only is shown for
comparison.

vector fields in a symmetric manner. The constants D de-
pend on the incident and scattered directions and
polarizations.

In this paper we concentrate only on the calculation of
the'longitudinal scattered amplitude A4 [as defined in Eq.
(2.10)] from an incident longitudinal plane wave, 5¢** The
spherical scattering solution for elastic inclusions may be
written in a notation similar to that of the Johnson-Truell
solution'?:

2o’ — VY™ 4 Vx(Vx(re™™))r>a
— V" + Vx(Vx(rm™) r<a

wé(r,a,2f) = (4.3)

-
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z
2
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FIG. 11. Longitudinal backscattered power from the defect of Fig. 9, vs aoa,
where a is the radius of the large sphere and a, the wave number of the
incident longitudinal wave. The angle of incidence is 8, = 90°, i.e., side view
of the “bubble.”
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FIG. 12. Longitudinal backscattered power from the defect of F' ig. 9, vs a,ya,
where a is the radius of the large sphere and a,, the wave number of the
incident longitudinal wave. The angle of incidence is 8, = 0, i.e., the “bub-
ble” is illuminated directly.

where

i 4, \(h ‘,:,’(aor))
Ppin = mzzoz al2m + 1)(Cm)(jm @) P, (cos8)
(4.4)

out m
min ! = 20 " la2m + 1)@:) (I;:(go:))) P, (cos0)

m=

Here a refers to the radius of the sphere, and the subscripts 0
and 1 refer to the regions outside and inside the sphere. Note
that our plane wave is a complex conjugate of that used by
Johnson and Truell.!* Note also that as defined u® is a di-
mensionless quantity; the incident amplitude has been fac-
tored out. In the same spirit, we define a scattering ampli-
tude 4, which is a dimensionless form of 4 normalized by the
plane wave and by the radius of the sphere. Then the longitu-

—— —— SPHERE

SPHERE + BUBBLE

FIG. 13. Polar plot of power scattered from the defect of Fig. 9. The direc-
tion of incidence is 8, = 0. The angular variation of the scattered power is
shown for ¢y = 1,2. Same results for a spherical defect are also shown.
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dinal part of the scattered field, as given in Eq. (4.1), has the
dimensionless amplitude

A=4°+(a3/a)D, + D, + D),

where'?

ZS:-:‘E

The longitudinal differential cross section in dimensionless
units is given by'*

(4.5)

(2m + 1)4,,P,,(cos8 ). (4.6)

0

dP, —
2 Long _ |43, (4.7)
dg
and a phase angle § can be defined by
tand = ImA /Red. (4.8)

The integrands D,D,, and D5 are found in terms of the
derivatives of the functions ¥ and 7 of Eq. (4.3). It is possible
to check the correctness of the computer code for these inte-
grals and for the spherical coefficients 4,, to D,, by using Eq.
(2.7). In this check R is taken to be a spherical shell from
radius a, to radius a,. Then, exactly, one may write

A5 =4% +(a}/a,(D; + D} +D}), (4-9)
where
Di= 2 [ aruSie,—ag,—#
4mpgy Jsnen
X up (' aoé,2)
Dé — —-———5—12 dr'uf}«(l'ly‘aoi‘oa“’w)
4mpyw* Jshen
XUy e (1,0 8,5)
D= ;28% dre(r', — af’, — )
Apow” Junen

X (' aot )
where u®: is the exact solution inside a sphere of radius a, and

u® is the exact solution outside a sphere of radius a,. Upon
comparison of the right-hand side with the exact solution for

~ [l

— — — — SPHERE

SPHERE + BUBBLE

FIG. 14. Polar plot of power scattered from the defect of Fig. 9. The direc-
tion of incidence is 8, = 180°. The angular variation of the scattered power
is shown for aga = 1,2. Same results for a spherical defect are also shown.
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scattering from a sphere of radius a, we found Eq. (4.9) to be
satisfied with accuracy characteristic of our numerical inte-
gration procedure (~ 1%).

To study the accuracy of the DWBA, we calculated the
scattering field from a sphere R using (4.1) and (4.2). This was
done for Al spheres in Ti and for cavities in Ti. Two types of
approximation were studied: the “full DWBA” is that of
Eqgs. (4.1) and (4.2) and an “intermediate DWBA” is the
DWBA with'an improper Green’s function for the problem,
namely, the infinite medium Green’s function g° of Eq. (3.3).
For elastic inclusions, parameters like 8p/p, may be small
and the intermediate DWBA is expected to work almost as
well as the full DWBA. For cavities, the only small param-
eter in the calculation is 8V /V, where 8V is the volume of R
and Vthe volume of S. For cavities, we tested the approxima-
tions with a,/a, = 1.2, or §V /V=70%. For inclusions, we
used a,/a, = 2, which is an extremely nontrivial volume
change of 700%.

The results of these checks are shown in Figs. 2-8. In
these Figures “inner sphere” and “outer sphere” refer to the
exact solution for spheres of radii a, and a,, respectively.
Scattered power or phase angle are plotted versus the dimen-
sionless parameter aya,. In general, the DWBA reproduces
fairly well the exact results for the frequency and angular
dependence of both power and phase. Note that “scattering
angle” refers to the angle between the directions of incidence
and observation. For the large perturbation a,/a, = 2, the
DWBA breaks down, for Al in Tj, at around e, > 3.5.
However, for a,/a, = 1.2 the DWBA is good, even for a
strong scatterer like a cavity, for a wide range of a ..

Next, we turn to study a nonspherical defect, shown in
Fig. 9. The defect is a spherical cavity of diameter
2a = 800y, to which a hemisphere cavity of diameter 400u
has been added. We will refer to the hemisphere as the “bub-
ble”; it represents a deviation of size b from a simple shaped
smooth cavity of characteristic size a. The questions we ad-

— — — — SPHERE

SPHERE + BUBBLE

FIG. 15. Polar plot of power scattered from the defect of Fig. 9. The direc-
tion of incidence is 6, = 90°. The angular variation of the scattered power is
shown for @z = 1,2. Same results for a spherical defect are also shown. The
scattered wave vector lies in the plane defined by the direction of incidence
and the symmetry axis of the scatterer.
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-~ — — - SPHERE
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FIG. 16. Polar plot of power scattered from the defect of Fig. 9, as a function
of the azimuthal scattering angle . The direction of incidence is 8, = 90°,
the scattered wave in the direction defined by 6 = 135° and ¢. Deviations
from the symmetric pattern obtained from a sphere are sensitive to the
deviation of the scatterer from spherical shape.

dressed are the following: (1) At what frequencies (e.g., val-
ues of ayb ) is the bubble observable? (2) At what angles of
incidence and scattering is its effect most pronounced?

To answer these qeustions, we present, first, Figs. 10—
12, which show the backscattered power versus a,a for three
incident directions. These figures compare the scattering by
the large sphere to that of the nonspherical defect. We find
that experimentally observable differences (i.e., ~ 3db) show
upwhenaya= 1.5 (i.e., ¢pb ~0.75). We also note tht the larg-
est deviation is obtained for 6, = 180° (see Fig. 11), i.e., when
the bubble is directly illuminated.

The frequency spectrum is modulated with about the
same periodicity as that of a sphere, but a modulation with
longer periodicity (in @) is superimposed. While for the
sphere the first three peaks are of approximately equal am-
plitude, with the bubble present the amplitudes decrease in
magnitude (for the first three peaks).

Turning now to angular distribution of power the se-
quence of Figs. 13-15 shows polar plots of power versus
scattering angle for three directions of incidence, and aa
values of 1 and 2.

Again we note that the effect of the bubble is observable
at apa = 2, and not at ayz = 1. Also, the largest effect is
obtained for 6, = 180 (i.e., direct illumination), and even
then the best results are obtained for backscattering.

It is of interest to observe the loss of symmetry of the
scattered power, caused by the presence of the bubble. Fig-
ures 15 and 16 show this effect; in particular, the results of
Fig. 16, with incidence at 6, = 90 and scattering at = 135°
have been verified experimentally.®

V. SUMMARY

The DWBA gives analytically simple forms for the
scattering of elastic waves by defects of quite general shape.
Numerical studies applying the DWBA to exactly solvable
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shapes (spheres) indicate that the approximation yields reli-
able frequency dependence and phase information. The
DWBA was applied to one irregularity shaped defect.

We plan to extend this work to the calculation of scat-
tered shear waves. We would like to compare the results of
this calculation with experiments; initial comparisons were
most encouraging.'® We would also like to use the DWBA to
test some NDE inversion procedures>>''° and the concept of
defect representation by effective ellipsoids.
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