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We consider the response of a semiconductor to small perturbations in the applied electric field
away from a steady uniform dc field. Both ac conductivity and time-dependent velocity response
are calculated for a relaxation model described by moment equations for the average electron

velocity and energy. Our model involves only three parameters determined by the energy and

momentum relaxation rates and their derivatives. Two of them, the momentum relaxation rate
I',, whichsets the frequency and time scales and the ratio (dJ /dE )/|J /E ), are easily obtained from
dc conductivity measurements. The third can be obtained from a measurement of the value of the
peak ac conductivity in the case where the peak occurs at a nonzero frequency. The form of the
conductivity is explored as a function of these parameters, and consistency tests are suggested to
determine the applicability of the model. The cutoff frequency where the ac conductivity drops to
half its zero-frequency value is shown to be determined largely by the dc parameters I",,, and (dJ /
dE)/(J /E ). Preciserestrictions on the parameters are given for the existence of velocity overshoot
in the presence of the dc bias field. It is shown that observation of a peak ac conductivity at a

nonzero frequency always implies the presence of velocity overshoot. The cutoff frequency for a

spatially uniform system is shown to be insensitive to the presence of velocity overshoot.

PACS numbers: 72.20.Ht,72.30. + g,72.20.Fr

I. INTRODUCTION

The frequency dependence of the electrical conductiv-
ity in the presence of a bias dc field has long been a means of
investigating hot electron effects in semiconductor materi-
als."? The effect of velocity overshoot has been of interest as
a means of improving semiconductor-device perfor-
mance.*™ In this paper we discuss these two phenomena and
the relationship between them by considering the time de-
pendence of the average electron velocity and energy for a
spatially uniform system in response to small perturbations
in the applied electric field E, away from a steady dc value
E,.

In Sec. I we discuss the relaxation approximation we
will use in subsequent calculations. Qur model will be limit-
ed to those cases where conduction takes place primarily in
only one set of equivalent conduction valleys. The response
of the system to small perturbations is shown to be entirely
specified by three parameters determined from the energy
and momentum relaxation rates.

In Sec. ITI we consider the case where the perturbation
E| is a small oscillation of frequency w. The resulting fre-
quency-dependent conductivity o{w, E,) is discussed. Pre-
cise restrictions on the parameters of the theory are given in
order to see an increasing conductivity at low frequencies
(i.e., a peak conductivity at a finite frequency). The magni-
tude and frequency of peak conductivity are given as func-
tions of these parameters. The cutoff frequency, where
olw, E,) drops to half its zero frequency value, is also shown
as a function of these parameters. It is shown how a dc mea-
surement uniquely determines two of the parameters of the
model and how an ac measurement can determine the third

* Present address: Department of Physics, The Ohio State University, Co-
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5006 J. Appl. Phys. 53(7), July 1982

0021-8979/82/075006-07$02.40

for certain cases of interest. Comparison with recent experi-
ments is made.

In Sec. IV we consider the case where E| is a small step
applied at z =0. By computing how the average velocity
rises to its steady-state value corresponding to the field
E, + E|, the possibilities for velocity overshoot are investi-
gated. By velocity overshoot we mean that at short times the
average velocity exceeds the final steady-state value. Precise
restrictions on the parameters of the theory are given for
velacity overshoot to exist. The magnitude of the overshoot
and the time at which the peak velocity occurs are given as a
function of these parameters. By comparison with the results
of the previous section we show that, for the same dc bias
field E,, the existence of the velocity overshoot can always be
inferred by the observation of a peak conductivity at a finite
frequency, but that such a conductivity is not necessary for
the existence of velocity overshoot. We also show that the
existence of velocity overshoot does not significantly alter
the cutoff frequency of the conductivity for a uniform sys-
tem.

In Sec. V we summarize our conclusions.

1. RELAXATION APPROXIMATION

To describe the time evolution of the average electron
velocity v and energy € we start with a commonly used®*"!
relaxation model given by the following moment equations:

v _ gE _ oI, (€), (1a)
dt m
% — gEv— (e — €, ). (e), (1b)

where ¢ is the electronic charge, m is the effective electron
mass (parabolic dispersion is assumed), and €, is the equilib-
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rium lattice thermal energy. The approach to steady state is
determined by the momentum and energy relaxation rates
I, and I',, which are assumed to be instantaneous func-
tions of € (such a model is usually viewed as arising from the
assumption of a displaced Maxwellian distribution®). We
will subsequently solve a linearized version of these equa-
tions for the case of small perturbations about the steady
state.

The above equations describe the case where the con-
duction electrons occupy just one set of equivalent conduc-
tion valleys. Such is the case for bulk Si or Ge. Equations (1)
should also apply in the case of inversion layers where the
temperature is so low that only the lowest quantized level is
significantly populated. Such is the case in recent experi-
ments reported by Allen et al.'? For materials such as GaAs
or InP, where significant conduction takes place in higher-
mass satellite valleys, Egs. (1) are not adequate. One must
introduce separate equations for each valley with appropri-
ate transfer rates coupling them.%'* Others have tried to sim-
ulate such materials using Egs. {1) with an energy-dependent
mass m(¢).® We confine ourselves to the single-valley case
with a constant m.

The relaxation rates I',, (€} and I, (¢} which appear in
Egs. (1) are uniquely determined by a knowledge of the
steady-state solutions v, and ¢, as functions of the applied
electric field E.!" Since (1) gives for the steady state

qE
Vo = s 2a
° mI,, (22)
E
€= qr"" +er, (2b)

e

knowledge of vo(E ) and €,(E ) enables the determination of the
relaxation rates as a function of E, ie., I',, (E) and I, (E).
Inversion of the function €,(E ) then gives the rates as func-
tions of energy. Although one may question the validity of
trying to explain transient phenomena with a model com-
pletely determined by its steady-state solutions, previous cal-
culations'®'! have shown reasonable agreement between the
model represented by (1) and the transient behavior seen in
more exact Monte Carlo calculations. In this paper we as-
sume the correctness of the model and examine its conse-

quences.
For small perturbations in the electric field, we can ex-

pand Egs. (1) about the steady state by writing

E(t)=E,+Eyt), (3a)

ot) = v + vilt), (3b)

€lt) =€, + €)(t), (3¢)

I left)] = I'le) + (gf-)e,(t) + o), (3d)
[4]

where the subscript 0 denotes the steady-state solution given
by (2), and the subscript 1 denotes the deviation from it.
Substituting (3) into Eq. (1), linearizing in the deviations
from steady state, and rewriting in dimensionless form, we
find

ao _E, . ..

7 E, b—G,éE, (4a)
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dé  E, . ..
—_ = — 40— Ge €, 4b
dt E, bl

where the dimensionless quantities are defined as

U=0,/vy, &=€\[ /(€0 — €L co»
and

t=r,,t (=€) (4e)

Equations (4) involve only two unknown parameters:
r,, (dr

Gomleo —er) 222 (Z2) (5a)
r:s\dejo

6= (el b

I, de o

which characterize the energy dependence of the relaxation
rates. [From Ref. 10, where I',,, and I, are computed for Si,
we can expect G, and G,, to be <0(10).] Equations (4), the
definition v=v,/v,, and Eq. (2a) for v, show that, to comple-
tely specify the velocity response v,(¢ ), all that remains to be
known in addition to G, and G,, is the relaxation rate I',,;.
In the remaining section we explore the behavior of solutions
to Eq. {4) as a function of the three parameters G,,, G., and
g

lll. ac CONDUCTIVITY

To extract the complex ac electrical conductivity
olw,E,) from Egs. (4), we assume that all quantities have the
time dependence exp(iwt ) and use the definition

0'((0,E0) = nqvl/E,, (6)

where 7 is the conduction electron density.
The resulting conductivity, as previously derived by
Das and Ferry,” is in our notation,

olw,Eg) G.—G,+i»

T4c (EO) (Ge + i&;)(l + 15) + Gm '
where @=w/I",,, is the dimensionless frequency and
4. (Eo)==nquy/E, is the dc conductivity. From Eq. (2a) for
vy, we have the familiar result

Oac(Eo) = ng*/mI . (8)

Knowledge of the conduction electron density n and the dc
conductivity thus suffices to determine I, .

We stress the difference between the dc conductivity
0,4 (E,) and the zero frequency limit of the ac conductivity
olw = 0,E,) in Fig. 1. Plotted is a typical curve of the dc

slope=dJ/dE ~
< S
J
A7

{7

FIG. 1. dccurrent J vs elec-
tric field E. dc conductivity
4. (E) = J /E and zero fre-

</, { quency ac conductivity
/ ] olw=0,E)=dJ/dE are
/ | given by the slopes of the
/ 4 ; appropriately labeled lines.
slope=J/E !
Eo
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unstable steady state

I
N+

FIG. 2. Division of G, and G, parameter space according to behavior of ac
conductivity. For points in region I, Re[o{w,E,)] rises at low o, reaches a
peak at some w,,,, #0, and then decays to zero. For points in region II,
Re[o{w, E,)] decrease monotonically as w increases. Above theline G, = G,
there is negative differential conductivity, i.e., o{w = 0,E) = (dJ /dE) <0.
To the left of the hatched line the steady state is unstable.
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FIG.3. Typical plots of Re[o{w,E )]} as a function of /I, . Plot (a) corre-
sponds to values of G, and G,, in region I of Fig. 2, while plot (b) corre-

sponds to values of G, and G, in region II of Fig. 2.
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current J versus field E. o, (E) is just the chordal value J /E,
while o{w = 0,E,) is the differential value dJ /dE. The ratio
of these two values is given by the zero frequency limit of Eq.
(7) as

oo =0E,) _ (dJ/dE) _ G -G,
04 (Eo) J/E Jo G,+G,

Since this ratio is directly measurable by a simple d¢
experiment while G, and G,, separately are not, it will be
convenient later to regard Eq. (9), instead of G, , as one of the
three fundamental parameters of the system. G,, can then be
determined from Eq. (9} once (dJ/dE)}/{(J/E) and G, are
known.

The ac conductivity (7) displays various possible behav-
ior depending on the values of G, and G,,. In Fig. 2 we di-
vide this parameter space into distinct regions, and in Fig. 3
we show typical plots of Re[o(w,E,)] for the two main re-
gions of interest. In region I the conductivity increases at low
frequencies, reaches a peak value at some frequency w .y,
and then decays to zero as 1/w?. In region II the conductivity
decreases as @ increases, and the curve looks roughly like the
Drude model given by o(w)/oy. = 1/(1 + iw/T",,).

Note that the region of parameter space G, < — 1 or
G,, < — G, is not permitted. For values of G, and G,, in
this region, the homogenous solutions to Eq. (4) grow rather
than decay exponentially in time, and hence the steady state
is unstable. Exclusion of this region insures that all poles of
the conductivity o{w,E ) remain in the upper-half of the com-
plex w plane and hence causality is preserved. We have also
not considered the region G,, > G, asthisis a region of nega-
tive differential conductivity, i.e., dJ /dE <0 [see Eq. (9)].
Since negative differential conductivity is usually associated
with a transfer of electrons to higher-mass satellite valleys, '
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FIG. 4. Contours of peak conductivity Re[01o peax 1 Eo))/ 4. (Eo) as a func-
tionof(dJ /dE)/(J /E )and G, . Below the dashed line corresponds toregion I
of Fig. 2, while region II of Fig. 2 is above.
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lf'IG. 5. Contours of frequency of peak CONAUCHIVItY @ ey /T, as a func-
tion of (dJ/dE)/(J/E) and G,. The contour @, =0 separates the

regions Iand I1 of Fig. 2 [in region I1, @peax = Oforallvaluesof (dJ /dE)/(J /
E)and G.].

the one-valley model implicit in Egs. (1) is probably inade-
quate for an accurate description in this region.

We have previously remarked how two of the three pa-
rameters of the system, I',,,, and (dJ /dE )/(J /E ), are readily
measurable by a dc experiment. We now show how the third
parameter G, can be obtained for the case of region I. In Fig.
4 we plot contours of peak conductivity Re[o{@ peax ,Eo)] as 2
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FIG. 6. Contours of cutoff frequency w, /I, (where Refolw,E,)] drops to
half its @ = 0 value) as a function of (dJ /dE )/(J/E) and G, . Below the
dashed line corresponds to region I of Fig. 2, while region II of Fig. 2 lies
above. Contours show no dramatic change as they pass from region I to
region II.
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function of the parameters (@J/dE)/(J /E) and G,. The re-
gion below the dashed line represents the region I of Fig. 2
while the region II lies above. From Fig. 4 it is easily seen
that, in region I, a measurement of Re[0(0 peasc ,E,)] s suffi-
cient to determine G, and complete the specification of the
behavior of the system. G, is uniquely determined by the
intersection of the measured value (dJ /dE )/(J /E ) with the
contour of the measured value Re[o{wpear . E))/04.. G, can
then be obtained from Eq. (9), and the complete frequency
dependence of o{w,E,) may be plotted from Eq. (7).

Similarly, in Fig. 5 we plot contours of Opeax /T A
measurement of just @, does not necessarily determine G,
uniquely. For example, the contour for Opeay /T 0 = 0.5 has
two possible values of G, for the value(dJ /dE )/(J /E) = 0.4.
However, a measurement of both 0(@peax  Eo) and @, must
be able to give a consistent value for G,. Such a consistency
test provides an important check of the validity of the relaxa-
tion model assumed in Sec. II. A formula for @peqy inregion I
and the equation for the curve separating region I from re-
gion IT in Fig. 2 are given in the Appendix.

We now examine the behavior of the cutoff frequency
., where Re[o{w,E,)] drops to half its zero-frequency value.
Contours of @, /I, asafunction of (dJ /dE )/(J /E )and G,
areshown in Fig. 6. The dashed line again separates regions [
and II. The contours are seen to have only a weak depen-
dence on the parameter G,. For a given w, /I, and the
range of the parameter G, shown in Fig. 6, i.e., 0< G, <6,
there is only a small interval within which (dJ /dE)/(J /E)
must lie. We use the contours of Fig. 6 to plot in Fig. 7 the
permitted range of . /I, (shaded region) for a given value
of (dJ /dE)/(J /E )and for 0 < G, < 6. If one considers larger
values of G, , then one can show that the contours of constant
w. in Fig. 6 slowly but steadily decrease as G,— . The
result in Fig. 7 would be a lowering of the minimum possible
w. /T, for a given (dJ /dE)/(J /E). However, we expect
G, < ~10 and as w, varies slowly with G,, Fig. 7 should
provide reasonable bounds on w, for real materials.

Figure 7 suggests a second important consistency test
that can easily be performed. For a nonlinear J versus E

(«Jc/:[-‘,,,o

~nN
T
N
m
o
A
(@)

1 i 1 I 1 1

[ 1 £ .
0 02 04 06 08 1.0
{dJ/dE) / (J/E)
FIG. 7. Permitted range (shaded region) of cutoff frequency w,/I",,, for a

given value (@ /dE)/(J /E ) and 0 < G, < 6. Experimental results of Ref. 12
are indicated for one value of £,70 and for the E, = 0 case.
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curve, the parameter (dJ /dE )/(J /E ) is easily controlled by
varying the applied dc field E,. Measurements of @, can
therefore be made as a function of (dJ /dE)/(J /E), and all
points should lie within the shaded region of Fig. 7 if the
model of Eq. (4) is to apply and G, is not abnormally large.
Recent experimental results of Allen et al.'? for the cases
Ey=0 (where G,, =0and @./I",,, = 1) and for one fixed
value of E,50 are indicated in Fig. 7 and are seen to be
consistent with our analysis.

IV. VELOCITY OVERSHOOT

We restate the intuitive argument for the existence of
velocity overshoot as follows.* If I, <I",,, we expect mo-
mentum relaxation to occur on time scales short compared
to that on which the electron distribution heats up (i.e., sys-
tem speeds up before it heats up). If the average electron
energy is initially €;, then when an electric field E is turned
on, the momentum will relax to give
b= —98 (10)

ml’, (€,
At a larger time when the electrons have heated up to their
final drift energy €, > €;, the momentum relaxes to give

qE

TS (11)

V=
If I',, is an increasing function of ¢, then v; > v, and over-
shoot has occurred.

We will now use the results of the previous sections to
more rigorously examine the possibilities for overshoot in
the case of a small field E, turned on at time r =0 in the

—°
€
5|y
N
g 8
4 |
7 <
® ‘o
£
04 °
2
£
=1

ol
L

FIG. 8. Division of G, , G, parameter space according to behavior of veloc-
ity response to a small step field applied at # = 0. For points in region 4,
velocity overshoot occurs together with a small oscillation. For points in
region B, overshoot occurs without oscillation. For points in region C, no
overshoot occurs. Above the line G, = G,,, there is negative differential
mobility dvy/dE <0. To the left of the hatched line the steady state is
unstable.

5010 J. Appl. Phys., Vol. 53, No. 7, July 1982

presenceofadcfield Eyie., E(t) = E, + E,6 (t)[0isthestep
function 8 (¢) = Ofort < 0,8 (¢) = 1forz> 0]. From Sec. Il we
know the velocity response to an applied field of any frequen-
cy

V(@) = plw,E)E (), (12)

where the mobility u is related to the conductivity o by

U =o/ng. (13}
Using the Fourier transform
9(:)=J do e (14)
w2 w—in

{where 7 is an infinitesmally small positive number), we can
easily obtain the velocity response to a step field as

o d it
i) =E [ Sy s)

The behavior of v,(¢) is thus completely determined by the
poles of p(w,E,) and their residues.

Restricting ourselves to the same range of parameters
as before, i.e., |G,,| < G, and G, > 0, we have three possibili-
ties. These are indicated by the regions shown in Fig. 8 and

T T ¥ T \ T T

(a) Gg .G in region A

v, ()
g ______
> |
| I
t -
peak *mo
ji/l 1 1 J 1 1
0 2 4 6 8
tIno
(b) : : Ge,Gpy in region B *
v, (1) I J

v;{00)
T T
I

L

(c) ‘E_

Ge,Gm in region C
v (1) " 9 ]

A 1 A s

0 2 4 6 8 10
o

FIG. 9. Typical plots of velocity response v,(t) as a function of tI',4: (a)

corresponds to values of G, and G,, in region 4 of Fig. 8, (b} corresponds to

region B, and (c) corresponds to region C.
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the corresponding behavior of v,(t ) for each region, shown in
Fig. 9. In region A4, the poles of u(w,E,) are complex, and the
resulting v, (¢ ) displays overshoot with a small damped oscil-
lation. In practice this oscillation will probably be too small
to observe experimentally. In regions B and C, the poles are
pure imaginary and v,{t ) consists of a sum of pure exponen-
tials. In region B, overshoot is present while in region C it is
not.

Factorizing the denominator in Eq. (7) into a product of
terms linear in w gives for the poles of u(w,E,)

14+ G, 1 +G,\?
(57 [ (57 vevel]

From this, the equation for the line separating region 4 from
regions B and C is obtained as

o= (5) - (5)+ R
"\2 2 4’

Consideration of when it is possible to have dv/dt = 0 for

some finite 7 (this is the point of peak velocity) yields the

equation for the lines separating the region of overshoot B
from region C,

G, =0 for0<G, <1,

172

® . (16)

(18)
G, =G, —2 for3<G,.

We can now compare these results with the intuitive
argument presented at the beginning of this section. From
Figs. 8 and 9 we see that no overshoot occurs if G,, <0. This
agrees with the intuitive assumption that I, (€), see (5a),
must be an increasing function of €. The second intuitive
assumption that I, {€)<T,, (€) is less valid, but we may relate

no overshoot

1

3 4 5 6
1 (dle-€)T
GB'I"_( de e>°

FIG. 10. Contours of peak veloCity v (fpeas)/tacE, as a function of
v oo /ts E, and G.. Below the dashed line, overshoot is present while

above it is not. Below the dotted line corresponds to region A4 of Fig. 8, while
region B is between the dotted and dashed lines.
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FIG. 11. Contours of time of peak velocity #,.. /.o as a function of
v(0)/uy. E, and G,. Below the dashed line, overshoot is present while
above it is not (i.¢., £, = o). Below the dotted line corresponds to region
A of Fig. 8, while region B is between the dotted and dashed lines.

it to our results as follows. If we assume that I, (€) o< I',, (€}
for all ¢, there is a constant y such that I, (€) = yI, (€). Then
from Egs. (5) we would have G, = ¥ + G,,,. From Eqgs. (1) it
may be shown that y =2 corresponds to the case where
€(t) — €, =(1/2)mv’(t), and hence energy and momentum
are relaxing together at the same rate. Thus the conduction
G, —2<G, would be equivalent to the condition
I, <2rl,,, and we have momentum relaxing faster than
energy. Returning to Eq. (18) and Fig. 8, we see that the
condition G, — 2 < G,, in fact must be satisfied in order for

FIG. 12. Comparison
of region where
i Re[olw,Ey)] has a
peak at finite of(a)
above dashed curve,
by below dashed
curve] with region
where velocity over-
shoot exists[(a) above
solid curve, (b) below
solid curve]. Plot (a) is
in the parameter
space of G,, and G,
while plot (b) is in the
parameter space of
(dJ/dE)/(J/E) and
G,. Observation of a
peak conductivity ata
finite frequency al-
ways implies the exis-
tence of overshoot;
however, there is a
small region (between
the solid and dashed
6 curves) where over-
shoot exists but the
conductivity has no
such peak.

Ty
nz,gds)o
e R

L

(a)

T
(e-¢ ) "2

G

1.2 r

(b}

(dJ/dE) /(J/E)
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overshoot to occur. However, the converse is not true. There
remains a small region whereboth G, >0and G, —2<G,,,
but overshoot is not present. Finally, of course, the condition
G, —2<G, need not imply [I,,<2TI,, when
I, (e)#xT,,(€), as will generally be the case.

In Figs. 10 and 11 we plot contours of peak velocity
Vy{fpear )/ oo E,) and the time of peak velocity 7, 1,0 as
functions of the long time-velocity increment v,(cc )/( tg. E\)

={G, — G,)/|G, + G,,)and G, . The dashed line separates
regions of velocity overshoot (i.e., regions 4 and B of Fig. 8)
from that of no overshoot. The dotted line separates regions
A and B. One sees that for a fixed value of G,, the earlier the
overshoot occurs, the bigger is the overshoot effect.

In Fig. 12 we compare the region of parameter space [in
12(a) as a function of G,, and G, and in 12(b) as a function of
(dJ /dE)/(J /E) and G,,] where one expects velocity over-
shoot, with the region where one expects a peak conductivity
at a finite frequency. The latter region is seen to lie entirely
within the former. We conclude that observation of a peak
conductivity at a finite frequency is a sufficient condition to
imply that the material will display velocity overshoot when
operating at the same dc conditions. However, as the regions
do not overlap exactly, velocity overshoot might still exist
for materials whose conductivity does not have such a peak.

Finally, by comparing Fig. 12{b) with Fig. 6, we see that
the cutoff frequency displays no dramatic change when we
cross from the region of velocity overshoot to the region
without. Thus the existence of velocity overshoot does not
imply improved high-frequency performance of a material
with uniform electron density. For devices where electron
density is not uniform and device performance depends on
the physical transfer of charge across low-density regions,
velocity overshoot may still be an important means of im-
proving high-frequency behavior.

V. CONCLUSIONS

In this paper we have applied a commonly used relaxa-
tion model to investigate ac conductivity and velocity over-
shoot phenomena. The response to small perturbations has
been shown to depend entirely on just three parameters. We
have indicated how these parameters may be easily extracted
from dc and ac conductivity measurements and how such
measurements may be used to check the validity of the relax-
ation model. The behavior of the ac conductivity as a func-
tion of the parameters of the theory has been explored by
considering the magnitude of the peak conductivity, the fre-
quency at which it occurs, and the cutoff frequency. Cutoff
frequency has been shown to be dependent primarily upon
the value (dJ /dE)/{J /E ) at the dc operating point.

We have derived precise restrictions on the energy and
momentum relaxation rates for the occurrence of velocity
overshoot in response to the addition of a small step field on
top of an already existing dc field. These restrictions have
been compared to more intuitive requirements presented
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previously, and qualitative though not quantitative agree-
ment is found. It is shown that the occurrence of a peak in the
ac conductivity at a finite frequency is a sufficient condition
to imply the existence of velocity overshoot. Velocity over-
shoot is shown not to have any dramatic effect upon the
cutoff frequency of the material.
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APPENDIX

A formula for @, inregion I has been given previous-
ly.” In our notation it is

ettt = 25 (B - (©)

A A A
where
A=1+G,,
B=G?-G?, (A2)

C=(G,+6G,)[G:+G> —-G,2+3 G, +G2)).

By noting that @, in Eq. (8) must be positive, we can derive
the equation of the curve separating regions I and II as

2+3 G 2
Gm=(_i___2'~’_+_GL)

2 3 G GZ 2 1/2
G ] I
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