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Monte Carlo simulation of Fickian diffusion in the critical region
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In this article we describe a novel, phenomenologically based computer simulation approach for
studying relaxation dynamics in fluid systems. The method utilizes an ensemble consisting of two
isothermal chambers initially separated by an impermeable partition. The fluid configurations in
each chamber are initially pre-equilibrated at densjties: andp — & respectively, wherg reflects

an average density of interest and small perturbation about this value. After the pre-equilibration
step the partition is removed and the entire ensemble allowed to relax towards an equilibrium state
guided by a kinetic Monte Carlo computer simulation algorithm. Fickian transport coefficients are
found from quantities calculated during this relaxation process. We present an analysis of the
approach and illustrate its application to transport property calculations in purely diffusive
lattice-gas systems. Our results focus upon the critical region for which there are few published
results and where simulation results face the most challenges because of finite-size effects and the
phenomenon known as critical slowing-down. ZD02 American Institute of Physics.

[DOI: 10.1063/1.1433967

I. INTRODUCTION AND BACKGROUND Je=—DVp )

The main phenomenological parameter for calculating  Je=—L,Vu, (2)
concentration-driven transport fluxes in fluids is the Fickian
(transport diffusion constant. The two most common tech- WhereD is the Fickian diffusion constant,, the Onsager
niques for evaluating this transport coefficient are sometime&egression constanp, density andu the chemical potential.
referred to as direct and indirect methods, respectively. Dilf we combine these two equations and consider a gradient in

rect methods use a phenomenological setup to simulatghemical potential over a spatial co-ordinateve find that:

transport phenomena in the system. A good example of this o o\ [dp
approach is the dual control volume grand canonical Monte  J.=— O(— = —LO(—) —) (3
Carlo (DCV-GCMC) method*? The DCV-GCMC algorithm X/ r P )\ OX]

consists of performing cyclic calculations, each cycle com- L
. : . . from which it follows that,

prising a molecular dynamid#/1D) simulation followed by a

series of grand canonical Monte Call@CMC) steps. The

N;
> () —r(0))
k=1

Ip
GCMC calculations maintain the required densities in each DILo(a—) . (4)
of the control volumes at either end of the diffusion region, Plr
while the MD calculations develop the fluid trajectories The Onsager coefficient can be found from simulations using
within the diffusion region on which to base flux calcula- the Einstein equatioh:
tions. These molecular fluxes are found by direct enumera-
tion of particle fluxes across a plane perpendicular to the B\ 1 2
concentration gradient direction as has recently been de- Lf(W) lim — ; ®
scribed in slit pore systenfs-owever, this approach has not i t
been tested near the critical point where the gradient of thg here the subscrifitrefers to a time average quantity(t)
chemical potential shows singular behavidn this case the s the position of thekth particle at timet, 8=1/kgT andV
concentratioridensity fluctuations across the system will be the system volume.
large, introducing significant statistical uncertainty into the  The term ¢u/dp); can be found from GCMC simula-
GCMC equilibrium simulations at each step of the process.tions and use of the fluctuation formula:
So-called indirect methods evaluate quantities derived

from linear respongeand/or Green—Kubo theory’, that are u\ OV .
related to the Fickian diffusion constant. For example, the | 9p Tv_g«gN)?)' ®)

diffusive flux Jg for a lattice-gas speciaswith respect to its
density can be written in both Fickian and Onsager terms aEquationg4)—(6) are the basis for the indirect calculation of
follows.” Fickian diffusion constants.

0021-9606/2002/116(7)/3012/6/$19.00 3012 © 2002 American Institute of Physics

Downloaded 22 May 2002 to 128.151.144.135. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 116, No. 7, 15 February 2002 Diffusion in the critical region 3013

equilibrated high and low density regimes separated initially

Net diffusion direction by an impermeable partition. The two profiles meet at a dis-
— continuous density interface, and once the patrtition is re-
moved, diffusion between both chambers will occur as the

Periodic boundary conditions o .
system relaxes towards the equilibrium state. The dynamics

Removable partition

in such an ensemble can be analyzed by studying the time-
5600of o O dependent Fickian diffusion equation. For illustrative pur-
6%%E o o poses this equation for one-dimensional diffusion in a pure
00045 EOQ © fluid can be written as follows:
ap(x,t) Pp(x,t)
Pl p @)
at ox
1 1 ]
I — whereD is the Fickian diffusion constanp(x,t) the fluid

C trati ) . . e M .
eneerration density andx the coordinate in the diffusion direction. This

profile i i E . . Lo o
i i 1 equation can be solved for a variety of initial conditions; for
X a single sinusoidal Fourier component, the dynamic density
profile in such a system evolvessin(kx)e‘DkZ‘. For a peri-
FIG. 1. Schematic of the Fickian two-chamber ensemble. odic initial density profile with period., the temporal and

spatial dependence of the density profile in the system can be

expressed by the general equation:
II. RELAXATION DYNAMICS: THE BASIS FOR THE

PROPOSED METHOD

p(x,t)=ag+ > a,codnkxe Pnkt
Another intuitively appealing approach for studying dif- n=1
fusion dynamics has involved the simulation of systems re- %
laxing from a nonequilibrium state. In these relaxation meth- +> b, Sin(nkx)e*Dnzkzt' (8)
ods a key issue is the preparation of the initial n=1

nonequilibrium(perturbed state. Kutneet al® used GCMC  \yherek=2x/L is the wave number, ang, a, andb, are

in a lattice spin system in the presence of an external sinueqyrier coefficients. For the square-wave initial density pro-
soidal field to set up the initial perturbed state. From thejje shown in Fig. 1 we find that,

ensuing relaxation dynamics process they calculated the Fou- 4 1
rier transform of the lattice magnetization profile, which was _at T —
used to find the lattice diffusion constant. A similar approach (.0 ™ o%:n n sinnkx) +p, ©)
was rege”t'y used to st_udy ‘?0”9.‘3“"? diffusion on hexagona;n which case the solution to E¢7) with this initial condi-
lattices” However, Fickian diffusion is only meaningful for .. .
. I ) tion takes the particular form,
small displacements from equilibrium where linear response
theory, according to Onsager’s regression hypothesis, is
obeyed. The method in Ref. 9 does not incorporate pre-
equilibration into the simulations at the given thermody- i o
namic conditions, which means that the initial results do not/Vé now define the ensemble average quaniity in each
represent sampling in the linear response regime. Furthefna@mber of lengtit./2 as follows:
more, none of these methods has, to our best knowledge, Am=(m(t))—{(m(=)), (11
been studied in the context of critical dynamics in fluids. . . .
Kutner’'s method may be problematic in this region, since awhere m(t) r.epresen_ts the number. of partu;les N a given
the critical point the divergence of thermodynamic propertiesCh‘"‘mt.’er at time. During the relaxgt|op—d|ﬁu5|on proces.s, it
like the susceptibility is likely to give rise to large amplitudes is straightforward to show thatm is given by the result:
in the initial density profile, for even small perturbations of 4el 3 1 2.2
the applied si idal field—i initi iti - Am= > e Pk (12
pplied sinusoidal field—i.e., initial conditions well i
displaced from equilibrium. Also large fluctuations in this
region should lead to widely varying initial density profiles For t=0, the value of this series is 1.233, while for
from run to run with concomitant statistical uncertainty in = 0-5PK? its value is 0.608 with the value of the first term,
the results. namelye Pkt equal to 0.607. In other words, whetm
We propose a new relaxation method for calculatingequals about half of its initial value, all the Fourier compo-
Fickian diffusion coefficients by following the dynamics of a nents, except for the first one, have already decayed consid-
purely diffusive system as it relaxes from an initial nonequi-erably. Therefore, at a tinte=t,, with t, chosen in advance,
librium state constructed in a two-chamber ensemble scheve have to a good approximation that,
matically shown in Fig. 1. We call this entity Bickian en- Al 3
semble given its phenomenological construction which has ~ Am=——e
been chosen to mimic density-driven diffusion processes.
The square-wave profile in the ensemble represents pré&o, for two values of>t,, namely,t; andt, we get that,

48 1 i _ 2,2 _
p(x,t)= ?O%Dn Hsm(nkx)e Dty ), (10)

—Dkzt. (13)
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Am, ot ty) the interactiqn term dis wri'Ften in this way, then thg critical
A_ml:e 21 (14 temperature in this model is known to be approximaf&ly
=4.52 withT* =kgT/J for L—<0. In such a system, at equi-
from which it follows that, librium spontaneous fluctuations constantly take place and
Am, our task is to calculate the Fickian diffusion constant for the
In(m) fluid at the given density and temperature.
D= kz(t—f) (15) Before providing further details of the simulation algo-
27l

rithm, we define the heat-bath algorithm which provides the

This simple equation is the basis for the proposed simulatioRasis for the particle “dynamics” used in our Monte Carlo
method. We now use it to provide error estimates for theSimulations. The heat-bath algorithm gives rise to an accep-

simulation results. tance probability for a given Monte Carlo “move” by the
We approximate Eq15) for small differences in time by ~ following formula:
the differential form, 1
o1 dam . Pt = I PE—E 22
=T oA ar
k°Am  dt which obeys the principle of detailed balance, namely that,
Now if Eq. (12) is true, then using this equation in EJ.6) =
gives, ﬁ —efEL-Ep), (23)
D e*Dnzkzt 2=
D'=D odd n ) (17) In this way particles are free to move throughout the system
s oD% and dynamic analysis using simulation procedures of this
odd npy2 sort are often referred to as kinetic Monte Carlo algorithms.

ime intervals with such a method are measured in units of

onte Carlo stepsMCS), each of which is defined to be a
complete sweep of the lattice, i.e., an attempted move, on

D'=D+4D, (18)  average, of each of the particles in the system.

where For a given system sizéan even integer density and
temperature, the simulation is comprised of two principal
stages{(1) the pre-equilibration stage, artd) the diffusion-
dynamics stage. During the pre-equilibration stage, the sys-
. tem is divided into two equal sized chambers, meeting at a
C'ear.'Y we see thgﬁD/Q—>0 ast—w. If we tzaegln data planar interface parallel to two of the faces of the original
acqwsmc;n in the simulations whaeeto=0.5Dk*, we have cube. Two densities close to each other, one slightly greater
thate P~ 0.607. HereAm equals about half of its initial than the given density, and one less than it by the same

If the higher-order terms are small compared to the leadin
term, then we may write

oD 1 2 2
== 1— —|e Pk 19
D odgsﬁl ( HZ) ( )

value and Eq(19) provides that, amount, are chosen and ascribed to the two chambers of the
SD system. For each of the chambers a fraction of the sites de-
o ~16%. (200 termined by the corresponding density is randomly filled

with particles. The simulations then proceed according to the

Thus, we have aontrolled approximatiorusing these following algorithm:
results, which are generally applicable for calculating Fick-
ian diffusion coefficients in fluid systems. We now describe
the simulation approach for implementing these ideas fol- . .
lowed by illustrations of its numerical use. B. Algorithm details

We define the number of Monte Carlo cyclesNy, with
the number of cycles in the pre-equilibration stageNyy.

We consider a simple lattice gas on a 3D cubic lattice ofThe total number of particles in the system is designated
size L with periodic boundary conditions applied in the stan-with an indexn that runs from 1 td\. The simulation algo-
dard manner. For a given particle density in the system, @ithm is as follows:
fraction. of the sit_es, proportional to the density, are occupie . Start loop N, which runs from 1 toNq.
by particles, while the rest of the sites are empty. For X5 giart loop n \7vhich runs from 1 to\. a

ample, the critical density in such a system corresponds tg’ .
half the sites being filled. For any configuration of particlesg' Randomly choose both a particle labeledrtand one of

in the system the corresponding energy is given by: Its six neighboring sites

A. Simulation approach

« = If the site and the particle are in tieo different

E= —4JZ nin;j, (21 chambersandngg=Nyeqabandon this attempted move,
(i) incrementn by one and return to step 3.
wheren; can take the value fpresence of a particleor 0 « Otherwise, if that neighboring site ifilled with another
(absence of a particleat sitei. The symbokij) denotes the particle, abandon this attempted move, increnrebly

summation over all nearest-neighbor pairs of the system. If  one and return to step 3.
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e Otherwise, if that site isempty calculate the present 90
value of the energ¥; and the value of the enerdy; ]
that corresponds to the state of the system in the event 80+ T=0.5
that the particle moves to the chosen empty neighboring 0] |_:26
site. ] a
4. Calculate the probability 60 K\*
1 5 50— \#\#\
f -
p=Pi_; =17 FEE) (29 40 #\*\'\'
i istri 7] -\-\'\’\'\’\.
e Generate aandom number r uniformly distributed .
between 0 and 1. 20+
 If r<p acceptthe move so that particle moves to the 0 5 0 15 20 25
chosen empty neighboring site. Time (in units of 20 MCS)

e If r>p reject the move.

5. If ngg>Npeq calculate the number of particles throughout
the system, their positions and return to step 3.

. End loop n. were used in the low density one. In Fig. 3 the density profile
7. End loop neg. in the entire ensemble is shown for these simulation condi-

The condition denoted by ensures that there is no par- tions at two different timest=0 MCS andt=240 MCS,
ticle exchange between the two chambers during the préespectively. These data correspond to an average over a set
equilibration stage. At the end of this stage both chamber§f 64 data blocks, each one containing 200 relaxation simu-
are independently equilibrated at their respective densities, ations.
the given temperature. During the nefkinetic’ ) part of A The critical region
the algorithm, Monte Carlo cycles are run in the same man-
ner as described above, however, without the restriction in In further evaluating the proposed simulation method,
the step denoted by in the above-mentioned:; thus, particle W€ evaluate it in the critical region where we have well-
exchange between the two chambers now becomes possibf@e.ﬁned theoretical results and/or simulation data to compare
During this stage of the simulation the whole system ap_with our results. In the first set of simulations we compared
proaches equilibrium, with the two chambers tending to apthe proposed method's results with those found usingran
proach the same final densipy direct method for calculating diffusion coefficients as re-

During the diffusion-dynamics stage, the number of Ioar_cently described by Det al? This comparison is shown in
ticles in each chamber is recorded at regular “time” intervalsFig- 4 and is typical of other comparisons we have made;
with time measured in units of Monte Carlo cycles for use inthere is excellent agreement between both simulation ap-
evaluating properties of interest. For example, after a preproaches. The density fluctuation calculations for the indirect
specified timet, [see Eq(11)], the result shown in Eq15) method were done using GCMC, while the Onsager coeffi-
can be used to calcula® The entire process, including the cient was found from simulations in the canonical ensemble
pre-equilibration procedure, is repeated for several differen@tt the same thermodynamic conditidhiée can also use this
initial configurations of the system. These different configu-2PProach to estimate the critical temperaftigeof the fluid.
rations provide a series of results thm that are then aver- This should follow from the theoretical result that stipulates
aged to get the final values of reported here. Without loss
of generality we set numerical values for batlandk to be
unity throughout our calculations; in this case numerically 530
we have tha' =T*. Calculations done at the critical density 0525 e ®%e e,
of 1/2 yielded acceptance rates of 0.247Tat100., 0.205 at 0.520 -

FIG. 2. Density relaxation in the denser chambet at20, T* =9.5.

»

T=10 and 0.117 foT =T =4.52. >osi5] ® t=240mcs ° am *
% 0_510_. e =0 MCS u .
Y 0.505 - " "

IIl. NUMERICAL RESULTS g 0.500 - -

] ) ) 8 0.495 J -
In Figs. 2 and 3 we show some simulation results g o450 ® .
achieved with this method. In Fig. 2 we present the values £ ; 45 ] " -
for Am in the denser chamber @=9.5 with system size  Z ;g3 i N

L=20 (we point out that this temperature is far from the  ;,;;1 o
critical ong. In total 8000 lattice sites were used, evenly 5]
distributed between both chambers, with the overall fluid i ' T - S
density maintained at the critical valye=0.5, correspond- « co-ordinate

ing to 4000 fluid particles overall. The high-density chamber

was initially pre-equilibrated with 2100 particles, while 1900 FIG. 3. Density profile in the ensemble tat 0 MCS andt=240 MCS.
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FIG. 4. Comparison of the proposed method and an indirect technique fa 22 23 24 25 286 27 28 28 30 31
calculating diffusion coefficients fdr = 20. InL

FIG. 6. Diffusion coefficient critical exponent from finite-size scaling cal-

L . . - culations at the system’s critical temperature and density.
that fluxes and the Fickian diffusion coefficient approach y P y

zero at the critical point, a phenomenon sometimes referred

to as critical slowing-down. This particular calculation is a

useful benchmark for our method sin@e is known from  —Tc)/T¢), kand large system sidg finite-size scaling theory
prior results with equilibrium Monte Carlo histogram postulates the following scaling law for the Fickian diffusion
methods® The results of such calculations, found from flux coefficient:

data extrapolated to the zero diffusion limit, yielded a value
of the dimensionless critical temperatut@.53 as shown in
Fig. 5. This compares very favorably with the value of 4.52
found in the high-resolution Monte Carlo finite-size scalingwhereb is a rescaling factor and a universal scaling func-
study of the related Ising system using histogramtion. At the critical temperature the correct scaling is found
techniques? by replacingb by L in Eq. (25), which thus becomes,

- - L
D(t,k,L)~b(2’”A(tbl"’,g,kb), (25)

D(t=0k,L)~L~2~7A(0,1kL). (26)

Now, for eachL, k=2/L so that the scaling of the diffusion
coefficient becomes:

B. Dynamic scaling exponent from relaxation
dynamics

A particularly stringent test for the method involves the

calculation of the critical exponent for the Fickian diffusion ~ D(t=0k,L)~L~2~7A(0,1,2m), 27
coefficient. This can be represented near the critical point inhereA(O,l,Zw) is a constant so that:
terms of finite-size scaling ideds. For small t=((T )
D(Tzo,k:TTr,L)~L(2”). 28
107 Equation(28) is the result we used here to analyze relaxation
dynamic simulations at various system sizest the sys-
08 tem’s critical temperature. These results are presented in Fig.
6, where we show a graph of the simulation data in the form
of InD versus Ir_ at the critical temperature of the system.
é 064 The slope of the line yielded a value for the quantits
B —(2— 7n) equal to—1.971+ 0.09, wherep is the correlation
-% function critical exponent. This result is in excellent agree-
g 047 ment with the value foy = —1.972 found using Monte Carlo
3 simulations in an equilibrium ensemidfé The result pre-
. - ) se_nted_here though is the_ first, to our best knpwledge, to_ find
' Homogeneous 3d lattice-gas fluid s critical exponent directly from relaxation dynamics
simulations.
0.0 T T T T T T T T T T T T
4 5 6 7 8 9 10
T IV. CONCLUSIONS

We have described a new computer simulation method

FIG. 5. Particle flux from relaxation dynamic calculations—the critical tem- g >ut e . ' _
for calculating Fickian transport coefficients in lattice fluid

perature found by extrapolation to the zero flux limiflis~4.53.
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systems using relaxation dynamics. The method uses an is&-
thermal two-chamber “Fickian” ensemble for the simula- kg
tions. The initial nonequilibrium state in the system is pre-L,
pared in a particularly simple manner and correspond&
mathematically to a pre-equilibrated square-wave densityn(t)
profile. This configuration provides an analytic solution de-N;
scribing interchamber density relaxation rates in the FickiarP;_;
regime. These results are used to directly calculate Fickian,(t)
diffusion coefficients from kinetic Monte Carlo simulation t
data of particle exchange between the two chambers. T
We compared the method’s accuracy for calculatingT
transport properties with an indirect method studied by ourr_
group based upon linear response theory. We found the neyy
proposed method to be accurate in these comparisons, agd

Diffusion in the critical region 3017
period, 27/L

Boltzmann’s constant

Onsager coefficient

length of chamber

number of molecules in chamber at tirhe
number of molecules speciés
acceptance probability for stateo f
position ofk™" particle at timet

time

reduced temperature, {CT.)/Te)
temperature

critical temperature

volume

axial co-ordinate in direction of diffusion

are presently unaware of any other simulation data and/oéreek letters

experimental data with which to make these comparisons. In
addition, we also used relaxation dynamics to calculate vari8
ous critical properties of a lattice gas, including the dynamicé
scaling exponent for the Fickian diffusion coefficient. Thep
results we found were in excellent agreement with those re#
ported independently from detailed Monte Carlo simulationsY
in an equilibrium ensemb. The approach described here is ¥
fast, accurate and phenomenologically appealing, and &%
such, should prove to be of value in simulating diffusive 7
dynamic processes in a wide class of physical systems.
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