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Monte Carlo simulation of Fickian diffusion in the critical region
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In this article we describe a novel, phenomenologically based computer simulation approach for
studying relaxation dynamics in fluid systems. The method utilizes an ensemble consisting of two
isothermal chambers initially separated by an impermeable partition. The fluid configurations in
each chamber are initially pre-equilibrated at densitiesr̄1« andr̄2« respectively, wherer̄ reflects
an average density of interest and« a small perturbation about this value. After the pre-equilibration
step the partition is removed and the entire ensemble allowed to relax towards an equilibrium state
guided by a kinetic Monte Carlo computer simulation algorithm. Fickian transport coefficients are
found from quantities calculated during this relaxation process. We present an analysis of the
approach and illustrate its application to transport property calculations in purely diffusive
lattice-gas systems. Our results focus upon the critical region for which there are few published
results and where simulation results face the most challenges because of finite-size effects and the
phenomenon known as critical slowing-down. ©2002 American Institute of Physics.
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I. INTRODUCTION AND BACKGROUND

The main phenomenological parameter for calculat
concentration-driven transport fluxes in fluids is the Fick
~transport! diffusion constant. The two most common tec
niques for evaluating this transport coefficient are sometim
referred to as direct and indirect methods, respectively.
rect methods use a phenomenological setup to simu
transport phenomena in the system. A good example of
approach is the dual control volume grand canonical Mo
Carlo ~DCV-GCMC! method.1,2 The DCV-GCMC algorithm
consists of performing cyclic calculations, each cycle co
prising a molecular dynamics~MD! simulation followed by a
series of grand canonical Monte Carlo~GCMC! steps. The
GCMC calculations maintain the required densities in e
of the control volumes at either end of the diffusion regio
while the MD calculations develop the fluid trajectori
within the diffusion region on which to base flux calcul
tions. These molecular fluxes are found by direct enume
tion of particle fluxes across a plane perpendicular to
concentration gradient direction as has recently been
scribed in slit pore systems.2 However, this approach has no
been tested near the critical point where the gradient of
chemical potential shows singular behavior.3 In this case the
concentration~density! fluctuations across the system will b
large, introducing significant statistical uncertainty into t
GCMC equilibrium simulations at each step of the proce

So-called indirect methods evaluate quantities deri
from linear response4 and/or Green–Kubo theory,5,6 that are
related to the Fickian diffusion constant. For example,
diffusive flux JF for a lattice-gas speciesi with respect to its
density can be written in both Fickian and Onsager terms
follows.7
3010021-9606/2002/116(7)/3012/6/$19.00
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JF52D¹r ~1!

JF52Lo¹m, ~2!

whereD is the Fickian diffusion constant,Lo the Onsager
regression constant,r density andm the chemical potential.
If we combine these two equations and consider a gradien
chemical potential over a spatial co-ordinatex we find that:

JF52LoS ]m

]x D
T

52LoS ]m

]r D
T
S ]r

]xD
T

~3!

from which it follows that,

D5LoS ]m

]r D
T

. ~4!

The Onsager coefficient can be found from simulations us
the Einstein equation:7

Lo5S b

6VD lim
t→`

1

t K F (
k51

Ni

~r k~ t !2r k~0!!G2L
t

, ~5!

where the subscriptt refers to a time average quantity,r k(t)
is the position of thekth particle at timet, b[1/kBT andV
the system volume.

The term (]m/]r)T can be found from GCMC simula
tions and use of the fluctuation formula:

S ]m

]r D
T,V

5
V

b^~dN!2&
. ~6!

Equations~4!–~6! are the basis for the indirect calculation
Fickian diffusion constants.
2 © 2002 American Institute of Physics
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II. RELAXATION DYNAMICS: THE BASIS FOR THE
PROPOSED METHOD

Another intuitively appealing approach for studying d
fusion dynamics has involved the simulation of systems
laxing from a nonequilibrium state. In these relaxation me
ods a key issue is the preparation of the init
nonequilibrium~perturbed! state. Kutneret al.8 used GCMC
in a lattice spin system in the presence of an external s
soidal field to set up the initial perturbed state. From
ensuing relaxation dynamics process they calculated the
rier transform of the lattice magnetization profile, which w
used to find the lattice diffusion constant. A similar approa
was recently used to study collective diffusion on hexago
lattices.9 However, Fickian diffusion is only meaningful fo
small displacements from equilibrium where linear respo
theory, according to Onsager’s regression hypothesis
obeyed. The method in Ref. 9 does not incorporate p
equilibration into the simulations at the given thermod
namic conditions, which means that the initial results do
represent sampling in the linear response regime. Furt
more, none of these methods has, to our best knowle
been studied in the context of critical dynamics in fluid
Kutner’s method may be problematic in this region, since
the critical point the divergence of thermodynamic propert
like the susceptibility is likely to give rise to large amplitud
in the initial density profile, for even small perturbations
the applied sinusoidal field—i.e., initial conditions we
displaced from equilibrium. Also large fluctuations in th
region should lead to widely varying initial density profile
from run to run with concomitant statistical uncertainty
the results.

We propose a new relaxation method for calculat
Fickian diffusion coefficients by following the dynamics of
purely diffusive system as it relaxes from an initial noneq
librium state constructed in a two-chamber ensemble sc
matically shown in Fig. 1. We call this entity aFickian en-
semble, given its phenomenological construction which h
been chosen to mimic density-driven diffusion process
The square-wave profile in the ensemble represents

FIG. 1. Schematic of the Fickian two-chamber ensemble.
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equilibrated high and low density regimes separated initia
by an impermeable partition. The two profiles meet at a d
continuous density interface, and once the partition is
moved, diffusion between both chambers will occur as
system relaxes towards the equilibrium state. The dynam
in such an ensemble can be analyzed by studying the ti
dependent Fickian diffusion equation. For illustrative pu
poses this equation for one-dimensional diffusion in a p
fluid can be written as follows:

]r~x,t !

]t
5D

]2r~x,t !

]x2 , ~7!

whereD is the Fickian diffusion constant,r(x,t) the fluid
density andx the coordinate in the diffusion direction. Thi
equation can be solved for a variety of initial conditions; f
a single sinusoidal Fourier component, the dynamic den
profile in such a system evolves;sin(kx)e2Dk2t. For a peri-
odic initial density profile with periodL, the temporal and
spatial dependence of the density profile in the system ca
expressed by the general equation:

r~x,t !5a01 (
n51

`

an cos~nkx!e2Dn2k2t

1 (
n51

`

bn sin~nkx!e2Dn2k2t, ~8!

wherek[2p/L is the wave number, anda0 , an andbn are
Fourier coefficients. For the square-wave initial density p
file shown in Fig. 1 we find that,

r~x,0!5
4«

p (
odd n

1

n
sin~nkx!1 r̄, ~9!

in which case the solution to Eq.~7! with this initial condi-
tion takes the particular form,

r~x,t !5
4«

p (
odd n

1

n
sin~nkx!e2Dn2k2t1 r̄. ~10!

We now define the ensemble average quantityDm in each
chamber of lengthL/2 as follows:

Dm[^m~ t !&2^m~`!&, ~11!

where m(t) represents the number of particles in a giv
chamber at timet. During the relaxation-diffusion process,
is straightforward to show thatDm is given by the result:

Dm5
4«L3

p2 (
odd n

1

n2 e2Dn2k2t. ~12!

For t50, the value of this series is 1.233, while fort
50.5/Dk2 its value is 0.608 with the value of the first term
namely e2Dk2t, equal to 0.607. In other words, whenDm
equals about half of its initial value, all the Fourier comp
nents, except for the first one, have already decayed con
erably. Therefore, at a timet>t0 , with t0 chosen in advance
we have to a good approximation that,

Dm5
4«L3

p2 e2Dk2t. ~13!

So, for two values oft.t0 , namely,t1 and t2 we get that,
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Dm2

Dm1
5e2Dk2~ t22t1! ~14!

from which it follows that,

D5

lnS Dm1

Dm2
D

k2~ t22t1!
. ~15!

This simple equation is the basis for the proposed simula
method. We now use it to provide error estimates for
simulation results.

We approximate Eq.~15! for small differences in time by
the differential form,

D52
1

k2Dm

d~Dm!

dt
. ~16!

Now if Eq. ~12! is true, then using this equation in Eq.~16!
gives,

D85DH (odd ne2Dn2k2t

(odd n

1

n2 e2Dn2k2tJ . ~17!

If the higher-order terms are small compared to the lead
term, then we may write

D85D1dD, ~18!

where

dD

D
5 (

odd nÞ1
S 12

1

n2De2D~n221!k2t. ~19!

Clearly we see thatdD/D→0 as t→`. If we begin data
acquisition in the simulations whent>t050.5/Dk2, we have
thate2Dk2t0;0.607. HereDm equals about half of its initia
value and Eq.~19! provides that,

dD

D
;1.6%. ~20!

Thus, we have acontrolled approximationusing these
results, which are generally applicable for calculating Fic
ian diffusion coefficients in fluid systems. We now descri
the simulation approach for implementing these ideas
lowed by illustrations of its numerical use.

A. Simulation approach

We consider a simple lattice gas on a 3D cubic lattice
size L with periodic boundary conditions applied in the sta
dard manner. For a given particle density in the system
fraction of the sites, proportional to the density, are occup
by particles, while the rest of the sites are empty. For
ample, the critical density in such a system correspond
half the sites being filled. For any configuration of particl
in the system the corresponding energy is given by:

E524J(̂
i j &

ninj , ~21!

whereni can take the value 1~presence of a particle! or 0
~absence of a particle! at site i. The symbol̂ ij & denotes the
summation over all nearest-neighbor pairs of the system
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the interaction term 4J is written in this way, then the critica
temperature in this model is known to be approximatelyTc*
54.52 withT* [kBT/J for L→`. In such a system, at equ
librium spontaneous fluctuations constantly take place
our task is to calculate the Fickian diffusion constant for t
fluid at the given density and temperature.

Before providing further details of the simulation alg
rithm, we define the heat-bath algorithm which provides
basis for the particle ‘‘dynamics’’ used in our Monte Car
simulations. The heat-bath algorithm gives rise to an acc
tance probability for a given Monte Carlo ‘‘move’’ by th
following formula:

Pi→ f5
1

11eb~Ef2Ei !
, ~22!

which obeys the principle of detailed balance, namely th

P1→2

P2→1
5eb~E12E2!. ~23!

In this way particles are free to move throughout the syst
and dynamic analysis using simulation procedures of
sort are often referred to as kinetic Monte Carlo algorithm
Time intervals with such a method are measured in units
Monte Carlo steps~MCS!, each of which is defined to be
complete sweep of the lattice, i.e., an attempted move,
average, of each of the particles in the system.

For a given system size~an even integer!, density and
temperature, the simulation is comprised of two princip
stages:~1! the pre-equilibration stage, and~2! the diffusion-
dynamics stage. During the pre-equilibration stage, the s
tem is divided into two equal sized chambers, meeting a
planar interface parallel to two of the faces of the origin
cube. Two densities close to each other, one slightly gre
than the given density, and one less than it by the sa
amount, are chosen and ascribed to the two chambers o
system. For each of the chambers a fraction of the sites
termined by the corresponding density is randomly fill
with particles. The simulations then proceed according to
following algorithm:

B. Algorithm details

We define the number of Monte Carlo cycles byNeq with
the number of cycles in the pre-equilibration stage byNpeq.
The total number of particles in the system is designateN
with an indexn that runs from 1 toN. The simulation algo-
rithm is as follows:

1. Start loop neq which runs from 1 toNeq.
2. Start loop n which runs from 1 toN.
3. Randomly choose both a particle labeled byn and one of

its six neighboring sites.

• * If the site and the particle are in thetwo different
chambersandneq<Npeq abandon this attempted move
incrementn by one and return to step 3.

• Otherwise, if that neighboring site isfilled with another
particle, abandon this attempted move, incrementn by
one and return to step 3.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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• Otherwise, if that site isempty calculate the presen
value of the energyEi and the value of the energyEf
that corresponds to the state of the system in the e
that the particle moves to the chosen empty neighbo
site.

4. Calculate the probability

p[Pi→ f5
1

11eb~Ef2Ei !
~24!

• Generate arandom number r uniformly distributed
between 0 and 1.

• If r ,p acceptthe move so that particlen moves to the
chosen empty neighboring site.

• If r .p reject the move.

5. If neq.Npeq calculate the number of particles througho
the system, their positions and return to step 3.

6. End loop n.
7. End loop neq.

The condition denoted by* ensures that there is no pa
ticle exchange between the two chambers during the
equilibration stage. At the end of this stage both chamb
are independently equilibrated at their respective densitie
the given temperature. During the next~‘‘kinetic’’ ! part of
the algorithm, Monte Carlo cycles are run in the same m
ner as described above, however, without the restriction
the step denoted by* in the above-mentioned; thus, partic
exchange between the two chambers now becomes pos
During this stage of the simulation the whole system
proaches equilibrium, with the two chambers tending to
proach the same final densityr̄.

During the diffusion-dynamics stage, the number of p
ticles in each chamber is recorded at regular ‘‘time’’ interv
with time measured in units of Monte Carlo cycles for use
evaluating properties of interest. For example, after a p
specified timet0 @see Eq.~11!#, the result shown in Eq.~15!
can be used to calculateD. The entire process, including th
pre-equilibration procedure, is repeated for several differ
initial configurations of the system. These different config
rations provide a series of results forDm that are then aver
aged to get the final values ofD reported here. Without los
of generality we set numerical values for bothJ andk to be
unity throughout our calculations; in this case numerica
we have thatT5T* . Calculations done at the critical densi
of 1/2 yielded acceptance rates of 0.247 atT5100., 0.205 at
T510 and 0.117 forT5Tc54.52.

III. NUMERICAL RESULTS

In Figs. 2 and 3 we show some simulation resu
achieved with this method. In Fig. 2 we present the val
for Dm in the denser chamber atT59.5 with system size
L520 ~we point out that this temperature is far from th
critical one!. In total 8000 lattice sites were used, even
distributed between both chambers, with the overall fl
density maintained at the critical valuerc50.5, correspond-
ing to 4000 fluid particles overall. The high-density chamb
was initially pre-equilibrated with 2100 particles, while 190
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were used in the low density one. In Fig. 3 the density pro
in the entire ensemble is shown for these simulation con
tions at two different times,t50 MCS andt5240 MCS,
respectively. These data correspond to an average over
of 64 data blocks, each one containing 200 relaxation sim
lations.

A. The critical region

In further evaluating the proposed simulation metho
we evaluate it in the critical region where we have we
defined theoretical results and/or simulation data to comp
with our results. In the first set of simulations we compar
the proposed method’s results with those found using anin-
direct method for calculating diffusion coefficients as re
cently described by Deet al.4 This comparison is shown in
Fig. 4 and is typical of other comparisons we have ma
there is excellent agreement between both simulation
proaches. The density fluctuation calculations for the indir
method were done using GCMC, while the Onsager coe
cient was found from simulations in the canonical ensem
at the same thermodynamic conditions.4 We can also use this
approach to estimate the critical temperatureTc of the fluid.
This should follow from the theoretical result that stipulat

FIG. 2. Density relaxation in the denser chamber atL520, T* 59.5.

FIG. 3. Density profile in the ensemble att50 MCS andt5240 MCS.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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that fluxes and the Fickian diffusion coefficient approa
zero at the critical point, a phenomenon sometimes refe
to as critical slowing-down. This particular calculation is
useful benchmark for our method sinceTc is known from
prior results with equilibrium Monte Carlo histogram
methods.10 The results of such calculations, found from flu
data extrapolated to the zero diffusion limit, yielded a va
of the dimensionless critical temperature'4.53 as shown in
Fig. 5. This compares very favorably with the value of 4.
found in the high-resolution Monte Carlo finite-size scali
study of the related Ising system using histogra
techniques.10

B. Dynamic scaling exponent from relaxation
dynamics

A particularly stringent test for the method involves t
calculation of the critical exponent for the Fickian diffusio
coefficient. This can be represented near the critical poin
terms of finite-size scaling ideas.11 For small t̃[((T

FIG. 4. Comparison of the proposed method and an indirect technique
calculating diffusion coefficients forL520.

FIG. 5. Particle flux from relaxation dynamic calculations—the critical te
perature found by extrapolation to the zero flux limit isT* ;4.53.
Downloaded 22 May 2002 to 128.151.144.135. Redistribution subject to 
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2Tc)/Tc), k and large system sizeL, finite-size scaling theory
postulates the following scaling law for the Fickian diffusio
coefficient:

D~ t̃ ,k,L !;b2~22h!DS t̃ b1/n,
L

b
,kbD , ~25!

whereb is a rescaling factor andD a universal scaling func-
tion. At the critical temperature the correct scaling is fou
by replacingb by L in Eq. ~25!, which thus becomes,

D~ t̃ 50,k,L !;L2~22h!D~0,1,kL!. ~26!

Now, for eachL, k52p/L so that the scaling of the diffusion
coefficient becomes:

D~ t̃ 50,k,L !;L2~22h!D~0,1,2p!, ~27!

whereD~0,1,2p! is a constant so that:

DS t̃ 50,k5
2p

L
,L D;L2~22h!. ~28!

Equation~28! is the result we used here to analyze relaxati
dynamic simulations at various system sizesL at the sys-
tem’s critical temperature. These results are presented in
6, where we show a graph of the simulation data in the fo
of ln D versus lnL at the critical temperature of the system
The slope of the line yielded a value for the quantityy[
2(22h) equal to21.97160.09, whereh is the correlation
function critical exponent. This result is in excellent agre
ment with the value fory521.972 found using Monte Carlo
simulations in an equilibrium ensemble.10 The result pre-
sented here though is the first, to our best knowledge, to
this critical exponent directly from relaxation dynamic
simulations.

IV. CONCLUSIONS

We have described a new computer simulation meth
for calculating Fickian transport coefficients in lattice flu

or

-

FIG. 6. Diffusion coefficient critical exponent from finite-size scaling ca
culations at the system’s critical temperature and density.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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systems using relaxation dynamics. The method uses an
thermal two-chamber ‘‘Fickian’’ ensemble for the simul
tions. The initial nonequilibrium state in the system is p
pared in a particularly simple manner and correspo
mathematically to a pre-equilibrated square-wave den
profile. This configuration provides an analytic solution d
scribing interchamber density relaxation rates in the Fick
regime. These results are used to directly calculate Fick
diffusion coefficients from kinetic Monte Carlo simulatio
data of particle exchange between the two chambers.

We compared the method’s accuracy for calculat
transport properties with an indirect method studied by
group based upon linear response theory. We found the
proposed method to be accurate in these comparisons,
are presently unaware of any other simulation data an
experimental data with which to make these comparisons
addition, we also used relaxation dynamics to calculate v
ous critical properties of a lattice gas, including the dynam
scaling exponent for the Fickian diffusion coefficient. T
results we found were in excellent agreement with those
ported independently from detailed Monte Carlo simulatio
in an equilibrium ensemble.10 The approach described here
fast, accurate and phenomenologically appealing, and
such, should prove to be of value in simulating diffusi
dynamic processes in a wide class of physical systems.
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NOMENCLATURE

a0 ,an Fourier coefficients
bn Fourier coefficients
b re-scaling factor
D Fickian ~bulk! diffusion constant
E energy
JF species flux
J particle interaction parameter
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k period, 2p/L
kB Boltzmann’s constant
Lo Onsager coefficient
L length of chamber
m(t) number of molecules in chamber at timet
Ni number of molecules speciesI
Pi→ f acceptance probability for statei to f
r k(t) position ofkth particle at timet
t time
t̃ reduced temperature, ((T2Tc)/Tc)
T temperature
Tc critical temperature
V volume
x axial co-ordinate in direction of diffusion

Greek letters

b 1/kBT
« density perturbation
r density
m chemical potential
¹ gradient operator
g susceptibility scaling exponent
n correlation length scaling exponent
h correlation function scaling exponent
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