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Molecular dynamics simulations show that gold clusters with about 600–3000 atoms crystallize into
a Mackay icosahedron upon cooling from the liquid. A detailed surface analysis shows that the
facets on the surface of the Mackay icosahedral gold clusters soften but do not premelt below the
bulk melting temperature. This softening is found to be due to the increasing mobility of vertex and
edge atoms with temperature, which leads to inter-layer and intra-layer diffusion, and a shrinkage of
the average facet size, so that the average shape of the cluster is nearly spherical at melting. ©2005
American Institute of Physics. fDOI: 10.1063/1.1917756g

I. INTRODUCTION

Nanocrystals have quite different physical properties
from their corresponding bulk materials mainly because of
their large surface-to-volume ratio. Among noble metals,
gold nanoparticles have already shown their promise for a
wide range of applications, such as nanolithography,1

catalysts,2 nanobioelectronic devices,3 and ion detection.4

Thus knowledge of the structure and stability of gold nano-
crystals is of great importance.

While bulk gold has an fcc crystal structure, the compe-
tition between bulk and surface energies in nanometer-sized
gold crystallites can result in several different competing
structures.5,6 One such structure which has been observed
both in simulations7,8 and in experiments9–11 is the “Mackay
icosahedron,”12,13which we will also denote as the “Ih struc-
ture,” consisting of 20 slightly distorted fcc tetrahedra, with
four h111j facets each, meeting at the center to form an
icosahedral-shaped cluster. The internal facets of the tetrahe-
dra meet at strain-inducing twin planes with a local hcp
structure, leaving the cluster with 20 externalh111j facets.
For an Ih structure withL shells, the magic number of atoms
needed to construct a perfectly symmetric ideal icosahedron
is13

NL =
10

3
L3 + 5L2 +

11

3
L + 1. s1d

In Fig. 1 we show the atomic configuration for an ideal Ih
structure with the magic number ofN=2869 atomssL=9d.
Atoms are shaded to indicate local fcc, hcp, or other struc-
ture.

Different theoretical and numerical models have indi-
cated different limits for the stability of such Ih clusters.
Using a continuum approach to take into account the strain
energy and the twin plane energy, Ino predicted that icosa-
hedral clusters should be stable up to sizes of 40 000

atoms.14 Similar stability limits for icosahedral gold clusters
were predicted by Marks using a modified Wulff
construction.9,15 More recent atomistic calculations16–18 find
that, atT=0, icosahedral gold nanoclusters are the lowest-
energy structures only in a very small size range of tens of
atoms; other structures, such as an fcc crystal with a trun-
cated octahedral shape, become energetically favored at
larger sizes. However, in molecular dynamics simulations of
the freezing of gold nanoparticles Chushak and Bartell7 ob-
served icosahedral particles of up to almost 4000 atoms.
Simulations by Clevelandet al.6 found that when fcc
truncated-octahedral and truncated-decahedral gold clusters
with hundreds of atoms were heated, they underwent a trans-
formation to the icosahedral structure. We note that more
recent experiments by Kogaet al..19 observed the opposite
effect, with icosahedral clusters transforming to decahedral
clusters just below melting. In this experimental case, how-
ever, the gold particles are deposited onto amorphous carbon
films rather than being free standing as in simulations; the
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FIG. 1. An ideal Ih structure with the magic number of 2869 atoms. Atoms
are shaded to indicate their local structure: fcc is white, hcp is gray, and
other is black.
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change in surface energy due to contact with the substrate
might therefore be a significant effect in determining the par-
ticular configuration that minimizes the total free energy.

While the theoretical limit of stability of Ih structures
thus remains unclear, and their formation may involve ki-
netic rather than strictly equilibrium effects,9,14–18it is natu-
ral to suppose that the formation of the Ih structure is related
to the very high stability of theh111j external surfaces.
Simulations20 and experiments21 on bulk slablike geometries
with exposedh111j surfaces have shown that, unlike the
h100j andh110j surfaces which melt below the bulk melting
temperatureTm, the h111j surface is a nonmelting surface
without roughening, wetting, or melting up to the bulk melt-
ing temperatureTm and can, in fact, lead to superheating of
the solid.22 In light of this observation it is interesting to
consider how the high stability of theh111j facets affects the
melting and equilibrium shape of such icosahedral clusters.

In this paper, we will show by molecular dynamicssMDd
simulations that liquid gold clusters with about 600–3000
atoms crystallize into an Ih structure, with a missing central
atom, upon cooling from the liquid. We then reheat the clus-
ters back through the melting transition at temperatureTm.
Unlike many previous simulations which simulate a continu-
ous heating process, we simulate heating in quasiequilib-
rium, running for a long simulated times43 nsd at each tem-
perature before increasing the temperature. We pay careful
attention to the behavior of the cluster surface, and compute
for the first time theaverage cluster shape as we pass
through Tm. Using careful measurements of both bond-
orientational order parameters and atomic diffusion we find
that theh111j facets of the cluster surface stay ordered and
do not premelt or roughen below the cluster melting tem-
peratureTm. Nevertheless, we find that there is a consider-
able softening of the cluster surface roughly,200 K below
Tm that can be regarded as due to the “melting” of the atoms
on the vertices and edges of the cluster. As temperature in-
creases, there is an increasing mobility of these atoms lead-
ing to intralayer and interlayer diffusion and a shrinkage of
the average area of theh111j facets. The equilibrium shape
progresses from fully faceted to faceted with rounded edges
to nearly spherical just belowTm. Throughout this region, the
interior atoms of the cluster remain essentially perfectly or-
dered untilTm is reached. Our results refine those of earlier
simulations of gold clusters,6,23,24which used measurements
of the radial density distribution and the observation of sur-
face diffusion as evidence for a general premelting of the
cluster surface. A preliminary report of some of our results
has been presented in Ref. 25.

II. METHODS

A. Simulation model and methods

On modern computersab initio simulation techniques
providing an accurate description of interaction energies can
be used to simulate systems consisting of up to hundreds of
atoms.26 However, such methods are too computationally de-
manding to allow long simulation times. Using less accurate
but computationally less expensive model potentials, such as
the embedded atom method,27 the Murrell–Mottram

potential,28 the Lennard-Jones potential,29 the Morse
potential,30 the many-body Gupta potential,31 or the many-
body glue potential,32 one can extend the size of simulated
gold nanoclusters to more than 10 000 atoms. In this study,
we have chosen the many-body glue potential because it was
found to yield a more accurate description of the bulk, de-
fect, and surface properties of gold32 than other model po-
tentials. In the glue model, the potential energy of a system
of N atoms consists of a sum of pair potentialsf and a
many-body glue energyU,

V =
1

2o
i

o
jÞi

fsr ijd + o
i

Usnid. s2d

Here the sums run over all particles,r ij = ur i −r ju is the inter-
atomic distance between atomsi and j , andfsrd is the pair
interaction energy. The many-body glue energyUsnid de-
pends on an effective coordination numberni of atom i,
which is defined by

ni = o
j

rsr ijd. s3d

Here rsrd is a short-ranged monotonically decreasing func-
tion of the interatomic distancer. We use the specific forms
for the pair potentialfsrd, and the glue termsUsnd andrsrd,
as given by Ercolessiet al. in Ref. 32.

We will simulate our gold clusters by treating each atom
as a classical particle. Newton’s equations of motion are in-
tegrated using the velocity Verlet algorithm33 with a time
step of Dt=4.3 fs. Because the many-body glue potential
uses a cutoff, a cell index method can be used to reduce the
computational time.34 In this method, the simulation box is
divided into cubic cells with side lengths larger than the cut-
off distances3.9 Å for the gold glue modeld. When calculat-
ing energies and forces one considers only interactions be-
tween atoms within the same cell and the neighboring 26
cells. This approach reduces the required computation time
from order N2 to order N. On a personal computersPCd
equipped with a 1.5-GHz AMD Athlon CPU and 1 GB of
memory, 25 000 steps can be carried out per CPU hour for a
system of 2624 atoms propagating the system for about 100
ps.

We will refer to each time stepDt of the velocity Verlet
algorithm as one basic molecular dynamicssMDd step. Since
each MD step is an integration of Newton’s equation, it nec-
essarily conserves the total energy of the system, and thus
simulates a microcanonical ensemble. To sample instead in
the canonical ensemble, we supplement this basic MD step
according to two different well-known methods. The
Andersen thermostat35 is a method that mimics a system
coupled to a heat bath with constant temperature. At the end
of each MD step, each particle of the cluster is, with prob-
ability p,0.03%, assigned a new velocity sampled ran-
domly from the Boltzmann distribution of a given tempera-
ture. The Andersen thermostat samples both configuration
and momentum spaces according to the canonical distribu-
tion, so that the instantaneous total kinetic energy fluctuates,
as is the case for a real physical system. However, the Ander-
sen thermostat method does not conserve the total linear and
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angular momenta, and so will cause the system’s overall po-
sition and orientation to drift over the course of the simula-
tion. This would complicate our analysis of cluster shape as
well as atomic diffusion, since we want to measure these
quantities with respect to coordinates that stay fixed with
respect to the cluster.

This drawback of the Andersen thermostat can be
avoided using the Gaussian isokinetic thermostat,36 which
keeps the total kinetic energyK of the system fixed at a value
corresponding to a given temperatureT,K=s3/2dNkBT. We
implement this thermostat by rescaling all velocities by a
constant factor after each basic MD step so as to conserve
the total kinetic energy. Although the Gaussian isokinetic
dynamics does not sample the canonical distribution in mo-
mentum space, this method does correctly sample the con-
figuration space and so yields correct equilibrium averages
of all structural quantities that depend on positional coordi-
nates only. This “constant temperature” method has the ad-
vantage of conserving both total linear and angular momenta,
thus keeping the cluster at a fixed position and orientation.

In our simulations, our first goal will be to cool our
cluster to low temperature from a liquid melt to see what
solid structure forms. To do this we use the Andersen ther-
mostat method since we believe it models more closely the
true dynamics of the physical system, and hence will incor-
porate effects that may be due to kinetics rather than just
pure thermodynamics. Later, to observe the equilibrium
shape and other properties of the cluster, we will use the
constant temperature MD to heat back through melting. This
will keep the cluster position and orientation fixed, and so
will simplify our analysis. It is also possible to study the
melting and freezing of gold clusters with molecular-
dynamics simulations carried out at constant energy between
stepwise increases of the energy.6 Results obtained with this
approach may differ especially in the transition region where
the microcanonical treatment yields solid-liquid coexistence
over a finite energy range, while canonical simulations pro-
duce a sharp transformation at the transition temperature.

B. Quantifying structure by bond-orientational order
parameters

To determine the crystalline structure of our gold nano-
clusters, we will use the method of bond-orientational order
parameters,37 which we now review. The idea of the bond
order parameters is to capture the symmetry of bond orien-
tations regardless of the bond lengths. A bond is defined as
the vector joining a pair of neighboring atoms. Throughout
our paper, we will define the neighboring atoms of a given
atom i as those atoms which have an interatomic distance
less than a cutoff radius of 3.8 Å, equal to the distance to the
minimum between the first and the second peaks of the pair-
correlation function. The local order parameters associated
with a bondr are the set of numbers

Qlmsr d ; Ylmsusr d,fsr dd, s4d

whereusr d and fsr d are the polar and azimuthal angles of
the bond with respect to an arbitrary but fixed reference
frame, andYlmsusr d ,fsr dd are the usual spherical harmonics.

Since the bond between atomsi and j may be arbitrarily
taken as eitherr i j or r ji =−r i j , it is useful to consider only the
even-l bond parametersQlm, since only these are invariant to
such bond inversions. Global bond order parameters can then
be calculated by averagingQlmsr d over all bonds in the clus-
ter,

Q̄lm ;
1

Nb
o

bonds
Qlmsr d, s5d

whereNb is the number of bonds. To make the order param-
eters invariant with respect to rotations of the reference
frame, the second-order invariants are defined as

Ql ;Î 4p

2l + 1 o
m=−l

l

uQ̄lmu2 s6d

and the third-order invariants are defined as

Wl ; o
m1,m2,m3

m1+m2+m3=0

S l l l

m1 m2 m3
DQ̄lm1

Q̄lm2
Q̄lm3

, s7d

where the coefficientss¯d are the Wigner 3j symbols.38 It is
standard to define a normalized quantity

Ŵl ;
Wl

So
m

uQlmu2D3/2 s8d

which, for a givenl, is independent of the magnitudes of the
hQlmj.

The four bond order parametersQ4,Q6,Ŵ4, andŴ6 are
generally sufficient to identify different crystal structures. In
Table I we give their values for ideal periodic fcc, hcp, sc,
and bcc crystal structures. Since the Ih structure is not peri-
odic, it may in principle have values for the bond order pa-
rameters that depend on the cluster size. In Fig. 2sad we plot
the values of the four bond-orientational order parameters
versus the cluster sizeN for several ideal Ih structures. Al-
though there is a strong size dependence for small clusters,
the bond parameters saturate to well-defined values asN in-
creases, and we list these in Table I. Note that although, for
largeN, most of the atoms in the Ih structure have a local fcc
structure, the values of the bond order parameters are differ-
ent from those of a pure fcc crystal; this is due to averaging
the order parameters over the differing orientations of the 20
fcc tetrahedra that make up the Ih structure.

TABLE I. Bond order parameters for face-centered-cubicsfccd, hexagonal
close-packedshcpd, simple cubicsscd, body-centered-cubicsbccd, liquid, Ih
bulk, and Ih surface structures.

Geometry Q4 Q6 Ŵ4 Ŵ6

fcc 0.190 94 0.574 52 −0.159 32 −0.013 16
hcp 0.097 22 0.484 76 0.134 10 −0.012 44
sc 0.763 76 0.353 55 0.159 32 0.013 16
bcc 0.082 02 0.500 83 0.159 32 0.013 16
liquid 0 0 0 0
Ih bulk 0 0.199 61 −0.159 32 −0.169 75
Ih surface 0 0.207 29 ±0.159 32 0.169 75
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The bond-orientational order parameters, averaged over
all bonds, will be used to monitor global structural changes
of our cluster. In particular, a large liquid cluster will have
vanishing values for the bond order parameters. Thus the
decay of the bond parameters from their finite low-
temperature values to zero will be a signature of the melting
transition. In this work we will be particularly concerned
with the behavior of atoms on the surface of the cluster.
Surface structures of nanomaterials can often be quite differ-
ent from the bulk. We therefore will consider separately the
bulk bond order parameters, computed by averaging over
only those bonds connecting atoms that are in the internal-
bulkof the cluster versus thesurfacebond order parameters,
computed by averaging over only those bonds connecting
pairs of atoms that lie on the surface of the cluster. In Fig.
2sbd we plot the values of such surface bond order param-
eters for an ideal Ih structure versus cluster sizeN. Again we
see that they approach well-defined constants asN increases,

except forŴ4 which oscillates. The values of these large-N
surface bond parameters are listed in Table I. Note that for
the same Ih structure, the bulk bond parameters have differ-
ent values than the surface bond parameters, since they are
measuring properties of three-dimensional versus two-
dimensional structures, respectively.

C. Geometrical analysis of the surface

A main goal of this work is to quantify the geometrical
behavior of the surface of the gold nanocluster. In this sec-
tion we describe the algorithms that we use for this charac-
terization.

1. Cone algorithm

The first step in our analysis is to identify the surface
particles of the clusters accurately according to their geo-
metrical positions. We have developed a new algorithm,
which we call the “cone” algorithm, to do this. For a given
particle, we define an associatedcone regionas the region

inside a cone of side lengtha and angleu, whose vertex
resides on the particle. Ahollow coneis a cone region with
no other particles inside it. We take a particle to be on the
surface if at least one associated hollow cone can be found.

The cone algorithm is intrinsically consistent with the
general definition of surface particles. It can pick up all of
the particles on a convex surface. For the particles on a con-
cave surface, the precision of identifying a surface atom re-
lies on the choice of the parametersa andu ssee Fig. 3d. By
visual examination of our generated configurations, we
found that the two parametersa=5.0Å and u=p /3 gave
good results for our clusters. For a gold cluster with 5082
atoms, a complete determination of the surface atoms re-
quires less than 2 s of CPUtime. The cone algorithm can
also be applied recursively to divide particles into surface
and subsurface layers to allow interlayer analysis. Figure 4
shows a planar slice cut through an instantaneous configura-
tion of a gold cluster with 2624 atoms atsad T=200 K in an
Ih structure andsbd T=1200 K in the liquid. From this figure
we can see that the cone algorithm works well on both solid
and liquid configurations.

2. Curvature

Having identified the surface particles, we next want to
quantify the surface morphology of the clusters. To do this,
we compute two different measures of the surface curvature,
thebond curvatureand themaximal local surface curvature,
as defined below.

Our first step is to determine a plane tangent to the clus-
ter surface at each surface particle. To do this, we consider
the collection of particles determined by the particle of inter-
est and all its neighboring particles, which are also on the
surface. We note the coordinates of these particles byr i

;sxi ,yi ,zid, i =1…Ns, whereNs is the number of the par-
ticles under consideration. We define the tangent plane to
pass through the center of mass of these particles, and we
determine its orientation by minimizing the mean-square dis-

FIG. 2. The values ofsad the bulk andsbd the surface bond-orientational
order parameters vs the cluster sizeN, for ideal icosahedral clusters with
magic numbersN.

FIG. 3. Schematic of the cone algorithm.

FIG. 4. Cross section of a gold cluster with 2624 atoms atsad T=200 K in
an Ih structure andsbd T=1200 K in the liquid, with the five topmost layers,
as determined by the cone algorithm, marked by different gray scales.
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tance of the particles to the plane. Specifically, we solve for
this plane as follows. Ifn̂;snx,ny,nzd is the unit normal
vector of the tangent plane andr c;sxc,yc,zcd is the coordi-
nate of the center of mass, then the distance from theith
particle to the tangent plane is

di = n̂ · sr i − r cd. s9d

We determine the normal vectorn̂ by minimizing oidi
2 sub-

ject to the constraintn̂2=1. Introducing an undetermined
Lagrange multiplierl, we solve for

d

dn̂Foi

di
2 − lsn̂2 − 1dG = 0. s10d

Equations10d leads to the symmetric eigenvalue problem

1XX− l XY XZ

XY YY− l YZ

XZ YZ ZZ− l
21nx

ny

nz
2 = 0, s11d

whereXY=oisxi −xcdsyi −ycd, and other quantities are com-
puted similarly. The smallest of the three possible eigenval-
uesl determines the minimum value ofoidi

2, and its associ-
ated eigenvectorsnx,ny,nzd is the normal vectorn̂ of the
tangent plane.

We now define the bond curvaturecb of a bond connect-
ing two neighboring surface particles. Consider two neigh-
boring surface particles at positionsr 1 andr 2 and letn̂1 and
n̂2 be the unit normal vectors of their corresponding tangent
planes. We can uniquely fit a circle that passes through the
two points, such thatn̂1 andn̂2 are normal to the circle. The
bond curvaturecb is then defined in terms of the radiusR of
this fitted circle,

cb ;
1

R
=

2 sinsu/2d
r ij

, s12d

whereu=acossn̂1·n̂2d is the angle between the two normal
vectors andr ij = ur 1−r 2u is the distance between the two par-
ticles. The geometry of this fit is illustrated in Fig. 5.

Alternatively, we can compute the surface curvature at
each particle on the surface as follows. Consider a particle on
the surface, and all its neighboring particles that are also on
the surface. Since the geometry of these points roughly de-
fines a surface in three-dimensionals3Dd space, we find the
best fit of a paraboloid surface to these points. The maximal
local curvature,kM, and the minimal local curvature,km, are

then given by the two principal curvatures of the fitted pa-
raboloid. The schematic of this method is shown in Fig. 6. To
fit the paraboloid at the surface particler 0, we take the nor-
mal vectorn̂ to the tangent surface atr 0, as computed above,
and define this to be the localz axis. We place the origin atr 0

and then choose arbitrary but fixedx andy axes in the tan-
gent plane. We then define the coordinatessxi ,yi ,zid of
neighboring particler i in this coordinate system. We then
choose a paraboloid function,

fsx,yd = axxx
2 + 2axyxy+ ayyy

2, s13d

and fit it through the neighboring pointsr i by minimizing

S= o
i

szi − fsxi,yidd2, s14d

with respect toaxx,axy, andayy. This leads to the following
set of linear equations,

1
o

i

xi
4 o

i

xi
3yi o

i

xi
2yi

2

o
i

xi
3yi o

i

xi
2yi

2 o
i

xiyi
3

o
i

xi
2yi

2 o
i

xiyi
3 o

i

yi
4 21 axx

2axy

ayy
2 =1

o
i

xi
2zi

o
i

xiyizi

o
i

yi
2zi
2 .

s15d

Solving Eq. s15d for axx,axy, and ayy, we diagonalize the
symmetric matrix with the elementsamn to obtain the two
principal axes and the corresponding eigenvaluesl1 andl2.
The local curvatures are then given byk1,2=s1/2dl1,2. We
will see that the maximal local curvature will be very helpful
for visualizing the vertex, edge, and facet atoms of the clus-
ter surface.

To test these two methods, we consider the ideal Ih gold
cluster with a magic number of atomsN=2869, shown in
Fig. 1. In Fig. 7stop rowd we show the resulting histograms
of bond curvature and maximal local curvature for this clus-
ter. Both histograms consist solely ofd functions, corre-
sponding to the facets, the edges, and the vertices of the Ih
structure. For the bond curvature histogram there are two
separate peaks for the vertices, corresponding to the bond
curvatures between the vertex atoms and the edge atoms, and
the vertex atoms and the facet atoms. We also test our
method for the average shape of a liquid gold cluster with
2624 atoms atT=1200 K fshown in Fig. 8scdg. We show our
results in Fig. 7sbottom rowd. Both histograms have just one
peak of finite width, centered at 1/R=0.047 Å−1, with R
=21.5 Å as the radius of the spherical liquid drop. Note that
while the average shape of the liquid drop is close to a per-

FIG. 5. Schematic for the calculation of the bond curvature.

FIG. 6. Schematic for the calculation of the local surface curvatures.
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fect sphere, the histogram of its curvatures seems relatively
broad. We have found that this is due to the small discrete
number of neighboring surface particles that is used to define
the fitted paraboloid. Even small deviations of these particles
from a constant radius can lead to noticeable variations in the
fitted curvatures. We find that we can reduce the width of the
curvature histogram for the liquid cluster by increasing the
cutoff length used to define neighboring particles, and so
have more particles included in the fits to the local parabo-
loids. However, while this improves the calculation for a
spherical cluster, it makes it worse for high-curvature regions
near edges and vertices in an Ih cluster, where curvature
varies rapidly as one moves across the surface. With this
understanding of our method’s limitations, we therefore
leave our cutoff as given above.

3. Average shape

At low temperatures, the atoms in the gold cluster re-
main at well-defined equilibrium positions and only ther-
mally oscillate around the vicinity of these equilibrium posi-
tions. The shape of the cluster is thus easily determined from
an instantaneous configuration. At high temperatures, how-
ever, atoms become more mobile and the macroscopic shape

of the cluster fluctuates dramatically from configuration to
configuration. In this case it becomes necessary to average
over many fluctuating configurations to define the average
cluster shape. Since our constant-temperature MD conserves
total linear and angular momenta and both are set to zero, the
configurational shape changes we average over represent
fluctuations of the surface atoms rather than trivial shifts or
rotations of the cluster as a whole.

At high temperatures, simply averaging the position of
each atom throughout the course of the simulation does not
give the average shape because the atoms are in general no
longer bound to specific sites, but may diffuse many inter-
atomic spacings through the cluster. We therefore use the
following approach to define the average cluster shape. We
divide the surface of the cluster into equal solid angles, and
then average the instantaneous surface-atom positions in
each solid angle. This average position in each solid angle
then defines the profile of the cluster’s average shape. This
average shape does not contain information about the indi-
vidual surface-atom positions, since generally a given solid
angle may contain the instantaneous positions of different
surface atoms at different times. To define our solid angle
division, we use the best-covering spherical codes with
icosahedral symmetry39 to divide the 4p total solid angle of
the sphere centered at the center of mass into cone cells with
almost equal solid angles. Choosing different numbers of
solid angles results in different resolutions; we always
choose a number of solid angles that matches as close as
possible to the number of surface atoms in the cluster.

We illustrate this method for a liquid gold cluster with
2624 atoms atT=1200 K. In Figs. 8sad and 8sbd we show
two arbitrary instantaneous configurations of the cluster.
Theoretically, a liquid cluster should have a perfect sphere as
the equilibrium shape. However, we see that the instanta-
neous configurations can have noticeably large fluctuations
about the average shape. Applying our shape-averaging pro-
cedure above on 1000 configurations sampled at equal time
intervals from 43 ns of simulated time, we recover that the
average shape, shown in Fig. 8scd, is a perfect sphere as
expected. Note that in Figs. 8sad and 8sbd, the small spheres
represent instantaneous atomic positions. In contrast, in Fig.
8scd, they represent not specific atoms, but rather the average
surface position within the given solid angle.

D. Atom diffusion analysis

With enough kinetic energy, atoms can hop around their
crystal sites and even travel across the whole cluster. The

FIG. 7. Histograms of bond curvaturecb and maximal local curvaturekM of
the sid top row: an ideal Ih cluster withN=2869 atoms and thesii d bottom
row: the average shape of a liquid cluster withN=2624 atoms.

FIG. 8. A liquid gold cluster with 2624 atoms atT
=1200 K. sad and sbd are two instantaneous configura-
tions. scd is the shape averaged over 1000 such instan-
taneous configurations.
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mean-squared displacementsMSDd,33 Dr2std, is a convenient
way to measure the average movement of a group of atoms.
It is defined as

Dr2std =
1

MNs
o
j=1

M

o
i=1

Ns

fr istj + td − r istjdg2, s16d

where r i , i =1…Ns, are the positions of theNs atoms under
consideration andt is the time interval over which the mo-
tion takes place. We average overM nonoverlapping time
intervals, with tj ; tj−1+ t. For an infinite three-dimensional
bulk system, we expect thatDr2=6Dt as t→`, whereD is
the diffusion coefficient. In a finite cluster, however, the
MSD will eventually saturate on a length scale comparable
to the cluster size. We therefore determine the diffusion co-
efficient D by fitting Dr2std to the early time linear part be-
fore saturation takes place.

We will also find that a convenient way to visualize in-
dividual atomic displacements is through an ellipsoid of dis-
placement. We compute this ellipsoid as follows. For a given
atom traced throughK successive configurations for a simu-
lation timet, the mean-squared displacement correlations are
given by the 333 matrix C with elements,

Cmn ;
1

K
o
i=1

K

sr im − krmldsr in − krnld, s17d

where m ,n=x,y,z,r im is the m coordinate of the atom in
configurationi, andkrml is the average of the coordinate over
all K configurations. The probability for the atom to be at
position r is then approximated asPsr d,exps−1

2fsr
−kr ld ·C−1·sr −kr ldgd, and so the surface of our ellipsoid of
displacement is given by the equation

sr − kr ld ·C−1 · sr − kr ld = 1. s18d

The eigenvectors ofCmn and the square root of their corre-
sponding eigenvalues then define the axes and principal radii
of the ellipsoid, which we center on the average atom posi-
tion kr l. This ellipsoid provides a convenient visualization of
the directional distribution of root-mean-squared displace-
ments over the timet.

III. RESULTS

In this section we report on our results. Gold clusters
with more than 5000 atoms require too much computational
time to allow for the long simulation times we want in order
to explore the equilibrium behavior. Clusters with fewer than
a few hundred atoms, however, have large finite size effects
due to the larger surface-to-volume ratio. Such smaller clus-
ters can undergo transitions between several different crystal
structures even at low temperatures,6,24,40and they have less
sharply defined melting transitions. In this work we have
therefore simulated several clusters in the range of 600 to
5000 atoms. In our results below, we will concentrate on the
moderate size ofN=2624 atoms, for which we have done
our most complete and careful analysis. We will also give
less detailed results for two smaller sizes,N=603 andN
=1409, in order to illustrate general trends. Note that these
values ofN are not among the magic numbersfsee Eq.s1dg

needed to construct a perfect Mackay icosahedron. Neverthe-
less, we will show that these clusters still form Ih structures
upon cooling. We have also studied several clusters with a
magic number of atoms by explicitly constructing the
Mackay icosahedron at low temperature and heating through
melting. We will give results for sizes41 N=922 and N
=5082 in order to compare with the other more generic val-
ues ofN.

A. Mackay icosahedra with a missing central atom

Our initial goal is to cool a liquid cluster through the
melting transition to determine the ordered structure into
which it solidifies. We therefore started with a liquid gold
cluster withN=2624 atoms, which we roughly equilibrated
at 1500 K before cooling to 1200 K, where we equilibrated
longer. We then cooled the cluster down to 200 K, decreasing
the temperature in intervals of 100 K. At each temperature
the system is equilibrated for 53106 stepss21.5 nsd using
the Andersen thermostat method. With this cooling method
we find that our cluster solidifies into an Ih structure.12

In Fig. 9 we show an instantaneous configuration of this
N=2624 gold cluster at our lowest temperature,T=200 K.
To clarify the geometry of the cluster, we have calculated the
local curvatures for each surface atom according to the
method of Sec. II C 2, and in Fig. 9sad we shade each atom
according to the maximal local curvature; the greater the
curvature, the darker the gray scale. Comparison with Fig. 1
strongly suggests that our cluster has an Ih structure. Large-
curvature regions correspond to edges and vertices, while
low-curvature regions are the flath111j facets of the fcc tet-
rahedra. Note that some vertices have low curvatures; this is
because these vertices have their topmost atom missing, and
so form a small locally flat region.

To further illustrate the Ih nature of our cluster, we have
computed the local bond order parameters for each atom,
averaging over all bonds that connect the given atom to its
neighbors. Using the values in Table I, we then identify each
atom with its local crystal structure. We regard atoms with

Q4.0.15 andŴ4ø0 as having a local fcc structure, and

atoms withQ4ø0.15 andŴ4.0 as having a local hcp struc-
ture; all other atoms are simply labeled as “other.” Because
the surface layer and the two sublayers closest to the surface

FIG. 9. Ih structure of anN=2624 atom gold cluster atT=200 K. sad Sur-
face of an instantaneous configuration with atoms shaded according to the
maximal local curvature; the larger the curvature, the darker the gray scale.
sbd The same configuration with the three outermost layers peeled away.
Atoms are shaded according to their local crystal structure; white is fcc, gray
is hcp, and black is “other.”
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exhibit surface reconstruction and have frozen in surface
fluctuations, we have peeled them away by using the cone
algorithm of Section II C 1. These surface layers occasion-
ally display stacking faults such as those observed in simu-
lated lead clusters.42 The resulting interior of the cluster is
shown in Fig. 9sbd, where fcc atoms are shaded white, hcp
atoms gray, and “other” atoms black. The Ih structure of the
cluster is readily apparent. One clearly sees the flath111j
facets of the fcc tetrahedra, the edges of the facets corre-
sponding to the hcp twin planes, and the vertices with five-
fold symmetry.

We have also applied the same cooling procedure on
smaller gold clusters withN=603 andN=1409 atoms. In
Fig. 10 we show the instantaneous configurations ofN
=603 andN=1409 atT=200K, with surface atoms shaded
by their maximal local curvaturefas was done in Fig. 9sad for
N=2624g. We again clearly see the Ih structure; however, for
the smaller cluster, the edges and facets appear slightly
rounded.

It is interesting to note in Figs. 9 and 10 that the fcc
tetrahedra of our clusters are not all of equal size. For a
nonmagic numberN of atoms, such as is the case here, this is
to be expected. However, we have also cooled clusters with
magic numbers41 N=560 andN=1414 from liquid to 200 K
using the exact same cooling procedure. These clusters also
formed asymmetric Ih structures with 20 facets of slightly
unequal sizes. This suggests that our cooling procedure,
while slow enough to balance surface versus bulk free en-
ergy and find the Ih structures, is not slow enough to achieve
the perfect global equilibration which one expects would re-
sult in perfectly symmetric structures for magic numbersN.

An interesting feature of our clusters that cannot be seen
in Figs. 9 and 10 is that all of our clusters formed with a
missing central atom. The energetics of such vacancies at the
center of Ih clusters was first considered by Boyer and
Broughton43 for Lennard-Jones clusters and later by Mottet
et al.44 for Cu, Ag, and Au particles. Above a certain
material-dependent critical size the central vacancy lowers
the energy of the cluster by partially releasing the strain
caused by the mismatch of the tetrahedral units. Mottetet al.
concluded that for gold particles the introduction of the cen-
tral point defect does not lower the energy enough to make
the icosahedron competitive with crystallographic octahedra
and Wulf polyhedra. Their conclusion, however, was based
solely on energy calculations which neglect the entropic con-
tributions to the free energy at finite-temperature. Our finite-

temperature simulations therefore suggest that such a consti-
tutional vacancy can, in fact, stabilize icosahedral clusters of
thousands of atoms, making them the observed structure
upon cooling.

B. Melting and the bond-orientational order
parameters

Having determined that our clusters cooled from the liq-
uid have the Ih structure, we then heated up the clusters
using constant-temperature MD instead of the Andersen ther-
mostat, so that the total linear and angular momenta are con-
served and vanish; this ensures that our clusters neither trans-
late nor rotate during the course of our simulations. We heat
in temperature intervals of 100 K when far fromTm, but use
smaller intervals when approachingTm. At each temperature
the clusters have been equilibrated for 106 MD stepss4.3 nsd,
followed by 107 stepss43 nsd to collect data. Our simulation
times are more than an order of magnitude longer than the
,1 ns typically simulated in earlier works.6,7

In Fig. 11 we show the caloric curvesaverage potential
energy per atom versus temperatured for several of our clus-
ter sizes upon heating. The kink in each curve locates the
cluster melting transition. Several expected trends23 are
clearly seen:sid the melting temperature increases as the
cluster size increases andsii d the average potential energy
per atom increases as the cluster size decreases, due to the
larger surface-to-volume ratio. No qualitative difference is
seen between the magic number sizesN=922 and 5082 and
the others. Note that the glue model gives a melting tempera-
ture of 1357 K for bulk gold, well above that of our biggest
cluster.32 The experimentally measured melting temperature
of bulk gold is 1337 K.45

We have done our most careful heating for theN
=2624 atom cluster, taking fine temperature increments near
Tm. Heating at the above rate of 43 ns per temperature, we
find that the cluster has a first-order melting transition atT
=1075 K. However, when we simulated the cluster at the
slightly lower temperature ofT=1070 K for more than 240
ns, we found that it also ultimately melted. Thus the esti-
mates ofTm from Fig. 11 are most likely slightly higher than
the true equilibrium values. This superheating that we find is
perhaps related to the extraordinary stability of the gold
h111j surface, as was also observed in a slablike geometry.22

Next, we wish to explore the melting transition from the
perspective of the bond-orientational order parameters de-

FIG. 10. Ih structure of gold clusters withsad N=603 andsbd N=1409
atoms atT=200 K. The atoms on the surfaces of these instantaneous con-
figurations are shaded according to the maximal local curvature; the larger
the curvature, the darker the gray scale.

FIG. 11. Caloric curve of Ih gold clusters withN=603, 1409, and 2624
atoms, as well as with magic numberssRef. 41d of N=922 and 5082 atoms.
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fined in Section. II B. We are interested specifically to con-
sider the behavior of the surface of the cluster as distinct
from the behavior of the interior. We therefore use the cone
algorithm recursively to group the atoms of the cluster into
successive layers. The outermost layer of atoms is identified
as the surface layer; the atoms immediately below the sur-
face layer are called the first sublayer, then the second sub-
layer, and so on. For the cluster ofN=2624 atoms there are
a total of nine such layers. We label the atoms lying below
the fourth sublayer as “interior” or “bulk” atoms. ForN
=2624, we show in Table II the number of atoms in each
layer for various temperatures up through melting. What is
immediately apparent is that as the temperature varies within
the solid phase,T,Tm.1075 K, the number of atoms in a
given layer remains essentially constant, within about,5,
for all layers below the second sublayer. The surface and top
two sublayers, however, display a more noticeable variation,
suggesting changes on the surface of the cluster well below
melting.

Having made this division into layers, we then compute

the four bond-orientational order parametersQ4,Q6,Ŵ4, and

Ŵ6, defined in Sec. II B, separately for each layer and for the
bulk. In Fig. 12 we show our results for theN=2624 atom
cluster; Fig. 12sad is for the interior atoms, while Fig. 12sbd
is for the surface atoms. Comparing to the values listed in
Table I, or equivalently as shown in Fig. 2, we see that the
values we now find at low temperatures are quite consistent
with the bulk and surface values appropriate for an Ih struc-

ture. The only exception to this is the case ofŴ4 which we
find to be approximately zero, rather than the negative or
positive number shown in Table I. However, we have found

that, unlike the other bond order parameters, the value ofŴ4

is extremely sensitive to the symmetry of the perfect Ih struc-
ture. For deviations from this perfect structure, as is the case

for our simulated cluster,Ŵ4 can vary dramatically. This is
evidenced by the very large sample-to-sample fluctuations

we found forŴ4, as indicated by the very large error bars

shown in Fig. 12 forŴ4 as compared to the other quantities.
We thus conclude that the bond-orientational order param-
eters are very consistent with our cluster being a Mackay
icosahedron.

In Fig. 12sad for the interior atoms, we see that bulk
bond-orientational order parameters remain roughly constant
until just above 1000 K, before taking a sharp drop towards
zero at the same melting temperature,Tm.1075 K, as found
from the caloric curve of Fig. 11. Thus the bond-orientational
order parameters give a good signature of the melting tran-
sition. The sharp decrease of the bond parameters indicates
that the interior atoms remain with a highly ordered Ih struc-
ture until just before melting. Note that the values in the
liquid aboveTm are not identically zero, but have small finite
values due to the finite size of the liquid cluster; this effect is
biggest forQ6.

In Fig. 12sbd for the surface atoms, we again see that the
bond-orientational order parameters remain with their Ih val-
ues at low temperatures, and then vanish towards zero at the
sameTm as for the bulk atoms. Thus we reach one of our
most important conclusions: the presence of finite-surface
bond-orientational order up until the bulk melting transition
indicates that the surfaceh111j facets of the Ih structure do
not premelt, but rather the surface facets melt at the same
temperature as the bulk. The absence of any sharp features in
the surface bond-orientational order parameters belowTm

suggests that there are no other types of surface phase tran-
sitions belowTm. There is, however, one noticeable differ-
ence in the behavior of the surface bond-orientational order
parameters as compared to the bulk. We see that the surface
parameterQ6 starts a noticeable decrease from its low-
temperature value atT,800 K, considerably belowTm. We
interpret this as a softening of the surface, and we will
present the reason for this behavior in the following section.

We have also measured the bond-orientational order pa-
rameters for the first through fourth sublayers of the cluster.
SinceQ6 is the bond parameter that most clearly shows the
surface softening, in Fig. 13 we plot the value ofQ6 versus
temperature for surface, interior, and each of the four sublay-
ers. Since each layer has a slightly different value ofQ6 at
low temperatures, we plot the normalized valuesQ6sTd /Q6

s400 Kd so as to better compare their relative behaviors. We

TABLE II. Average numbers of atoms in the surface layer, the sublayers, and the bulk of anN=2624 atom gold
cluster at different temperatures.

T

sKd Surface Sublayer 1 Sublayer 2 Sublayer 3 Sublayer 4 Bulk

400 858.5±0.6 602.8±0.8 428.3±1.1 307.4±1.1 207.2±0.8 219.6±1.1
600 859.8±1.2 602.2±1.4 427.9±1.2 307.3±1.1 207.2±0.9 219.7±1.1
900 867.7±2.4 594.9±2.6 427.5±1.4 307.0±1.2 207.0±1.0 219.9±1.1

1060 869.9±3.6 582.4±4.0 436.2±3.2 311.3±2.6 208.6±2.2 215.7±3.2
1100 874.7±3.9 572.4±4.2 436.2±4.2 308.7±4.0 209.9±3.7 222.1±5.1

FIG. 12. Bond-orientational order parameters of theN=2624 atom cluster
for sad the interior atoms andsbd the surface atoms. Sample error bars,
representing configuration-to-configuration fluctuations, are shown.
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see that both the surface and the first sublayer show almost
identical softening asTm is approached. However, all the
deeper sublayers show almost identical behavior as the inte-
rior atoms, with almost no softening untilTm. Thus the soft-
ening phenomenon is seen to be largely confined to the top
two layers of the cluster and does not propagate more deeply
as Tm is approached; below the top two layers, the cluster
remains almost as ordered as at low temperatures, until just
before melting.

We have also tested the sensitivity of our definition of
the interior atoms of the cluster by redefining it to be all the
atoms below the surface layer. However, as might be ex-
pected from Fig. 13, computing the bulk bond-orientational
order parameters defined this way gives no qualitative
change from the behavior seen in Fig. 12sad.

In Figs. 14–17 we show similar plots of interior and
surface bond-orientational order parameters for our other
cluster sizes,N=603, 922, 1409, and 5082. We see the same
qualitative behaviors as in Fig. 12, with surface and bulk
melting at the same temperature. This melting temperature,
which increases with cluster size, agrees with the values
found from the caloric curves of Fig. 11. Surface softening
tracks the melting temperature and starts to be noticeable
about 200 K belowTm. The surface softening is somewhat
enhanced for the smaller cluster sizes. There appears to be no
qualitative differences for our magic number41 clusters,N
=922 and 5082, as compared to the other sizes.

C. Average shape and surface curvature

To understand the physical manifestations of the surface
softening that is indicated by the surface bond-orientational
order parameters, we now look at the average shapes of our
cluster, computed according to the method of Sec. II C 3. We
focus first on our cluster ofN=2624 atoms. For this case, we
have divided the 4p total solid angle into 842 almost equal
solid angles, using the icosahedral covering of Ref. 39. We
have chosen this number since it corresponds as close as
possible to the typical number of surface atoms in the cluster
ssee Table IId. At each temperature over 1000 instantaneous
configurations, sampled at equal intervals throughout the
simulated time of 43 ns, have been included in our average.
We show the resulting average shapes in Fig. 18. We present
results for the following temperatures: 400 K, representing
the low-temperature configuration in which thermal fluctua-
tions are negligible; 600 K, where one starts to notice small
changes in the surface; 900 K, where substantial softening of
the surface bond-orientational order parameterQ6 is ob-
served; 1060 K, just belowTm.1075 K; andT=1100 K,
just aboveTm.

In the top row of Fig. 18 we show pictures constructed
similarly to that in Fig. 8scd of Sec. II C 3, which showed the
average shape of the liquid cluster atT=1200 K. The small
spheres represent the average position of the surface within
the given solid angle. Additionally, we have now shaded
these spheres according to the value of the maximal local
surface curvature, as we did earlier in Fig. 9sad for an instan-
taneous configuration atT=200 K; the darker the gray scale,

FIG. 13. Normalized bond-orientational order parameterQ6sTd /Q6 s400 Kd
for the surface, interior, and various sublayers of theN=2624 atom cluster.

FIG. 14. Bond-orientational order parameters of theN=603 atom cluster for
sad the interior atoms andsbd the surface atoms.

FIG. 15. Bond-orientational order parameters of the magic numberN
=922 atom cluster forsad the interior atoms andsbd the surface atoms.

FIG. 16. Bond-orientational order parameters of theN=1409 atom cluster
for sad the interior atoms andsbd the surface atoms.

214722-10 Wang, Teitel, and Dellago J. Chem. Phys. 122, 214722 ~2005!

Downloaded 15 Jun 2005 to 128.151.144.135. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



the larger the curvature. This method of shading is used to
highlight any edges and facets that are on the cluster surface.
The view point for these pictures is taken at infinity, so as to
show a full hemisphere of solid angle.

In the bottom row of Fig. 18 we show the corresponding
average shapes using a smooth 3D contour plot with over-
head lighting. The view point for these bottom-row pictures
is now taken to be a finite distance from the cluster, in order
to highlight the straight edges and fivefold symmetry about
the vertices.

The pictures in Fig. 18 illustrate the following scenario
as the cluster is heated. At low temperatures the cluster is
almost fully faceted, with flat facets meeting at sharp edges
and vertices. By 900 K the facets have shrunken slightly in
size, and the edges and vertices have noticeably rounded. At
1060 K, just below melting, the facets have shrunken to al-
most negligible size, and the cluster is almost spherical.
Above melting, the cluster is essentially a perfect sphere.

As a way to quantify the cluster shapes we have com-
puted the bond curvaturescb and the maximal local surface
curvatureskM, as defined in Sec. II C 2. In Figs. 19sad–19sdd
we show histograms of bond curvaturecb for the four tem-
peratures 600, 900, 1060, and 1100 K. The solid curves show
the histograms of bond curvatures, as computed over the
surface bonds of the average cluster shape shown in Fig. 18.
In contrast, the dashed curves show the histograms of bond
curvatures computed for an instantaneous cluster configura-
tion, and then averaged over the 1000 instantaneous configu-
rations saved in our simulated time of 43 ns. Note that for the

histograms for the average shape, where since we are dealing
with only one average configuration we have relatively few
points in our histogram, we have smoothed our data using a
Gaussian smoothing function with a width of four bins. The
bin size here is 0.006 Å−1. In Figs. 20sad–20sdd we show the
analogous histograms for the maximal local curvaturekM.
The bin size here is 0.02 Å−1. Note thatkM can be negative,
corresponding to a region where the surface is locally con-
cave; an example of when this can happen is near a vertex,
which is missing its topmost atom.

Both Figs. 19 and 20 illustrate the same scenario. Con-
sider first the histograms of the average cluster shapes. At
low temperatures, the histograms show a strong peak at zero,
representing the low curvatures of the large flat facets. The
histograms also show either a second peak or plateau at
higher curvatures, with a long high-curvature tail, represent-
ing the large curvatures at edges and vertices. We can com-
pare these results against those in Fig. 7 for the ideal Ih
structure. In the liquid aboveTm.1075 K, the histograms
have a single sharp peak at finite curvature, representing the
uniform curvature of the spherical liquid cluster. Just below
melting, at T=1060 K, the histograms similarly show a
single peak near that of the liquid, only noticeably broader
than for the liquid; this indicates the shrinkage of the flat
facets to negligible size and a rounded cluster that is not yet
a perfect sphere.

Comparing the histograms for the average versus the in-
stantaneous shapes, the latter are in general broader, most
especially for the liquid cluster. This demonstrates the pres-
ence of strong thermal shape fluctuations about the average

FIG. 17. Bond-orientational order parameters of the magic numberN
=5082 atom cluster forsad the interior atoms andsbd the surface atoms.

FIG. 18. Average shapes of anN=2624 atom cluster at 400, 600, 900, 1060,
and 1100 K. The top row shows each of the discretized solid angles of the
surface, shaded according to the value of the maximal local curvature; the
darker the gray scale, the larger the curvature. The viewpoint of these pic-
tures is set to infinity to show a full hemisphere of solid angle. The bottom
row is the corresponding smooth contour plot, with a finite viewpoint so as
to highlight the straight edges and fivefold symmetry about the vertices.

FIG. 19. Histograms of bond curvaturecb for the average cluster shape
ssolid linesd and the instantaneous cluster configurationssdashed linesd at sad
T=600 K,sbd T=900 K,scd T=1060 K, andsdd T=1100 K. The cluster size
is N=2624 atoms.

214722-11 Melting of gold clusters J. Chem. Phys. 122, 214722 ~2005!

Downloaded 15 Jun 2005 to 128.151.144.135. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



shape. Particularly interesting are the histograms for 1060 K,
just belowTm, in Figs. 19scd and 20scd, and for 1100 K, just
aboveTm, in Figs. 19sdd and 20sdd. The histograms for the
average shape are symmetric Gaussian-type peaks about an
average curvature, corresponding to a spherical or nearly
spherical cluster. The histograms for the instantaneous con-
figurations, however, are skewed in shape. They have a low-
curvature peak and a broad high-curvature tail, somewhat
similar to what is seen at lower temperatures. This suggests
that the instantaneous configurations can still develop small
local facets on the surface. A similar observation has previ-
ously been made by Lewiset al. for smaller clusters.24 Fluc-
tuations of the edges and vertices of these local facets lead to
an effective diffusion of the facet upon the cluster surface;
averaging over these fluctuations results in a smoothing out
of the facets to negligible size when one considers the aver-
age, rather than the instantaneous, cluster shape. We have
seen evidence for this scenario by visual inspection of instan-

taneous cluster configurations. For example, in the instanta-
neous liquid cluster configuration shown in Fig. 8sbd one
clearly sees a flat edge along the bottom.

For comparison with other sizes, we show in Fig. 21
average cluster shapes for ourN=1409 atom cluster at tem-
peratures 800 and 900 K, whereTm.925 K. In Fig. 22 we
show average shapes for our magic number41 N=5082 atom
cluster at temperatures 1000 and 1140 K, where nowTm

.1150 K. The gray scale in these figures is the same as that
used in Fig. 18. Again we see facets shrinking, and the clus-
ter becoming more spherical, asTm is approached.

D. Diffusion of atoms

In this section we present further evidence that the
physical mechanism behind the surface softening is indeed
the diffusion of atoms on the vertices and edges of the clus-
ter. We will consider in this section only the cluster ofN
=2624 atoms.

We start by first considering the interlayer mixing of
atoms in the cluster, defining an interlayer mixing parameter
knl as follows. At each temperature we label the atoms in the
initial configuration by an integern8=0,1,2,…,5, according
to whether the atom is on the surface, in the first sublayer,
second sublayer,…, or interior of the cluster. At the end of
the simulation for that temperature, we assign a new integer
n to each atom, according to which layer the atom is now in.
In Fig. 23 we plotknl vs T, wheren is averaged separately
over each group of atoms, indexed by their initial layer num-
ber n8. When knl differs noticeably from the initialn8, it
indicates significant interlayer mixing of the atoms from

FIG. 20. Histograms of maximal surface curvaturekM of the average cluster
shapessolid linesd and the instantaneous cluster configurationssdashed
linesd at sad T=600 K, sbd T=900 K, scd T=1060 K, andsdd T=1100 K.
The cluster size isN=2624 atoms.

FIG. 21. Average cluster shapes for anN=1409 atom cluster at temperatures
800 and 900 K, whereTm.925 K.

FIG. 22. Average cluster shapes for anN=5082 atom cluster at temperatures
1000 and 1140 K, whereTm.1150 K.

FIG. 23. Interlayer mixing parameterknl vs T for atoms initially on the
surface, in the first sublayer,…, and in the interior. The cluster size isN
=2624 atoms.
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layer n8 into other layers. From Fig. 23 we see that notice-
able interlayer mixing takes place between the surface and
the first sublayer as low as 700 K; these two layers are al-
most evenly mixed by 950 K, more than 100 K belowTm

.1075 K. As Tm is approached, additional layers start to
mix together. AtTm and above, all layers are evenly mixed
during the course of the simulation, indicating that in the
liquid all atoms diffuse equally throughout the entire cluster.

Next, we consider the diffusion of the atoms in the clus-
ter by computing the mean-squared displacementsDr2std de-
fined in Eq. s16d. We computeDr2std separately for each
layer of the clustersand the interiord by averaging only over
the atoms that are initially in a given layer. In Figs.
24sad–24sdd we plot our results forDr2std vs t, layer by layer,
for the four different temperatures, 600, 900, 1060, and 1100
K. Note that since atoms in different layers can mixssee Fig.
23d, the division into different layers in Fig. 24 contains
some ambiguity; an atom initially in the first sublayer, for
example, might, during the course of the simulation, wind up
on the surface, however, we continue to average its motion
with that of the first sublayer.

Several expected features are apparent in Fig. 24. In Fig.
24sdd at 1100 K, aboveTm.1075 K, we see that all layers
behave roughly the same, saturating atDr2,600 Å2. This is
consistent with a liquid cluster of radius,21 Å, in which all
the atoms can diffuse throughout the entire cluster, no matter
which layer they were initially in. At the low temperature of
600 K, where the average cluster shape remains almost fully
faceted, the results in Fig. 24sad show that diffusion is almost
negligible. Even for the two top layers, atoms on average
move less than one interatomic spacings,3 Ådd over the
observation time of 20 ns. At 900 K, where the edges and
vertices of the average cluster shape have noticeably
rounded, we see in Fig. 24sbd that diffusion in the top two
layers is significant, with atoms, on average, traveling a root-
mean-square distance equal to several interatomic spacings.
The second sublayer also shows a noticeable diffusion but all
more inward atoms diffuse negligibly. At 1060 K, just below

Tm.1075 K, we see that all atoms are diffusing a significant
amount throughout the cluster, with the top two layers almost
reaching the long-time saturation value,600 Å2 found in
the liquid.

In Fig. 25 we plot the diffusion constantD vs T for each
of the cluster layers, obtained by fitting to the early time
linear part of the curves in Fig. 24. If we fit our diffusion
constant for the surface layer to the simple formD
=D0exps−EA /kBTd to extract the activation energyEA

=−dsln Dd /ds1/kBTd, we find the values ofEA=0.21 eV at
low temperatures,,500 K, where the cluster is fully faceted.
At high temperatures,,1200 K, in the liquid, we findEA

=0.35 eV. Note that the first value corresponds to surface
diffusion, while the second value corresponds tobulk diffu-
sion in the liquidssince once the cluster has melted, atoms
initially on the surface easily diffuse into the bulkd. To com-
pare with previous simulations, Boisvertet al.46 did a first-
principles calculation for the goldh111j surface at low tem-
peratures and foundEA=0.22±0.03 eV, in good agreement
with our value. Chushak and Bartell7 reported the value of
EA=0.25 eV using the embedded-atom methodsEAMd
model for a liquid gold nanocluster. Considering the ten-

FIG. 24. Mean squared displacements
for theN=2624 atom cluster averaged
over the atoms in the surface layer,
first through fourth sublayers, and in-
terior for sad 600, sbd 900, scd 1060,
and sdd 1100 K.

FIG. 25. Diffusion coefficientsD vs T for different layers of theN=2624
atom cluster. The inset shows an expanded range forD in a temperature
range below melting, 700–1050 K.
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dency of the EAM model to systematically give lower en-
ergy valuessas pointed out in Ref. 47d, our result for the
liquid is in reasonable agreement.

A seeming paradox concerning our diffusion results of
Fig. 24 is that at low temperatures the diffusion of atoms in
the first sublayer appears to be greater than that for atoms on
the surface. This can be explained by noting that theDr2 in
Fig. 24 represent an average over all the atoms in a given
layer. As we will show below, at low temperatures, atoms
along the edges and on the vertices of a given layer are more
mobile than a typical atom in that layer. Since the fraction of
such edge and vertex atoms is larger in the first subsurface
layer than on the surface, atoms in this layer have a larger
average mobility. When the temperature increases to 1060 K,
most of the atoms in the two layers are now diffusing, and
the average mean-squared displacementsDr2 of the two lay-
ers become roughly equal.

A more serious issue is how to reconcile our results of
Fig. 24, showing noticeable surface diffusion belowTm, with
our claim that the surfaceh111j facets remain ordered and do
not premelt belowTm, as indicated from the finite values of
the bond-orientational order parameters shown in Fig. 12sbd.
One possibility is that the surface layer does in fact melt at a
well-defined temperature belowTm, but that orientational or-
der in the liquid surface is maintained due to the presence of
an effective periodic substrate formed by the ordered sublay-
ers below the surface. However, we do not believe that this is
the case. Even if orientational order in a liquid surface were
preserved by the presence of the ordered sublayers, one
would still expect to see some kink or other feature in the
bond-orientational order parameters at the surface-melting
transition. In contrast, we find in Fig. 12sbd that the bond
order parameters go smoothly, though nearTm steeply, to
zero. Instead of the above scenario, we believe that the sur-
face diffusion that we observe belowTm is due not to atoms
on the h111j facets, but rather due to the atoms along the
vertices and edges of the surface. As temperature increases,
the facets shrink in size, the edges get rounder and broader,
and the effective number of such diffusing atoms increases.
Just belowTm the facets have shrunk to almost negligible
size, the bond order parameters have decreased to a corre-
sponding small but finite value, and most of the atoms on the
surface are now diffusing.

To estimate the number of atoms in each layer that are
diffusing, we use the following criterion. We compute the
number of atoms in each layer that have moved a distance of
more than 8 Å within 20 ns of simulated time. The cutoff of
8 Å is chosen since it is the distance between the third and
fourth peak of the pair-correlation function, thus representing
a distance roughly between the third and fourth nearest
neighbor; we assume that an atom which can move this far is
in fact diffusing, rather than just undergoing thermal motion
about a fixed average position. We find our results to be
qualitatively insensitive to choosing a smaller cutoff length
of 6 Å sthe distance between the second and third peaks of
the pair-correlation functiond. In Fig. 26 we plot the fraction
of such “moved” atoms vs temperature for the surface, sub-
layers, and interior of the cluster. We see that only the sur-
face and the first sublayer have a significant fraction of

moved atoms below melting. This fraction steadily increases
with temperature and approaches unity atT,1000 K, just
belowTm. We interpret the unmoved fraction as those atoms
on the orderedh111j facets, which shrink in size asT ap-
proachesTm. Close enough toTm, when the facets become so
small that they are only a few atoms across, it becomes easy
for atoms on or near the edge of a facet to exchange with
mobile atoms in the surrounding “liquid” of edge atoms;
hence even such facet atoms can ultimately diffuse through-
out the cluster, and the fraction of moved atoms can ap-
proach unity belowTm. Indeed the concept of liquid versus
solid become somewhat ambiguous when referring to such
small surface areas as theh111j facets just belowTm.

Combining all the above, we infer the following scenario
for diffusion at low temperatures: only atoms on the surface
and in the first sublayer show any noticeable diffusion well
below Tm. The atoms in these two layers that diffuse are the
same atoms which mix between the two layersssee Fig. 23d,
and these are the atoms along the edges and vertices of each
layer. The atoms from the first sublayer diffuse by migrating
first to the surface, and then diffusing upon the surface, until
mixing back into the first sub layer. As the temperature in-
creases toTm, the facets shrink and the number of diffusing
edge atoms increases, until all surface atoms are diffusing
just belowTm.

To substantiate the above picture, we plot in Fig. 27 the
displacement ellipsoids, defined in Sec. II D, for all atoms
initially on the surface of ourN=2624 cluster. We show re-
sults for temperatures 400, 600, 900, 1060, and 1100 K, cor-
responding to the same temperatures for which we showed

FIG. 26. Fraction of atoms per layer that has moved more than 8 Å from
their initial position, in 20 ns, for theN=2624 atom cluster.

FIG. 27. Ellipsoids of displacement at 400, 600, 900, 1060, and 1100 K for
the cluster ofN=2624 atoms. Each ellipsoid is centered at the average
position of the given atom, and shows the directional distribution of root-
mean-squared displacements. The top row gives results obtained for a simu-
lated time of 1.075 ns, while the bottom row is for 4.3 ns.
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the average cluster shape in Fig. 18. In the top row we show
ellipsoids averaged over a simulated time of 1.075 ns. We
expect that atoms which are diffusing, withDr2, t, should
have their displacement ellipsoid roughly double in size
when the time interval goes up by a factor of four. Hence in
the bottom row of Fig. 27 we then show results for a simu-
lated time of 4.3 ns, i.e., four times longer than the top row.
We observe the following. At 400 K there is no observable
diffusion of surface atoms. At 600 K we see the diffusion of
atoms at the vertices of the Ih cluster. At 900 K we see
stronger diffusion at the vertices, as well as diffusion along
the edges. One also can see several of the ellipsoids oriented
normal to the surface, indicating atoms which are mixing in
with the first sublayer. Atoms at the centers of the facets
remain without diffusion. At 1060 K and above most of the
atoms are clearly diffusing.

IV. DISCUSSION AND CONCLUSIONS

We have carried out long-time equilibrium molecular dy-
namics simulations to study the behavior of gold nanoclus-
ters cooled from the liquid, and their subsequent melting
upon reheating. For three different generic cluster sizes,N
=603, 1409, and 2624, we found that the cooled clusters
formed a slightly asymmetric Mackay icosahedralsIhd struc-
ture with a missing central atom.

Using the above clusters cooled from the melt, as well as
several other “magic number” Mackay icosahedra with up to
N=5082 atoms that we constructed by hand41 at low tem-
peratures, we slowly heated these clusters up through melt-
ing. Measuring surface and bulk bond-orientational order pa-
rameters, we find a sharp cluster-melting transition at a
temperatureTmsNd that increases with cluster size, and that
the h111j facets on the surface do not premelt, but remain
ordered up untilTm. The surface bond parameters, however,
decrease from their perfect Ih values significantly belowT,
indicating a softening of the surface prior to melting. We find
that the onset of this surface softening appears to track the
size-dependent melting, occuring roughly 200 K below
TmsNd.

Looking at the average shape of our clusters, we see that
this surface softening corresponds to a rounding of the edges
and vertices of the cluster, with a corresponding shrinkage of
the h111j facet area. Just belowTm the average cluster shape
is nearly spherical. As the temperature increases towards
melting, and in the liquid aboveTm, instantaneous cluster
configurations can display large thermal fluctuations about
this average shape.

Measuring the diffusion of atoms in the cluster, we con-
clude that the mechanism for this surface softening is the
onset of diffusion of atoms at first the vertices and then the
edges of the cluster surface, as temperature is increased. As
temperature further increases, the mobility of these atoms
increases, and more and more atoms near the edges of the
facets participate in this diffusion, until the number of atoms
remaining stationary on the facets becomes almost negligibly
small nearTm. Simultaneous with this increasing diffusion is

an increase in interlayer mixing, with surface and first sub-
layers mixing first, and then deeper layers mixing in as one
approaches close toTm.

A similar rounding of edges and shrinking of facets oc-
cur in the theory of the equilibrium shape of macroscopically
large crystals, where the continuum Wulff construction48 can
be applied. In this theory, the shrinkage of facets is associ-
ated with approaching a roughening transition of the faceted
surface, and the facet length shrinks proportionally to the
inverse of the roughening correlation length.49 We do not
believe that this theory explains the results for our clusters.
First, it is generally believed20,21 that theh111j gold surface
that forms the facets of our cluster does not have a roughen-
ing transition below the bulk melting transition. This is con-
sistent with our observation that the surface softening of our
clusters seems to track the size-dependent cluster-melting
temperature rather than approaching a size-independent on-
set temperature, as would be expected if there was a true
thermodynamic roughening transition. Moreover, the vanish-
ing of facets at the roughening transition occurs within the
context of the crystalline state; no diffusion of atoms need be
involved. In our case it is clear that the diffusion of atoms
along the vertices and edges plays an important role. We
therefore believe that the phenomena we observe in our
simulated nanoclusters are due specifically to the finite, rela-
tively small size of our clusters, for which continuum ap-
proaches are not valid, and one must consider the atomistic
nature of the system. The rounding of edges and shrinkage of
facets that we observe are better attributed to a “melting” of
the cluster edges, which then spreads out into the ordered
facets as the temperature increases towards melting.
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