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Melting of icosahedral gold nanoclusters from molecular
dynamics simulations
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Molecular dynamics simulations show that gold clusters with about 600—3000 atoms crystallize into
a Mackay icosahedron upon cooling from the liquid. A detailed surface analysis shows that the
facets on the surface of the Mackay icosahedral gold clusters soften but do not premelt below the
bulk melting temperature. This softening is found to be due to the increasing mobility of vertex and
edge atoms with temperature, which leads to inter-layer and intra-layer diffusion, and a shrinkage of
the average facet size, so that the average shape of the cluster is nearly spherical at mélipg. ©
American Institute of Physic§DOI: 10.1063/1.1917756

I. INTRODUCTION atoms** Similar stability limits for icosahedral gold clusters

) ) ) . were predicted by Marks using a modified Wulff
Nanocrystals have quite different physical properties,qnsirctior? 1 More recent atomistic calculatiolfs® find

from their corresponding bulk materials mainly because Okya; 41T=0, icosahedral gold nanoclusters are the lowest-

their large surface-to-volume ratio. Among noble metals,,nqrqy structures only in a very small size range of tens of
gold nanoparticles have already shown their promise for Atoms; other structures, such as an fcc crystal with a trun-

Widel re;?ge Ofb. aplplicatiqns(,j s_uczéh as _nanolithogrelt;phy,cated octahedral shape, become energetically favored at
c?]tayit ' r;ago '0? (i]ctromc evic Zandb!?n deteCIEO *larger sizes. However, in molecular dynamics simulations of
Thus knowledge of the structure and stability of go nano+ihe freezing of gold nanoparticles Chushak and Bdrtedk

crystals_ Is of great importance. served icosahedral particles of up to almost 4000 atoms.
While bulk gold has an fcc crystal structure, the Compe'ﬁimulations by Clevelandet al® found that when fec

tition between bulk and surface energies in nanometer-sizg uncated-octahedral and truncated-decahedral gold clusters

gtorld tcrryist%”gens can hrestlslt ':nr sexﬁir arI] (:]lffergnt :OrEpeR/ngdvith hundreds of atoms were heated, they underwent a trans-
structures. € such structure Ch nas been ODSEVEG, ation to the icosahedral structure. We note that more

recent experiments by Koget al.*® observed the opposite

![E(rjsﬁhfodr:girs]itin \(')th ;:(? ;v”e r\:\tlll I 3Ii2(t)ocrjtzr(]joft§catse:rhaehelgrztruw?t-h effect, with icosahedral clusters transforming to decahedral
' 9 gntly ' clusters just below melting. In this experimental case, how-

four {111} facets each, meeting at the center to form ANaver, the gold particles are deposited onto amorphous carbon
icosahedral-shaped cluster. The internal facets of the tetrah ' goic'p P P

o . i ) ﬁfms rather than being free standing as in simulations; the
dra meet at strain-inducing twin planes with a local hcp 9 g '

structure, leaving the cluster with 20 exterdalll} facets.
For an Ih structure witth. shells, the magic number of atoms

needed to construct a perfectly symmetric ideal icosahedron
: 13
is

both in simulations® and in experiments™ is the “Mackay
12,13

10 11 . L
N = L4502+ =L+ 1 (1) ~ »

£

In Fig. 1 we show the atomic configuration for an ideal Ih
structure with the magic number &f=2869 atomgL=9).
Atoms are shaded to indicate local fcc, hecp, or other struc- s
ture.

Different theoretical and numerical models have indi-
cated different limits for the stability of such Ih clusters.
Using a continuum approach to take into account the strain
energy and the twin plane energy, Ino predicted that icosa-

hedral clusters should be stable up to sizes of 40000

FIG. 1. An ideal Ih structure with the magic number of 2869 atoms. Atoms
are shaded to indicate their local structure: fcc is white, hcp is gray, and
dElectronic mail: christoph.dellago@univie.ac.at other is black.
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change in surface energy due to contact with the substraggotential’® the Lennard-Jones potentfdl, the Morse
might therefore be a significant effect in determining the parpotentialf”0 the many-body Gupta potenti%lll,or the many-
ticular configuration that minimizes the total free energy. body glue potentia?,2 one can extend the size of simulated
While the theoretical limit of stability of Ih structures gold nanoclusters to more than 10 000 atoms. In this study,
thus remains unclear, and their formation may involve ki-we have chosen the many-body glue potential because it was
netic rather than strictly equilibrium effectd?8it is natu-  found to yield a more accurate description of the bulk, de-
ral to suppose that the formation of the Ih structure is relatedect, and surface properties of g?ﬁdhan other model po-
to the very high stability of the{111} external surfaces. tentials. In the glue model, the potential energy of a system
Simulation® and experimenf% on bulk slablike geometries of N atoms consists of a sum of pair potentigtssand a
with exposed{111} surfaces have shown that, unlike the many-body glue energy,
{100 and{110 surfaces which melt below the bulk melting
temperatureT,,,, the {111} surface is a nonmelting surface VZEE D ) +> U(n). (2)
without roughening, wetting, or melting up to the bulk melt- 25T 4 '
ing temperaturd,, and can, in fact, lead to superheating of
the solid®? In light of this observation it is interesting to Here the sums run over all particleg,=|r;—r;| is the inter-
consider how the high stability of t@11} facets affects the atomic distance between atomandj, and ¢(r) is the pair
melting and equilibrium shape of such icosahedral clustersinteraction energy. The many-body glue enetdgn;) de-
In this paper, we will show by molecular dynami®4D) pends on an effective coordination numhbgrof atom i,
simulations that liquid gold clusters with about 600-3000Which is defined by
atoms crystallize into an Ih structure, with a missing central
atom, upon cooling from the liquid. We then reheat the clus- N = 2 p(rij). 3
ters back through the melting transition at temperailie !

Unlike many previous simulations which simulate a continu-pgre (1) is a short-ranged monotonically decreasing func-
ous heating process, we simulate heating in quasiequilibgsn of the interatomic distance We use the specific forms

rium, running for_a long §imulated tim@3 n9 at each tem- o the pair potentialp(r), and the glue term&(n) andp(r),
perature before increasing the temperature. We pay carefyls given by Ercolessit al. in Ref. 32.

attention to the behavior of the cluster surface, and compute “\ne will simulate our gold clusters by treating each atom

for the first time theaveragecluster shape as we pass uq 4 classical particle. Newton's equations of motion are in-
through Tp,. Using careful measurements of both bond-yeqrateq using the velocity Verlet algoritffrwith a time

orientational order parameters and atomic diffusion we findStelo of At=4.3 fs. Because the many-body glue potential
that the{111} facets of the cluster surface stay ordered anqseg 4 cutoff, a cell index method can be used to reduce the

do not premelt or roughen below the cluster melting tm-c,mpational imé” In this method, the simulation box is

peratureT,, Nevertheless, we find that there is a considerjiged into cubic cells with side lengths larger than the cut-

able softening of the cluster surface routhf)_ZOO K below g distance(3.9 A for the gold glue modglWhen calculat-
Tr that can be regarded as due to the “melting” of the atoM$4 energies and forces one considers only interactions be-
on the vertices and edges of the cluster. As temperature iRy een atoms within the same cell and the neighboring 26

creases, there is an increasing mobility of these atoms leadyis. This approach reduces the required computation time
ing to intralayer and interlayer diffusion and a shrinkage ofgom order N2 to order N. On a personal computePC)

the average area of tHa11 facets. The equilibrium shape equipped with a 1.5-GHz AMD Athlon CPU and 1 GB of
progresses from fully faceted to faceted with rounded edgeﬁlemory, 25 000 steps can be carried out per CPU hour for a

to nearly spherical just beloW,,. Throughout this region, the system of 2624 atoms propagating the system for about 100
interior atoms of the cluster remain essentially perfectly or-

N, . - ps.
dered untilT,, is reached. Our results refine those of earlier  \yi will refer to each time stept of the velocity Verlet

: : 23,24 :
simulations of gold clusters?*#*which used measurements algorithm as one basic molecular dynamiitD) step. Since

of the radial density distribution and the observation of sur-o5:n MD step is an integration of Newton's equation, it nec-

face diffusion as evidence for a general premelting of the,gqarily conserves the total energy of the system, and thus
cluster surface. A preliminary report of some of our resultSgjmjates a microcanonical ensemble. To sample instead in
has been presented in Ref. 25. the canonical ensemble, we supplement this basic MD step
according to two different well-known methods. The
Il. METHODS Andersen thermostitis a method that mimics a system
coupled to a heat bath with constant temperature. At the end
of each MD step, each particle of the cluster is, with prob-
On modern computerab initio simulation techniques ability p~0.03%, assigned a new velocity sampled ran-
providing an accurate description of interaction energies cadomly from the Boltzmann distribution of a given tempera-
be used to simulate systems consisting of up to hundreds dfire. The Andersen thermostat samples both configuration
atoms?® However, such methods are too computationally deand momentum spaces according to the canonical distribu-
manding to allow long simulation times. Using less accuratdion, so that the instantaneous total kinetic energy fluctuates,
but computationally less expensive model potentials, such aas is the case for a real physical system. However, the Ander-
the embedded atom methdd, the Murrel—Mottram sen thermostat method does not conserve the total linear and

A. Simulation model and methods
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angular momenta, and so will cause the system’s overall poBLE I. Bond ordgr paramgters for face-centered-cql&tc), hgxa_tgonal
sition and orientation to drift over the course of the simula-close-packedhcp), simple cubic(sg, body-centered-cubitbca), liquid, h
. . . . bulk, and Ih surface structures.

tion. This would complicate our analysis of cluster shape as

well as atomic diffusion, since we want to measure theseGeometry

> SO \ ; . Qs Qs W, We

quantities with respect to coordinates that stay fixed with
respect to the cluster. fcc 0.190 94 0.574 52 -0.159 32 -0.01316

This drawback of the Andersen thermostat can becp 0.097 22 0.484 76 0.13410 -0.01244
avoided using the Gaussian isokinetic thermoftathich ~ SC 0.76376  0.35355 0.15932 0.013 16
keeps the total kinetic enerdgof the system fixed at a value :?Cc_d 8'082 02 00-500 83 . 0.159 32 . 0.01316

. . _ iqui

porrlespon:j|trr1]g t(;)ha g|ve? ttetr)nperatul'rng—(Sulz)l\llkBI. WT) Ih bulk 0 0.199 61 -0.159 32 -0.169 75
implement this thermostat by rescaling all velocities by a ¢ ¢ .o 0 0.207 29 40159 32 0.160 75

constant factor after each basic MD step so as to conserve
the total kinetic energy. Although the Gaussian isokinetic
dynamics does noft sample the canonical distribution in MO o the bond between atoriand j may be arbitrarily
mentum space, this method does correctly sample the con- . _ o .
. : . S taken as either;; or rj;=-ry;, itis useful to consider only the
figuration space and so yields correct equilibrium averages . . :

event bond parameter,,,, since only these are invariant to

of all structural quantities that depend on positional coordi- . .
. \ uch bond inversions. Global bond order parameters can then
nates only. This “constant temperature” method has the ad- . .
e calculated by averaging,,,(r) over all bonds in the clus-

vantage of conserving both total linear and angular momenteté
thus keeping the cluster at a fixed position and orientation.

In our simulations, our first goal will be to cool our = _ 1 s 5
cluster to low temperature from a liquid melt to see what Qm = Nbbondsle(r)’ (5)
solid structure forms. To do this we use the Andersen ther-
mostat method since we believe it models more closely thahereN, is the number of bonds. To make the order param-
true dynamics of the physical system, and hence will incoreters invariant with respect to rotations of the reference
porate effects that may be due to kinetics rather than justame, the second-order invariants are defined as
pure thermodynamics. Later, to observe the equilibrium I
shape and other properties of the cluster, we will use the = 4m o |2

. = Q > |Qul (6)

constant temperature MD to heat back through melting. This 20+ 157
will keep the cluster position and orientation fixed, and so . . . '
will simplify our analysis. It is also possible to study the and the third-order invariants are defined as

melting and freezing of gold clusters with molecular- B I \= = =
dynamics simulations carried out at constant energy between Wy = > m o m, m Q'le'sz'ma’ (7)
stepwise increases of the enefggesults obtained with this MMM

. . ; L. . =0
approach may differ especially in the transition region where Mz

the microcanonical treatment yields solid-liquid coexistencevhere the coefficientg --) are the Wigner Bsymbols®® It is
over a finite energy range, while canonical simulations prostandard to define a normalized quantity
duce a sharp transformation at the transition temperature. Wi

B. Quantifying structure by bond-orientational order

parameters which, for a givenl, is independent of the magnitudes of the

To determine the crystalline structure of our gold nano-{Qim/- R R
clusters, we will use the method of bond-orientational order  The four bond order paramete@s, Qg, W,, andW; are
parametergf which we now review. The idea of the bond generally sufficient to identify different crystal structures. In
order parameters is to capture the symmetry of bond orienfable | we give their values for ideal periodic fcc, hcp, sc,
tations regardless of the bond lengths. A bond is defined aand bcc crystal structures. Since the Ih structure is not peri-
the vector joining a pair of neighboring atoms. Throughoutodic, it may in principle have values for the bond order pa-
our paper, we will define the neighboring atoms of a givenrameters that depend on the cluster size. In Fig). &e plot
atomi as those atoms which have an interatomic distancéhe values of the four bond-orientational order parameters
less than a cutoff radius of 3.8 A, equal to the distance to theersus the cluster sizd for several ideal Ih structures. Al-
minimum between the first and the second peaks of the paithough there is a strong size dependence for small clusters,
correlation function. The local order parameters associatethe bond parameters saturate to well-defined values ias
with a bondr are the set of numbers creases, and we list these in Table I. Note that although, for

_ largeN, most of the atoms in the Ih structure have a local fcc

Qum(r) = Yim(61), $(1)), @ structure, the values of the bond order parameters are differ-
where 6(r) and ¢(r) are the polar and azimuthal angles of ent from those of a pure fcc crystal; this is due to averaging
the bond with respect to an arbitrary but fixed referencehe order parameters over the differing orientations of the 20
frame, andY,,(6(r), ¢(r)) are the usual spherical harmonics. fcc tetrahedra that make up the Ih structure.
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N FIG. 3. Schematic of the cone algorithm.
o 03 . . . . :
3 () { °% - .
5 YU DD D S —— 4 I inside a cone of side length and angled, whose vertex
g oL A /S ]oW, resides on the particle. Aollow coneis a cone region with
§ A A A S no other particles inside it. We take a particle to be on the
ED0-0+0—+—0——0——0——0——+—0 - . :

g 0 AN N surface if at least one associated hollow cone can be found.
E 015 “g" h h The cone algorithm is intrinsically consistent with the
o -0, [ n .« e . .
@ general definition of surface particles. It can pick up all of

70003000 3000 4000 5000 . )
N the particles on a convex surface. For the particles on a con-

cave surface, the precision of identifying a surface atom re-
FIG. 2. The values ofa) the bulk and(b) the surface bond-orientational [jes on the choice of the parametersind d (see Fig. 3. By
cr;]r;lgeircpne:::qg::;rs vs the cluster sidefor ideal icosahedral clusters with visual examination of our generated configurations, we

found that the two parametem=5.0A and =7/3 gave

The bond-orientational order parameters. averaged ovequd results for our clusters. For a gold cluster with 5082
P ' 9 atoms, a complete determination of the surface atoms re-

all bonds, will be usepl to monitor glt_)ba_l structural ?hangesquires less tha 2 s of CPUtime. The cone algorithm can
of our cluster. In particular, a large liquid cluster will have

L also be applied recursively to divide particles into surface
\ézrc]:hmc?f Vt";lgesl;;g; theart;(r)r?;e(:;def:orr)ﬁr??ee':erfsﬁ't-:-a hué tt]gmd subsurface layers to allow interlayer analysis. Figure 4
Y P . . r-nni W shows a planar slice cut through an instantaneous configura-
temperature values to zero will be a signature of the meltmqion of a gold cluster with 2624 atoms @ T=200 K in an
transition. In this work we will be particularly concerned

. ) Ih structure andb) T=1200 K in the liquid. From this figure
with the behavior of atoms on .the surface of the_clus_terWe can see that the cone algorithm \?vorks well on bo?h solid
Surface structures of nanomaterials can often be quite d'ﬁeraind liquid configurations
ent from the bulk. We therefore will consider separately the '
bulk bond order parameters, computed by averaging over
only those bonds connecting atoms that are in the internalg' Curvature
bulkof the cluster versus theurfacebond order parameters, Having identified the surface particles, we next want to
computed by averaging over only those bonds connectinguantify the surface morphology of the clusters. To do this,
pairs of atoms that lie on the surface of the cluster. In Figwe compute two different measures of the surface curvature,
2(b) we plot the values of such surface bond order paramthebond curvatureand themaximal local surface curvatuye
eters for an ideal |h structure versus cluster $izégain we  as defined below.
see that they approach well-defined constanty areases, Our first step is to determine a plane tangent to the clus-
except forW, which oscillates. The values of these lafge- € surface_ at each §urface partiple. To do this,_we cqnsider
surface bond parameters are listed in Table 1. Note that fof€ collection of particles determined by the particle of inter-
the same Ih structure, the bulk bond parameters have diffefSt and all its neighboring particles, which are also on the
ent values than the surface bond parameters, since they atdrface. We note the coordinates of these particles by

measuring properties of three-dimensional versus two= (Xi.¥i.Z), i=1...Ns, whereN; is the number of the par-
dimensional structures, respectively. ticles under consideration. We define the tangent plane to

pass through the center of mass of these particles, and we

C. Geometrical analysis of the surface determine its orientation by minimizing the mean-square dis-

A main goal of this work is to quantify the geometrical
behavior of the surface of the gold nanocluster. In this sec-
tion we describe the algorithms that we use for this charac-
terization.

1. Cone algorithm

The first step in our analysis is to identify the surface
particles of the clusters accurately according to their geo-
me.mcal pOSItIOI’]S.“ we ,,have Qeveloped a .neW a'lgOl..IthmFlG. 4. Cross section of a gold cluster with 2624 atomé&pgiT =200 K in
Wh|(_3h we call the cone aIg(_Jnthm, to d? this. For a GIVEN an Ih structure anb) T=1200 K in the liquid, with the five topmost layers,
particle, we define an associatedne regionas the region as determined by the cone algorithm, marked by different gray scales.

(b) T=1200K
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fi, fip

FIG. 6. Schematic for the calculation of the local surface curvatures.

then given by the two principal curvatures of the fitted pa-
FIG. 5. Schematic for the calculation of the bond curvature. raboloid. The schematic of this method is shown in Fig. 6. To
fit the paraboloid at the surface particlg we take the nor-
tance of the particles to the plane. Specifically, we solve fofa! vector to the tangent surface g§, as computed above,
this plane as follows. Ifi=(n,,n,,n,) is the unit normal and define this to be t'he Iocahm;. We place the.orlgln a
vector of the tangent plane amg= (x.,Yc,z) is the coordi- and then choose arbitrary but fixedandy axes in the tan-

nate of the center of mass, then the distance fromithe 9€nt plane. We then define the coordinatesy;,z) of
particle to the tangent plane is neighboring particler; in this coordinate system. We then

A choose a paraboloid function,
di=n-(ri=ro). 9

f(ny) = axxX2 + Zaxyxy+ ayyyzy (13)

We determine the normal vectérby minimizing Eidiz sub-

ject to the constrainfi>=1. Introducing an undetermined

Lagrange multiplieln, we solve for s=> (z - f(x,y))?, (14)
I

and fit it through the neighboring points by minimizing

OIS q2ov@z—1] =
A [; d’ - Mn 1)] =0. (10 with respect toay,,ay,, anday,. This leads to the following

set of linear equations,
Equation(10) leads to the symmetric eigenvalue problem

4 3 2.2 2
X XV: XVi X°Z:
XX-N XY  XZ \[n, ; ' 2 i 2 Vi . 2.: '
XX
XY YY-N YZ |[|{n, |=0, (11 Dy 2 D xy? 2a, | = > XYiz
XZ YZ ZZ-\/\n, i i i a, i
2,2 3 4 y 2
where XY=3;(x;—x.)(Yi=Y.), and other quantities are com- Xy 22Xy 2 2 i
puted similarly. The smallest of the three possible eigenval- ' ' '
ues\ determines the minimum value &fd?, and its associ- (19

ated eigenvectofn,,n,,n,) is the normal vectomn of the
tangent plane.
We now define the bond curvatucg of a bond connect-

Solving Eq. (15 for ay,ay, anda,, we diagonalize the
symmetric matrix with the elements,, to obtain the two
) ) _ X : ~ principal axes and the corresponding eigenvalugand\,.
ing two neighboring surface particles. Consider two neigh~ra |ocal curvatures are then given y,=(1/2\, , We

boring surface particles at positiongandr, and lethy and i see that the maximal local curvature will be very helpful
h be the unit normal vectors of their corresponding tangent, visyalizing the vertex, edge, and facet atoms of the clus-
planes. We can uniquely fit a circle that passes through thf'er surface.

two points, such that, andn, are normal to the circle. The To test these two methods, we consider the ideal Ih gold
bqnd. curvqture:b is then defined in terms of the raditsof cluster with a magic number of atoné=2869, shown in
this fitted circle, Fig. 1. In Fig. 7(top row) we show the resulting histograms
1 2sin6/2) of bond curvature and maximal local curvature for this clus-
Cp = Ezr— (12) ter. Both histograms consist solely &f functions, corre-

U sponding to the facets, the edges, and the vertices of the |h
where #=acogn, -N,) is the angle between the two normal structure. For the bond curvature histogram there are two
vectors andij=|r1—r2| is the distance between the two par- separate peaks for the vertices, corresponding to the bond
ticles. The geometry of this fit is illustrated in Fig. 5. curvatures between the vertex atoms and the edge atoms, and

Alternatively, we can compute the surface curvature athe vertex atoms and the facet atoms. We also test our
each particle on the surface as follows. Consider a particle omethod for the average shape of a liquid gold cluster with
the surface, and all its neighboring particles that are also 08624 atoms al =1200 K[shown in Fig. &c)]. We show our
the surface. Since the geometry of these points roughly deesults in Fig. 7bottom row. Both histograms have just one
fines a surface in three-dimensior{a@D) space, we find the peak of finite width, centered at R£0.047 A%, with R
best fit of a paraboloid surface to these points. The maximat21.5 A as the radius of the spherical liquid drop. Note that
local curvatureky,, and the minimal local curvaturg,,, are  while the average shape of the liquid drop is close to a per-
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200 ' ' % ' of the cluster fluctuates dramatically from configuration to
configuration. In this case it becomes necessary to average

E 150 z over many fluctuating configurations to define the average
g £ 60 cluster shape. Since our constant-temperature MD conserves
g 100 540 total linear and angular momenta and both are set to zero, the
K 2 configurational shape changes we average over represent

£ s £ 50 fluctuations of the surface atoms rather than trivial shifts or

rotations of the cluster as a whole.
0 , En 0 L. At high temperatures, simply averaging the position of

0 0.1 0.2 0 0.4 0.8 each atom throughout the course of the simulation does not
give the average shape because the atoms are in general no
longer bound to specific sites, but may diffuse many inter-
] atomic spacings through the cluster. We therefore use the
following approach to define the average cluster shape. We
divide the surface of the cluster into equal solid angles, and
then average the instantaneous surface-atom positions in
each solid angle. This average position in each solid angle
] then defines the profile of the cluster’s average shape. This
average shape does not contain information about the indi-
vidual surface-atom positions, since generally a given solid
o3 004 005 006 O o0s o0c 008 angle may contain the instantaneous positions of different
¢, AN k, A surface atoms at different times. To define our solid angle
division, we use the best-covering spherical codes with
FIG. 7. Histograms of bond curvatueg and maximal local curvaturey of  icosahedral symmet?y/to divide the 4r total solid angle of
the (i) top row: an ideal Ih cluster withi=2869 atoms and thei) bottom  the sphere centered at the center of mass into cone cells with
fow: the average shape of a liquid cluster whlr 2624 atoms. almost equal solid angles. Choosing different numbers of
solid angles results in different resolutions; we always
fect sphere, the histogram of its curvatures seems relativelyhgose a number of solid angles that matches as close as
broad. We have found that this is due to the small discret%ossime to the number of surface atoms in the cluster.
number of neighboring surface particles that is used to define  \\e jllustrate this method for a liquid gold cluster with
the fitted paraboloid. Even small deviations of these particle$go4 atoms aff=1200 K. In Figs. &) and 8b) we show
from a constant radius can lead to noticeable variations in thg,q arbitrary instantaneous configurations of the cluster.
fitted curvatures. We find that we can reduce the width of thel'heoretically, a liquid cluster should have a perfect sphere as
curvature histogram for the liquid cluster by increasing theine equilibrium shape. However, we see that the instanta-
cutoff length used to define neighboring particles, and segus configurations can have noticeably large fluctuations
hz_ive more particles_ inclu_de_d in the fits to the Iocgl parabozpout the average shape. Applying our shape-averaging pro-
loids. However, while this improves the calculation for a cequre above on 1000 configurations sampled at equal time
spherical cluster, it makes it worse for high-curvature regionsnteryals from 43 ns of simulated time, we recover that the
near edges and vertices in an Ih cluster, where curvaturgyerage shape, shown in Fig(cB is a perfect sphere as
varies rapidly as one moves across the surface. With thiéxpected. Note that in Figs(@ and §b), the small spheres
understanding of our method's limitations, we thereforeyepresent instantaneous atomic positions. In contrast, in Fig.
leave our cutoff as given above. 8(c), they represent not specific atoms, but rather the average
surface position within the given solid angle.
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3. Average shape

At low temperatures, the atoms in the gold cluster re-
main at well-defined equilibrium positions and only ther-
mally oscillate around the vicinity of these equilibrium posi- e :
tions. The shape of the cluster is thus easily determined fron[?' Atom diffusion analysis
an instantaneous configuration. At high temperatures, how- With enough kinetic energy, atoms can hop around their
ever, atoms become more mobile and the macroscopic shapeystal sites and even travel across the whole cluster. The

FIG. 8. A liquid gold cluster with 2624 atoms &t
=1200 K. (a) and (b) are two instantaneous configura-
tions. (c) is the shape averaged over 1000 such instan-
taneous configurations.
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mean-squared displacemc{MSD),33 Ar?(t), is a convenient
way to measure the average movement of a group of atoms
It is defined as

2 1 e 2
Ars(t) = N 2 2 i+ - i), (16)
sj=1i=1

wherer,;,i=1...N,, are the positions of thély atoms under
consideration and is the time interval over which the mo-
tion takes place. We average owvér nonoverlapping time
intervals, withtj=t;_;+t. For an infinite three-dimensional
bulk system, we expect thatr?=6Dt ast—oo, whereD is FIG. 9. |h structure of alN=2624 atom gold cluster &t=200 K. (a) Sur-

. . . . . face of an instantaneous configuration with atoms shaded according to the
the diffusion coefficient. In a finite cluster, however, the maximal local curvature; the larger the curvature, the darker the gray scale.

MSD will eventually saturate on a length scale comparablgp) The same configuration with the three outermost layers peeled away.
to the cluster size. We therefore determine the diffusion coAtoms are shaded according to their local crystal structure; white is fcc, gray

efficient D by fitting Ar?(t) to the early time linear part be- s hep, and black is “other.”
fore saturation takes place.

We will also find that a convenient way to visualize in- needed to construct a perfect Mackay icosahedron. Neverthe-
dividual atomic displacements is through an ellipsoid of dis-less, we will show that these clusters still form Ih structures
placement. We compute this ellipsoid as follows. For a giverupon cooling. We have also studied several clusters with a
atom traced througK successive configurations for a simu- magic number of atoms by explicitly constructing the
lation timet, the mean-squared displacement correlations ardlackay icosahedron at low temperature and heating through

given by the 3< 3 matrix C with elements, melting. We will give results for siz85 N=922 andN
LK =5082 in order to compare with the other more generic val-
== - _ ues ofN.
Cuv= K21 (i = {r (i, = (1), (17)

_ ) _ A, Mackay icosahedra with a missing central atom
where u,v=x,y,z,r;, is the u coordinate of the atom in

configurationi, and(r ,) is the average of the coordinate over ~ Our initial goal is to cool a liquid cluster through the

all K configurations. The probability for the atom to be at melting transition to determine the ordered structure into
position r is then approximated asP(r)~exd—%[(r which it solidifies. We therefore started with a liquid gold

—(r)) -C‘l-(r—<r))]), and so the surface of our ellipsoid of cluster withN=2624 aFoms, which we roughly equiI.il.)rated
ispl tis qi th fi at 1500 K before cooling to 1200 K, where we equ|I|brate_d
displacement is given by the equation longer. We then cooled the cluster down to 200 K, decreasing
(r=(r))-C™-(r=(r)=1. (18)  the temperature in intervals of 100 K. At each temperature

the system is equilibrated for>610° steps(21.5 n$ using

The eigenvectors of,, and the square root of their corre- . . .
sponding eigenvalues then define the axes and principal racHi1e Andersen thermostat ”_‘?t_hOd: With this cooling method
‘we find that our cluster solidifies into an Ih structdfe.

of the ellipsoid, which we center on the average atom posi- : ; ! } .
In Fig. 9 we show an instantaneous configuration of this

tion {r). This ellipsoid provides a convenient visualization of
) P P N=2624 gold cluster at our lowest temperatufe; 200 K.

the directional distribution of root-mean-squared displace- ;
ments over the time To clarify the geometry of the cluster, we have calculated the

local curvatures for each surface atom according to the
method of Sec. Il C 2, and in Fig.(& we shade each atom
. RESULTS according to the maximal local curvature; the greater the

In this section we report on our results. Gold clusterscurvature, the darker the gray scale. Comparison with Fig. 1

with more than 5000 atoms require too much computationaftrondly suggests that our cluster has an Ih structure. Large-
time to allow for the long simulation times we want in order curvature regions correspond to edges and vertices, while
to explore the equilibrium behavior. Clusters with fewer than!OW-curvature regions are the flét11} facets of the fec tet-

a few hundred atoms, however, have large finite size eﬁectgahedra. Note that some vertices have low curvatures; this is
due to the larger surface-to-volume ratio. Such smaller clusP€Cause these vertices have their topmost atom missing, and

ters can undergo transitions between several different crystgP form a small locally flat region.
structures even at low temperatu?@é"‘mand they have less To further illustrate the Ih nature of our cluster, we have

sharply defined melting transitions. In this work we havecomputed the local bond order parameters for each atom,
therefore simulated several clusters in the range of 600 t§Veraging over all bonds that connect the given atom to its
5000 atoms. In our results below, we will concentrate on thé'€ighbors. Using the values in Table |, we then identify each
moderate size oN=2624 atoms, for which we have done atom with its Igcal crystal structure. We regard atoms with
our most complete and careful analysis. We will also giveQs>0.15 andW,=<0 as having a local fcc structure, and
less detailed results for two smaller sizéé=603 andN atoms withQ,=0.15 andw, >0 as having a local hcp struc-
=1409, in order to illustrate general trends. Note that theséure; all other atoms are simply labeled as “other.” Because
values ofN are not among the magic numbé¢see Eq(1)] the surface layer and the two sublayers closest to the surface
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(;:1) N603

-3.5!
FIG. 10. Ih structure of gold clusters witte) N=603 and(b) N=1409 400 600 802 (K)IOOO 1200 1400

atoms atT=200 K. The atoms on the surfaces of these instantaneous con-
figurations are shaded according to the maximal local curvature; the 1ar9ef;5 11 caloric curve of Ih gold clusters with=603, 1409, and 2624
the curvature, the darker the gray scale. atoms, as well as with magic numbéRef. 41) of N=922 and 5082 atoms.

exhibit surface reconstruction and have frozen in surfacéemperature simulations therefore suggest that such a consti-
fluctuations, we have peeled them away by using the conwitional vacancy can, in fact, stabilize icosahedral clusters of
algorithm of Section Il C 1. These surface layers occasionthousands of atoms, making them the observed structure
ally display stacking faults such as those observed in simudpon cooling.
lated lead cluster¥ The resulting interior of the cluster is
shown in Fig. 9b), where fcc atoms are shaded white, hcp . . .
atoms gray, and “other” atoms black. The Ih structure of theB' Melting and the bond-orientational order
cluster is readily apparent. One clearly sees the {flatl} parameters
facets of the fcc tetrahedra, the edges of the facets corre- Having determined that our clusters cooled from the lig-
sponding to the hcp twin planes, and the vertices with fiveuid have the Ih structure, we then heated up the clusters
fold symmetry. using constant-temperature MD instead of the Andersen ther-
We have also applied the same cooling procedure omostat, so that the total linear and angular momenta are con-
smaller gold clusters witiN=603 andN=1409 atoms. In served and vanish; this ensures that our clusters neither trans-
Fig. 10 we show the instantaneous configurationsNof late nor rotate during the course of our simulations. We heat
=603 andN=1409 atT=200K, with surface atoms shaded in temperature intervals of 100 K when far frofp, but use
by their maximal local curvaturi@s was done in Fig.(8 for ~ smaller intervals when approachiiig,. At each temperature
N=2624]. We again clearly see the Ih structure; however, forthe clusters have been equilibrated fof MD steps(4.3 ng,
the smaller cluster, the edges and facets appear slightlipllowed by 10 steps(43 n3 to collect data. Our simulation
rounded. times are more than an order of magnitude longer than the
It is interesting to note in Figs. 9 and 10 that the fcc ~1 ns typically simulated in earlier worKs.
tetrahedra of our clusters are not all of equal size. For a In Fig. 11 we show the caloric curv@verage potential
nonmagic numbeN of atoms, such as is the case here, this issnergy per atom versus temperajui@ several of our clus-
to be expected. However, we have also cooled clusters witter sizes upon heating. The kink in each curve locates the
magic numbef¥ N=560 andN=1414 from liquid to 200 K cluster melting transition. Several expected tréhdare
using the exact same cooling procedure. These clusters alstearly seen:(i) the melting temperature increases as the
formed asymmetric Ih structures with 20 facets of slightlycluster size increases artil) the average potential energy
unequal sizes. This suggests that our cooling procedur@er atom increases as the cluster size decreases, due to the
while slow enough to balance surface versus bulk free enkarger surface-to-volume ratio. No qualitative difference is
ergy and find the lh structures, is not slow enough to achieveeen between the magic number sikss922 and 5082 and
the perfect global equilibration which one expects would re-the others. Note that the glue model gives a melting tempera-
sult in perfectly symmetric structures for magic numbirs ture of 1357 K for bulk gold, well above that of our biggest
An interesting feature of our clusters that cannot be seenluster’? The experimentally measured melting temperature
in Figs. 9 and 10 is that all of our clusters formed with aof bulk gold is 1337 K
missing central atom. The energetics of such vacancies atthe We have done our most careful heating for thie
center of Ih clusters was first considered by Boyer and=2624 atom cluster, taking fine temperature increments near
Broughtoréi3 for Lennard-Jones clusters and later by MottetT,. Heating at the above rate of 43 ns per temperature, we
et al* for Cu, Ag, and Au particles. Above a certain find that the cluster has a first-order melting transitioT at
material-dependent critical size the central vacancy lowers 1075 K. However, when we simulated the cluster at the
the energy of the cluster by partially releasing the strairslightly lower temperature 6f=1070 K for more than 240
caused by the mismatch of the tetrahedral units. Metted.  ns, we found that it also ultimately melted. Thus the esti-
concluded that for gold particles the introduction of the cen-mates ofT,, from Fig. 11 are most likely slightly higher than
tral point defect does not lower the energy enough to makéhe true equilibrium values. This superheating that we find is
the icosahedron competitive with crystallographic octahedrperhaps related to the extraordinary stability of the gold
and Wulf polyhedra. Their conclusion, however, was based111} surface, as was also observed in a slablike georﬁ%try.
solely on energy calculations which neglect the entropic con-  Next, we wish to explore the melting transition from the
tributions to the free energy at finite-temperature. Our finite-perspective of the bond-orientational order parameters de-
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TABLE II. Average numbers of atoms in the surface layer, the sublayers, and the bullNef2624 atom gold
cluster at different temperatures.

T
(K) Surface Sublayer 1 Sublayer 2 Sublayer 3 Sublayer 4 Bulk

400 858.5+0.6 602.8+0.8 428.3+1.1 307.4x1.1 207.2+0.8 219.6x1.1
600 859.8+1.2 602.2+1.4 427.9+1.2 307.3x1.1 207.2+£0.9 219.7+1.1
900 867.7+2.4 594.9+2.6 427.5+1.4 307.0£1.2 207.0£1.0 219.9+1.1
1060 869.9+3.6 582.4+4.0 436.2+3.2 311.3+2.6 208.6+2.2 215.7+3.2
1100 874.7+£3.9 572.4+4.2 436.2+4.2 308.7+4.0 209.9+£3.7 222.1%5.1

fined in Section. Il B. We are interested specifically to con-is extremely sensitive to the symmetry of the perfect Ih struc-
sider the behavior of the surface of the cluster as distincture. For deviations from this perfect structure, as is the case
from the behavior of the interior. We therefore use the congor our simulated C|ustef\]\/4 can vary dramatically. This is
algorithm recursively to group the atoms of the cluster intogyidenced by the very large sample-to-sample fluctuations
successive layers. The outermost layer of atoms is identifie\g{,e found for\M, as indicated by the very large error bars

as the surface layer; the atoms immediately below the sur- — "
4 y hown in Fig. 12 folwW, as compared to the other quantities.

face layer are called the first sublayer, then the second sut\?N th lude that the bond-orientational ord
layer, and so on. For the cluster N=2624 atoms there are ¢ thus conciude that the bond-orientational order param-

a total of nine such layers. We label the atoms lying belowfers are very consistent with our cluster being a Mackay

the fourth sublayer as “interior” or “bulk” atoms. Fady icosahe(_jron. . .
=2624, we show in Table Il the number of atoms in each In Fig. 12a) for the interior atoms, we see that bulk

layer for various temperatures up through melting. What igaond-orientational order parameters remain roughly constant

immediately apparent is that as the temperature varies withi{til just above 1000 K, before taking a sharp drop towards
the solid phaseT<T.,~ 1075 K, the number of atoms in a zero at the same melting temperatufg~ 1075 K, as found
given layer remains essentially constant, within abe® from the caloric curve of Fig. 11. Thus the bond-orientational

for all layers below the second sublayer. The surface and to'der parameters give a good signature of the melting tran-
two sublayers, however, display a more noticeable variations,'t'on' The sharp decrease of the bond parameters indicates

suggesting changes on the surface of the cluster well belothat the interior atoms remain with a highly ordered Ih struc-
melting. ture until just before melting. Note that the values in the

Having made this division into layers, we then compute"qUid aboveT,, are not identically zero, but have small finite

. . values due to the finite size of the liquid cluster; this effect is
the four bond-orientational order paramet&;s Qg, W,, and biggest forQg.

W, define_d in Sec. Il B, separately for each layer and for the In Fig. 12b) for the surface atoms, we again see that the
bulk. In Fig. 12 we show our results for thé=2624 atom 4 grientational order parameters remain with their Ih val-
cluster; Fig. 12a) is for the interior atoms, while Fig. 18) o5 4t |ow temperatures, and then vanish towards zero at the
is for the surfape atoms. Compan.ng t.o the values listed "%ameTm as for the bulk atoms. Thus we reach one of our
Table 1, or equw_alently as shown in Fig. 2, we sSee tha.t themost important conclusions: the presence of finite-surface
va}lueS we now find at low temperatures are quite consistent,,q_orientational order up until the bulk melting transition
with the bulk and surface values appropnat(? for an Ih Strucindicates that the surfadd11} facets of the Ih structure do
ture. The only exception to this is the caseWdf which we ot premelt, but rather the surface facets melt at the same
find to be approximately zero, rather than the negative Ofgmperature as the bulk. The absence of any sharp features in
positive number shown in Table I. However, we haveAfoundthe surface bond-orientational order parameters belgw
that, unlike the other bond order parameters, the valu&,0f suggests that there are no other types of surface phase tran-
sitions belowT,,. There is, however, one noticeable differ-
ence in the behavior of the surface bond-orientational order
parameters as compared to the bulk. We see that the surface
parameterQg starts a noticeable decrease from its low-
temperature value &t~ 800 K, considerably below,, We
interpret this as a softening of the surface, and we will
present the reason for this behavior in the following section.
We have also measured the bond-orientational order pa-

0.15— ' ™
(a) 0.15

e
=

0.05 0.11

0.05
£-0.05 .

Interior bond order
Surface bond order

3 of

0.1 r rameters for the first through fourth sublayers of the cluster.

015 3 ': SinceQg is the bond parameter that most clearly shows the
2009001200 0055565001200 surface softening, in Fig. 13 we plot the value@f versus

T(X) T &) temperature for surface, interior, and each of the four sublay-

FIG. 12. Bond-orientational order parameters of M®e2624 atom cluster ers. Since each Iayer has a S“ghtly different Valu@@fat

for (a) the interior atoms andb) the surface atoms. Sample error bars, low temperatures, we plot the normalized_vall%‘T)(Q6
representing configuration-to-configuration fluctuations, are shown. (400 K) so as to better compare their relative behaviors. We
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0%00 600 300 1000 1200 FIG. 15. Bond-orientational order parameters of the magic nunhber

TK) =922 atom cluster fota) the interior atoms an¢b) the surface atoms.

FIG. 13. Normalized bond-orientational order param@&g(T)/Qg (400 K)

for the surface, interior, and various sublayers of w2624 atom cluster. C. Average shape and surface curvature

To understand the physical manifestations of the surface

see that both the surface and the first sublayer show almogpftening that is indicated by the surface bond-orientational
identical softening ag,, is approached. However, all the order parameters, we now look at the average shapes of our

deeper sublayers show almost identical behavior as the int JUSte;z computed ?ccordc;ggi ;%tzze metho<|j:of Shgc. IIC3. We
rior atoms, with almost no softening unfi},. Thus the soft- ocus |.rs.t on our cluster - atgms. or this case, we
ening phenomenon is seen to be largely confined to the to ave divided the # total solid angle into 842 almost equal

two layers of the cluster and does not propagate more deep lid ar;gles, uil_ng the l;cosa_hedrz_:\l covering OO]; Ref. 3|9' we
as T,, is approached; below the top two layers, the cluste ave chosen this number since it corresponds as close as

remains almost as ordered as at low temperatures, until ju%)tossible to the typical number of surface atoms in the cluster
before melting see Table . At each temperature over 1000 instantaneous

We have also tested the sensitivity of our definition ofconfigurations, sampled at equal intervals throughout the

the interior atoms of the cluster by redefining it to be all thesmulated time of 43 ns, have been included in our average.

atoms below the surface layer. However, as might be exWe show the resulting average shapes in Fig. 18. We present

pected from Fig. 13, computing the bulk bond-orientationalresuIts for the following temperatures: 400 K, representing

order parameters defined this way gives no qualitativé;_he Iow—tempﬁra}gljr.egggfl?urinon in which thermal' quctua-”
change from the behavior seen in Fig(d)?2 tions are negligible; , Where one starts to notice sma

In Figs. 14—17 we show similar plots of interior and changes in the surface; 900 K, where substantial softening of

surface bond-orientational order parameters for our othel® sg.rface bond_-oriegtzlitional order Pararg&?@r Is_ob-
cluster sizesN=603, 922, 1409, and 5082. We see the saméerveb' 1060 K, just belowp,=1075K; andT=1100 K,
qualitative behaviors as in Fig. 12, with surface and bulldUSt @00VETy,

melting at the same temperature. This melting temperature,, .IIn Ithe tor? rquqf Fig. 1f85we Tlhgvé p'Crt]l.JrﬁS r(]:onst(;u?]ted
which increases with cluster size, agrees with the value§'miiarly to thatin Fig. &) of Sec. » which showed the

found from the caloric curves of Fig. 11. Surface softeningaverage shape of the liquid cluster'll'aft 1200 K. The smalll ,
tracks the melting temperature and starts to be noticeab heres represent the average position of the surface within

about 200 K belowT,, The surface softening is somewhat 1€ given solid angle. Additionally, we have now shaded

enhanced for the smaller cluster sizes. There appears to be figse spheres according to the value of the maximal local

qualitative differences for our magic numBeclusters, N surface curvature, as we did earlier in Figa)%or an instan-
=922 and 5082, as compared to the other sizes taneous configuration &=200 K; the darker the gray scale,

T T T T 0~2 T T
0.1p (@)1 , (b) 0Q, (b) oQ,
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FIG. 14. Bond-orientational order parameters of w603 atom cluster for ~ FIG. 16. Bond-orientational order parameters of Me1409 atom cluster
(a) the interior atoms an¢b) the surface atoms. for (a) the interior atoms ancb) the surface atoms.
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FIG. 17. Bond-orientational order parameters of the magic nuniber Bond curvature (A7) Bond curvature (A”™)

=5082 atom cluster fofa) the interior atoms an¢b) the surface atoms.

20 ———— ———
i g i 80F =100k

the larger the curvature. This method of shading is used to
highlight any edges and facets that are on the cluster surface. g 15 g
The view point for these pictures is taken at infinity, so asto 5 g9 1
show a full hemisphere of solid angle. 210 =

In the bottom row of Fig. 18 we show the corresponding ?g % 40r ]
average shapes using a smooth 3D contour plot with over- S =
head lighting. The view point for these bottom-row pictures &5 & 0L 1
is now taken to be a finite distance from the cluster, in order =
to highlight the straight edges and fivefold symmetry about 0005 0 005 02 00’ 505 1\6‘3;—0.2

the Vertice_s' o ) ) ) Bond curvature (A Bond curvature (A™)
The pictures in Fig. 18 illustrate the following scenario

as the cluster is heated. At low temperatures the cluster iBIG. 19. Histograms of bond curvatugg for the average cluster shape
almost fuIIy faceted. with flat facets meeting at sharp edgeésolid lineg and the instantaneous cluster configurati@eshed linesat (a)

q . 90’0 he f h hrunk liahtly in =60 K, (b) T=900 K, (c) T=1060 K, andd) T=1100 K. The cluster size
an vertices. By K the gcets ave shrunken slig tly iNg N=2624 atoms.
size, and the edges and vertices have noticeably rounded. At
1060 K, just below melting, the facets have shrunken to alhistograms for the average shape, where since we are dealing

most negl|g|ble size, and _the clus'_[er Is almost Spherlcal\'/vith only one average configuration we have relatively few
Above melting, the cluster is essentially a perfect sphere.

. points in our histogram, we have smoothed our data using a
As a way to quantify the cluster shapes we have com; . : . . . .

. Gaussian smoothing function with a width of four bins. The
puted the bond curvatureg and the maximal local surface

curvaturesxy, as defined in Sec. Il C 2. In Figs. -19d) bin size here. is 0.006 A. In Figs. ZQF")‘ZO(") we show the
. analogous histograms for the maximal local curvatuge
we show histograms of bond curvatwgfor the four tem-

The bin size here is 0.02°A Note thatky can be negative,

peratures 600, 900, 1060, and 1100 K. The solid curves show : . )
corresponding to a region where the surface is locally con-

the histograms of bond curvatures, as computed over the_ . .
- ave; an example of when this can happen is near a vertex,
surface bonds of the average cluster shape shown in Fig. 1§.h. h is missing i
In contrast, the dashed curves show the histograms of bond "o 1S MISSING Its topmost atom. _
curvatures,com uted for an instantaneous cluster configura: Both Figs. 19 and 20 illustrate the same scenario. Con-
P 9Urider first the histograms of the average cluster shapes. At

tion, and then averaged over the 1000 instantaneous configH)-W temperatures, the histograms show a strong peak at zero

rations saved in our simulated time of 43 ns. Note that for the .
fepresenting the low curvatures of the large flat facets. The
histograms also show either a second peak or plateau at
higher curvatures, with a long high-curvature tail, represent-
ing the large curvatures at edges and vertices. We can com-
pare these results against those in Fig. 7 for the ideal Ih
structure. In the liquid abové@,,=1075 K, the histograms
have a single sharp peak at finite curvature, representing the
uniform curvature of the spherical liquid cluster. Just below
melting, at T=1060 K, the histograms similarly show a
single peak near that of the liquid, only noticeably broader
than for the liquid; this indicates the shrinkage of the flat
FIG. 18. Average shapes of al=2624 atom cluster at 400, 600, 900, 1060, [AC€tS t0 negligible size and a rounded cluster that is not yet
and 1100 K. The top row shows each of the discretized solid angles of thé& perfect sphere.
surface, shaded according to the value of the maximal local curvature; the  Comparing the histograms for the average versus the in-

darker the gray scale, the larger the curvature. The viewpoint of these picétantaneous Shapes the latter are in general broader. most
tures is set to infinity to show a full hemisphere of solid angle. The bottom ’ ’

row is the corresponding smooth contour plot, with a finite viewpoint so as€SPecially for the liquid cluster. This d_emOHStrateS the pres-
to highlight the straight edges and fivefold symmetry about the vertices. ence of strong thermal shape fluctuations about the average

T = 400K T = 600K T =900K
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H I FIG. 22. Average cluster shapes forldr5082 atom cluster at temperatures
0 / R J — 1000 and 1140 K, wherg,,=1150 K.
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Max local curvature (A ") Max local curvatare (A™) taneous cluster configurations. For example, in the instanta-
20— 0 neous liquid cluster configuration shown in FigbBone
) clearly sees a flat edge along the bottom.
a0 1 For comparison with other sizes, we show in Fig. 21
z 15p B T=1100K average cluster shapes for due=1409 atom cluster at tem-
g é%o— 1 peratures 800 and 900 K, whefg,=925 K. In Fig. 22 we
210k ‘b‘ show average shapes for our magic nurftbli=5082 atom
";; B 20k ] cluster at temperatures 1000 and 1140 K, where Agw
S ] =1150 K. The gray scale in these figures is the same as that
& sp & 10k ] used in Fig. 18. Again we see facets shrinking, and the clus-
ter becoming more spherical, &g, is approached.
’ s e i ) [t ~\l\‘*‘-a-_
%20 0z04 Y2370 0204
Max local curvature (A™) Max local curvature (A-I) D. Diffusion of atoms
FIG. 20. Histograms of maximal surface curvatuggof the average cluster In this section we present further evidence that the

shape (solid lines and the instantaneous cluster configuratiédashed  physical mechanism behind the surface softening is indeed
m?clitsg Iizg?glf'zg;a:tc?r?fs) K, (0 T=1060 K, and(d) T=1100 K. the diffusion of atoms on the vertices and edges of the clus-
- ' ter. We will consider in this section only the cluster Nf
=2624 atoms.
shape. Particularly interesting are the histograms for 1060 K, We start by first considering the interlayer mixing of
just belowT,, in Figs. 19c) and 20c), and for 1100 K, just atoms in the cluster, defining an interlayer mixing parameter
aboveT,, in Figs. 19d) and 2@d). The histograms for the (N as follows. At each temperature we label the atoms in the
average shape are symmetric Gaussian-type peaks about igfial configuration by an integen’=0,1,2,..,5, according
average curvature, corresponding to a spherical or nearf® Whether the atom is on the surface, in the first sublayer,
spherical cluster. The histograms for the instantaneous cor$€cond sublayer,, or interior of the cluster. At the end of
figurations, however, are skewed in shape. They have a lowh® simulation for that temperature, we assign a new integer
curvature peak and a broad high-curvature tail, somewhdi (0 €ach atom, according to which layer the atom is now in.
similar to what is seen at lower temperatures. This suggest§ Fi9- 23 we plot(n) vs T, wheren is averaged separately
that the instantaneous configurations can still develop smaffver €ach group of atoms, indexed by their initial layer num-
local facets on the surface. A similar observation has previPe’ . When(n) differs noticeably from the initiah’, it
ously been made by Lewit al. for smaller clusteré® Fluc-  indicates significant interlayer mixing of the atoms from
tuations of the edges and vertices of these local facets lead to
an effective diffusion of the facet upon the cluster surface;
averaging over these fluctuations results in a smoothing out I
of the facets to negligible size when one considers the aver- 4 Sublayerd
age, rather than the instantaneous, cluster shape. We have
seen evidence for this scenario by visual inspection of instan-

Interior

" N " A A A -

n

Sub layer 3

(%]

<n>

Sub layer 2

Sub layer 1

Surface

L L L 1 L L L 1 L L L 1 L L L |
400 600 800 1000 1200
T (K)

FIG. 23. Interlayer mixing parametén) vs T for atoms initially on the
FIG. 21. Average cluster shapes forldr 1409 atom cluster at temperatures surface, in the first sublayer,, and in the interior. The cluster size ¢
800 and 900 K, wher&,,=925 K. =2624 atoms.
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0 : X X ? ‘{M‘% 0 ) ) ) ) FIG. 24. Mean squared displacements
8 + as) 12 16 20 4 8 12 16 20 for the N=2624 atom cluster averaged
L(ns) over the atoms in the surface layer,
, . , . . . , , first through fourth sublayers, and in-
600F — Surface T=1060K (c} 600 (d) . terior for (a) 600, (b) 900, (c) 1060,
-+ Sub layer 1 AT
—- Sub layer 2 #‘W J’:‘Wﬁ;‘:ﬂﬁ o % and(d) 1100 K.
450 -- Sublayer 3 ] - O R AR
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--- Sub layer 3
150F (i 1 150 --- Sub layer4 -
& -~ Interior
O 1 1 1 1 0 1 1 1 1
4 8 12 16 20 0 4 8 12 16 20
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layern’ into other layers. From Fig. 23 we see that notice-T,,=1075 K, we see that all atoms are diffusing a significant
able interlayer mixing takes place between the surface andmount throughout the cluster, with the top two layers almost
the first sublayer as low as 700 K; these two layers are alreaching the long-time saturation value500 A? found in
most evenly mixed by 950 K, more than 100 K beldy  the liquid.
=1075 K. As T,, is approached, additional layers start to In Fig. 25 we plot the diffusion constabt vs T for each
mix together. AtT,, and above, all layers are evenly mixed of the cluster layers, obtained by fitting to the early time
during the course of the simulation, indicating that in thelinear part of the curves in Fig. 24. If we fit our diffusion
liquid all atoms diffuse equally throughout the entire cluster.constant for the surface layer to the simple forih
Next, we consider the diffusion of the atoms in the clus-=Dgexp(—Ex/kgT) to extract the activation energ¥a
ter by computing the mean-squared displacemant&) de-  =-d(In D)/d(1/kgT), we find the values 0E,=0.21 eV at
fined in Eq.(16). We computeAr(t) separately for each low temperatures;-500 K, where the cluster is fully faceted.
layer of the clustefand the interior by averaging only over At high temperatures;-1200 K, in the liquid, we findE,
the atoms that are initially in a given layer. In Figs. =0.35 eV. Note that the first value corresponds to surface
24(a)—24(d) we plot our results foAr?(t) vst, layer by layer, diffusion, while the second value correspondstok diffu-
for the four different temperatures, 600, 900, 1060, and 1108ion in the liquid(since once the cluster has melted, atoms
K. Note that since atoms in different layers can r(gge Fig. initially on the surface easily diffuse into the bulkio com-
23), the division into different layers in Fig. 24 contains pare with previous simulations, Boisvest al*® did a first-
some ambiguity; an atom initially in the first sublayer, for principles calculation for the golflLl11} surface at low tem-
example, might, during the course of the simulation, wind upperatures and foun&,=0.22+0.03 eV, in good agreement
on the surface, however, we continue to average its motiomwith our value. Chushak and Bartelieported the value of
with that of the first sublayer. EA=0.25 eV using the embedded-atom methGaAM)
Several expected features are apparent in Fig. 24. In Fignodel for a liquid gold nanocluster. Considering the ten-
24(d) at 1100 K, abovel,,=1075 K, we see that all layers
behave roughly the same, saturating\at~ 600 A%. This is

consistent with a liquid cluster of radius21 A, in which all 0.075 0005 7
the atoms can diffuse throughout the entire cluster, no matter 0004p ]

which layer they were initially in. At the low temperature of 0.00r 000 ; 1
600 K, where the average cluster shape remains almost fully 2 ost ZZZI 1
faceted, the results in Fig. &8 show that diffusion is almost <

negligible. Even for the two top layers, atoms on average A 003t -ZSrfaczoo e e ]
move less than one interatomic spacifig3 A)) over the Aggg}ggg;

observation time of 20 ns. At 900 K, where the edges and 0.015-  aSub layer 3 1
vertices of the average cluster shape have noticeably T

rounded, we see in Fig. 24) that diffusion in the top two %0 600 800 1000 1200
layers is significant, with atoms, on average, traveling a root- T X)

mean-square distance equal to Sever.al Interat(.)mlc. spamnqﬁe 25. Diffusion coefficient vs T for different layers of theN=2624
The S(_acond SUblayer.also Sh0W§ a noticeable d|ﬁg$|on but alkom cluster. The inset shows an expanded rangedfam a temperature
more inward atoms diffuse negligibly. At 1060 K, just below range below melting, 700-1050 K.
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dency of the EAM model to systematically give lower en-
ergy values(as pointed out in Ref. 47 our result for the
liquid is in reasonable agreement.

A seeming paradox concerning our diffusion results of
Fig. 24 is that at low temperatures the diffusion of atoms in

—_

¢ Surface
[ =First sub layer
4 Second sub layer
o Third sub layer
[ o Fourth sub layer
4 Interior

=
)

o
o

Fraction of moved atoms

the first sublayer appears to be greater than that for atoms on 0.4F ]
the surface. This can be explained by noting thatAh&in o2k ]
Fig. 24 represent an average over all the atoms in a given

layer. As we will show below, at low temperatures, atoms 950 00 200 000 1200
along the edges and on the vertices of a given layer are more T (K)

mobile than a typical atom in that layer. Since the fraction of
such edge and vertex atoms is larger in the first subsurfad[:é
layer than on the surface, atoms in this layer have a larger
average mobility. When the temperature increases to 1060 K,
most of the atoms in the two layers are now diffusing, andnoved atoms below melting. This fraction steadily increases
the average mean-squared displacemantsof the two lay- ~ With temperature and approaches unityTat 1000 K, just
ers become roughly equal. below T,,. We interpret the unmoved fraction as those atoms
A more serious issue is how to reconcile our results ofon the ordered111} facets, which shrink in size &b ap-
Fig. 24, showing noticeable surface diffusion bel@y with ~ Proaches . Close enough tdy, when the facets become so
our claim that the surfacii11} facets remain ordered and do Small that they are only a few atoms across, it becomes easy
not premelt belowT,,, as indicated from the finite values of for atoms on or near the edge of a facet to exchange with
the bond-orientational order parameters shown in Figh)l2 Mobile atoms in the surrounding “liquid” of edge atoms;
One possibility is that the surface layer does in fact melt at 4'€NCe €ven such facet atoms can ultimately diffuse through-
well-defined temperature beloW, but that orientational or- ©ut the cluster, and the fraction of moved atoms can ap-
der in the liquid surface is maintained due to the presence diroach unity belowTy, Indeed the concept of liquid versus
an effective periodic substrate formed by the ordered sublay20lid become somewhat ambiguous when referring to such
ers below the surface. However, we do not believe that this isMall surface areas as thil1} facets just belowly, _
the case. Even if orientational order in a liquid surface were ~ COmbining all the above, we infer the following scenario

preserved by the presence of the ordered sublayers, ofigr diffusion at low temperatures: only atoms on the surface

would still expect to see some kink or other feature in the@nd in the first sublayer show any noticeable diffusion well

bond-orientational order parameters at the surface-meltin§€/oW T The atoms in these two layers that diffuse are the
transition. In contrast, we find in Fig. (® that the bond Same atoms which mix between the two layesse Fig. 23

order parameters go smoothly, though n@ar steeply, to and these are the atoms along the edges and vertices of each

zero. Instead of the above scenario, we believe that the sugYe!- The atoms from the first sublayer diffuse by migrating
face diffusion that we observe beldTy, is due not to atoms fir_st_ to the su_rface, ant_ﬂ then diffusing upon the surface, u_ntil
on the {111 facets, but rather due to the atoms along the™XINg back into the first sub layer. As the temperature in-

vertices and edges of the surface. As temperature increaséd€ases tm the facets shrink and the number of diffusing

the facets shrink in size, the edges get rounder and broade‘?fjge atoms increases, until all surface atoms are diffusing

and the effective number of such diffusing atoms increaseéFJSt_FelOV\t’)Trt“' tiate the ab ict lot in Fia. 27 th
Just belowT,, the facets have shrunk to almost negligible . 0 substantiate the above picture, we plot In Fig. N
size, the bond order parameters have decreased to a cor splacement ellipsoids, defined in Sec. II D, for all atoms

sponding small but finite value, and most of the atoms on thénitially on the surface of ouN=2624 cluster. We show re-
sErfacle %re now léifflusl,ing;/ ! sults for temperatures 400, 600, 900, 1060, and 1100 K, cor-

To estimate the number of atoms in each layer that aréesponding to the same temperatures for which we showed

diffusing, we use the following criterion. We compute the

number of atoms in each layer that have moved a distance 0 T=400K  T=600K  T=900K  T=1060K  T=1100K
more than 8 A within 20 ns of simulated time. The cutoff of : '
8 A is chosen since it is the distance between the third anc
fourth peak of the pair-correlation function, thus representing
a distance roughly between the third and fourth nearest
neighbor; we assume that an atom which can move this far is
in fact diffusing, rather than just undergoing thermal motion :
about a fixed average position. We find our results to be
gualitatively insensitive to choosing a smaller cutoff length
of 6 A (the distance between the second and third peaks of

the pair-Corre|ation functionIn F|g 26 we p|0t the fraction FIG. 27. Ellipsoids of displacement at 400, 600, 900, 1060, and 1100 K for

of such “moved” atoms vs temperature for the surface, Subt_he_c'luster ofN;2624 atoms. Each eII|p30|d_ is pentergd gt the average
position of the given atom, and shows the directional distribution of root-

layers, and inte_rior of the cluster. We Sfee_t_hat only the SUltmean-squared displacements. The top row gives results obtained for a simu-
face and the first sublayer have a significant fraction ofiated time of 1.075 ns, while the bottom row is for 4.3 ns.

G. 26. Fraction of atoms per layer that has moved mora tha from
eir initial position, in 20 ns, for th&l=2624 atom cluster.
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the average cluster shape in Fig. 18. In the top row we showan increase in interlayer mixing, with surface and first sub-
ellipsoids averaged over a simulated time of 1.075 ns. Wéayers mixing first, and then deeper layers mixing in as one
expect that atoms which are diffusing, wittr>~t, should approaches close f,,
have their displacement ellipsoid roughly double in size A similar rounding of edges and shrinking of facets oc-
when the time interval goes up by a factor of four. Hence incur in the theory of the equilibrium shape of macroscopically
the bottom row of Fig. 27 we then show results for a simu-large crystals, where the continuum Wulff constructforan
lated time of 4.3 ns, i.e., four times longer than the top rowbe applied. In this theory, the shrinkage of facets is associ-
We observe the following. At 400 K there is no observableated with approaching a roughening transition of the faceted
diffusion of surface atoms. At 600 K we see the diffusion of surface, and the facet length shrinks proportionally to the
atoms at the vertices of the Ih cluster. At 900 K we seeinverse of the roughening correlation lengthwe do not
stronger diffusion at the vertices, as well as diffusion alongbelieve that this theory explains the results for our clusters.
the edges. One also can see several of the ellipsoids orienté&itst, it is generally believed?! that the{111} gold surface
normal to the surface, indicating atoms which are mixing inthat forms the facets of our cluster does not have a roughen-
with the first sublayer. Atoms at the centers of the facetsng transition below the bulk melting transition. This is con-
remain without diffusion. At 1060 K and above most of the sistent with our observation that the surface softening of our
atoms are clearly diffusing. clusters seems to track the size-dependent cluster-melting
temperature rather than approaching a size-independent on-
set temperature, as would be expected if there was a true
thermodynamic roughening transition. Moreover, the vanish-
IV. DISCUSSION AND CONCLUSIONS ing of facets at the roughening transition occurs within the
context of the crystalline state; no diffusion of atoms need be
We have carried out long-time equilibrium molecular dy- involved. In our case it is clear that the Qiﬁusion of atoms
namics simulations to study the behavior of gold nanoclus@/ong the vertices and edges plays an important role. We
ters cooled from the liquid, and their subsequent meltingnerefore believe that the phenomena we observe in our
upon reheating. For three different generic cluster sikes, s_|mulated naqoclusters are due speC|f|ca_IIy to the_ finite, rela-
=603, 1409, and 2624, we found that the cooled clusterdVely small size of our clusters, for which continuum ap--
formed a slightly asymmetric Mackay icosahedi) struc- proaches are not valid, and ong must consider the _atom|st|c
ture with a missing central atom. nature of the system. The rounding of edges and shrinkage of
Using the above clusters cooled from the melt, as well adacets that we observe are better attributed to a “melting” of

several other “magic number’ Mackay icosahedra with up tdhe cluster edges, which then spreads out into the ordered
N=5082 atoms that we constructed by hendt low tem-  facets as the temperature increases towards melting.

peratures, we slowly heated these clusters up through melt-
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