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The validity of calculating the interface free energy of Ising systems near the bulk phase transition direct-
ly in terms of a Hamiltonian dependent only on interface coordinates is considered. It is shown that inter-
face models which exclude the effects of bubbles and overhangs lack the appropriate rotational invariance
for the Ising model. A generalized self-avoiding-walk model is introduced, in which overhangs are permit-
ted and rotational invariance reéstored. However, the critical exponents found do not belong to the Ising
universality class. We conclude that bubble excitations in the bulk phases are crucial for a correct calcula-

tion of the interface free energy.

Models for calculating the interface free energy between
two phases coexisting with one another in thermal equilibri-
um have been extensively studied in recent years.!”” The
interface free energy (or surface tension) o is expected to
be positive below the transition temperature 7, of the bulk
system. If this transition is continuous, one expects the in-
terface free energy to vanish at 7,. Scaling arguments® indi-
cate that for T< T,, o should behave like o~ ¢~ -V
~ W=D ywhere ¢ is the correlation length, t= (7T.— T)/
T., and d is the dimensionality of the (bulk) system. In
fact, this relation between o and ¢ provides one of the
motivations for studying the interface free energy. It en-
ables one to calculate the properties (e.g., the critical ex-
ponent v) of the bulk phase transition. However, calculat-
ing the interface free energy is, in principle, not simpler
than calculating that of the bulk. For an Ising system with
N9 spins, o is defined by o=Ilimy— o N~ DIn(Z,_/
Z,+,), where Z,_ and Z,, are the partition functions of
the system calculated with antiperiodic and periodic boun-
dary conditions, respectively. One therefore has to calculate
both (bulk) partition functions in order to evaluate o. In
order to bypass this rather complicated bulk problem,
models for calculating the interface free energy directly have
been introduced. In such models one considers an interface
variable f(x), which gives the height of the interface at x,
where X is a point in (d — 1)-dimensional space. In order to
evaluate the interface free energy one introduces a Hamil-
.tonian #°[ f(x)] associated with the interface configuration

f(x). The surface tension o is then given by
o=—N"9-U,TInZ, where
z=[ Dlr(lempru! )

Usually the integral in (1) is taken over all possible
single-valued functions f(x). In such models one therefore
does not consider interface configurations with bubbles or
overhangs. Although this approach incorporates some un-
controlled approximations it leads-to some remarkable
results for two-dimensional (2D) Ising models. It has been
noted! that by taking # [ f(x)] to be a solid-on-solid (SOS)
model one can reproduce the exact interface free energy of
the 2D Ising model on a square lattice, when the interface
lies along the principal axis of the lattice. However, when
the interface is tilted with respect to the lattice one does not
obtain the exact free energy in this way.%® This approach
also yields the exact transition temperature of the 2D Ising
model on a triangular lattice with nearest-neighbor interac-

32

tions.> - By applying the same method to the square-lattice
Ising antiferromagnet in a magnetic field,? the critical field
H_(T) has been calculated. However, it turned out that the
expression for H.(T), while a good approximation, is not
exact.!® More recently, Wallace and Zia, in a very interest-
ing work,* introduced a continuum version of the SOS
model. They considered a rotationally invariant Hamiltoni-
an

#Lr01= [ @i-1x(1+ (v.NH @

and studied it using renormalization-group techniques in
d =1+ € dimensions, where € > 0. An € expansion for the
critical exponent v was obtained in this way.

In the present paper we examine some of the difficulties
in defining an interface model for the interface free energy
of Ising systems. One of the requirements for such a model
is that it should yield a free energy which at T'= T, becomes
rotationally invariant. Such invariance must result in the
divergence of the susceptibility with respect to a slope-
inducing field. As was noted, the standard SOS models, for
which the interaction between nearest-neighbor columns is
of the form |Af|?, p > 0, where Af= f(x;) — f(x,), do not
satisfy this requirement. We find, in fact, that the SOS
models are not singular at any 7 unless one takes an in-
teraction which for large Af behaves as In|Af|. It is not
clear, however, how such an interaction can arise in an Ising
model. In order to overcome this problem, we introduce a
rotationally invariant model which allows for interface
configurations with overhangs., We show that for 2D sys-
tems (namely, a 1D interface), this model yields a critical
exponent v = %—, which is not the expected one for the 2D

Ising model. We also consider the continuum interface
model (2) and demonstrate explicitly that at lowest order in
T it does not yield a rotationally invariant free energy for
any finite e.

Consider first the SOS model in d =2 dimensions. Let f;
be the integer height of the interface at site i The fact that
the heights f; are taken to be integers is not crucial for the
following considerations. The Hamiltonian is given by

N N
=3 V=S =n 3 =S, 3)

i=1

where for the standard model the interaction may be taken
as V(z) =2J,+2J,|z| and where we have introduced a field
mn conjugate to the difference (fy— f1)=Nh h measures
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the tilt of the interface. With free boundary conditions the
free energy density F(m) is easily calculated. One finds

F(n)=F(0)—3xn*+0(n*) , 6]
where
X =B 2 BV 2/ 2 e—BV( )

is the susceptibility with respect to m. The corresponding
Legendre-transformed free energy is then given by

F(W)=F)+3x"'n2+0(n*) . (6)

For the surface free energy to vanish for interfaces of any
slope & at the same temperature 7., one must have
X~1(T,)=0. This divergence of X at T, is just the reflec-
tion of the singular behavior of the bulk system at 7.
However, it is easy to see from (5) that for the general SOS
model X does not diverge at finite Tunless V' (z) ~ In|z| for
large z. This is clearly not the case for the standard poten-
tial ¥ (z) ~|z|?, p > 0. These models do not exhibit any
singular behavior at all. In particular, the model of Wallace
and Zia (2), when discretized and studied in d=2, does not
yield any phase transition.

The lack of self-consistency in the SOS models, in their
failure to yield a rotationally invariant (i.e., A-independent)
free energy density at T=T,, may be traced to the re-
striction of averaging only over those interfaces without
bubbles and overhangs, namely, only those expressible. as
single-valued functions in the coordinate frame of the lattice
axes. Such a set of interfaces lacks the rotational symmetry
of the underlying lattice. To correct this defect we now con-
sider a generalized interface model, where we average over
a set of interfaces preserving the symmetry of the lattice.
For the isotropic case (J;=J,=J), we take the energy of
an interface, as in (2), proportional to its length. We con-
sider first the set of all interfaces on the square lattice,
which do not intersect themselves, i.e., may have overhangs
but no bubbles. The partition function of this model for a
lattice of length L is thus

Z, =3, C(N)e BN, Q)
N

where C(N) is the number of ways to connect the ends of
the lattice with a ‘‘string”> N-bonds long. This problem is
just that of the self-avoiding random walk which has been

ey~ "BT

n=1 2n 2

where (27)*K, is the area of a sphere in «-dimensional
space, B is the beta function, and C is a constant indepen-
dent of A This procedure is equivalent to summing all
one-loop diagrams.!* For an isotropic surface tension, the
last two h-dependent terms of the free energy (8) must sum
up to be proportional to \/1+ A2 One can verify, however,
that this is only true in the limit e— 0. Thus to lowest or-
der in e, F is rotationally invariant and X diverges at
kg T,=e. However, at any finite €, to O(T), Fis no longer

(—‘1) 2n ..__1. € 1
2 ——h 27'_ —==1pl, +2,2
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solved in the context of the polymer problem.!! The parti-

tion function (7) as L — oo can be expressed in terms of
the correlation function of an n-component spin model in
the limit n— 0. Z; =c ALF=(S(L)-S(0)) = e~ L/ where
F is the free energy density. The coupling constant BJ of
the spin model is related to 8J by e~#’=8J. The rotational
invariance of the correlation functions as T— T, guarantees
the rotational invariance of the surface free energy and
hence the self-consistency of our interface model. We thus
have BF=¢-! and the divergence of the spin-correlation
length ¢ at T, gives F — . Unfortunately, the exponent v
for the n» — 0 spin model is %—, as opposed to v=1 for the
2D Ising model.!?

One can now generalize the set of interfaces to include
those which intersect themselves, i.e., include connected
bubbles. However, a recent paper by Shapir and Oono!?
shows the exponent v to remain . (Note that for walks on

a honeycomb lattice, which would describe interfaces of a
triangular Ising model, there are no connected bubbles.
Thus, that their inclusion in the square lattice produces no
change is reassuring). Our interface model thus clearly is
not a description of the 2D Ising model. Moreover, we
know of no bulk model for which it might be the appropri-
ate description.

Consider next the interface model (2) studied by Wallace
and Zia. In this model the Hamiltonian is proportional to
the area of the interface, and therefore it is rotationally in-
variant. It has been argued that since the Hamiltonian is ro-
tationally invariant, the resulting total free energy will be
isotropic. If true, this would ensure the divergence of the
susceptibility at the same temperature at which the interface
free energy vanishes. However, we point out that although
the Hamiltonian (2) is rotationally invariant the resulting
free energy is not isotropic. This is due to the fact that the
set of interface functions f(x) integrated over in (1) is not
rotationally invariant. This set includes all functions f(z)
which are single valued in a given reference frame, and is
clearly not invariant under rotations. By performing
momentum-shell renormalization-group iterations in d=1
+ €, one generates terms which break the symmetry, and
the square-root form need not be preserved. In order to
demonstrate this point, we explicitly evaluate the total free
energy as a function of the average slope A4 to lowest order
T, but for arbitrary finite e. Let f(x)=h-'x+Af(x) when
A f(x) are functions which vanish at the boundaries. Ex-
panding (2) in Af, keeping terms to O((Af)?),
evaluating the resulting Gaussian integrals in the partition
function, we find that the free energy to O (7T) is given by

L3 rm+m)+C, ®

*3

I
rotationally invariant.

In d=2 dimensions, continuum SOS-like interface
models can be dealt with by an explicit real-space renormali-
zation group. We consider the generalized SOS model (3)
with arbitrary potential V, taking the heights f; to be con-
tinuous variables and letting the lattice constant go to zero.
By performing a decimation a renormalization equation is
obtained for the potential V. The variable h = f;4+,— f; re-
scales as a length as in the work of Wallace and Zia. The
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renormalization equation can easily be solved by Fourier
transforms, and we find for the fixed-point potential

—B V() =1n[M , ©)

a?+ p?

for arbitrary «. This fixed point is clearly not rotationally
invariant, and has the required logarithmic behavior at large
h as noted previously.

To conclude, we have considered several interface
models. In two dimensions we demonstrated the failure of
the class of generalized SOS models in providing a con-
sistent description of the bulk Ising transition. We have
considered the continuum model of Wallace and Zia and
find that it is not isotropic at low T for finite €. This raises
questions as to whether or not it is, in fact, an appropriate
model for an Ising system. These failures were traced to
the lack of proper rotational invariance of the interfaces
averaged over. We have introduced a new model in d=2
which properly takes into account all possible interface con-
figurations. Although self-consistent (i.e., rotationally in-

variant), this model fails to give the known critical exponent
of the Ising model. This failure thus illustrates the crucial
importance of bulk bubbles in computing the interfacial free
energy. The entropy of these bubbles with respect to the
interface produces a nontrivial contribution which cannot be
accounted for by any model which is dependent on interface
variables alone.

Note added in proof. Results similar to those of this paper
were recently obtained by D. A. Huse, W. V. Saarloos, and
J. D. Weeks [Phys. Rev. B 32, 233 (1985)]. In a recent
work, R. K. P. Zia (unpublished) has shown that within the
context of the 1+ e expansion, the isotropic fixed point is
stable to a wide class of anisotropic perturbations.
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