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A simple model of classical relaxation in a one-dimensional harmonic potential with a hierarchi-
cal distribution of barriers is studied. The vanishing of an effective diffusion constant results in a
- transition of the low-lying eigenstates of the master equation from extended to localized. For a pa-
rameter characterizing the barrier distribution greater than a critical value R > R, the low-lying
states are extended on the length scale of the equilibrium distribution. For R <R, the low-lying
states are sharply localized at the most- difficult barriers to cross. The correlation function
(x(t)x(0)) is analyzed in terms of this eigenstate structure. For R > R, correlations are shown to
decay as a pure exponential for all times. For R <R_, decay is a sum of exponentials which asymp-
totically approaches the stretched exponential form at long times. Numerical simulations are per-
formed to compute the decay of the correlation functions at shorter times. This decay may also be
empirically fitted to a stretched exponential form. The relation of the model to anomalous relaxa-

tion in glassy systems is discussed.

I. INTRODUCTION

Stretched exponential relaxation of the form e ~(/7’
has been observed in a wide variety of experimental sys-
tems involving disordered materials. These include decay
of remnant magnetization in spin glasses;' the decay of
density fluctuations in dense microemulsions? and ionic
glasses;® the relaxation of electric polarization in charge-
density waves;* the relaxation of occupied band-tail states
in amorphous semiconductors;’ the relaxation of viscosi-
ty in plate glass;® thermal relaxation in o-terphenyl mix-
tures;’ and the relaxation of proteins after changes in
conformal state.® A common feature of most of these
glassy systems is generally believed to be a large number
of metastable states in which the system may get trapped.
The barriers separating these local free-energy minima,
which must be crossed by thermal activation as the sys-
tem relaxes to equilibrium, introduce a broad distribution
of microscopic time scales, leading to anomalously slow
decay of correlations.’

Theoretically, stretched exponential relaxation has
been found in many simple models. Ngai'® has invoked
the results of random matrix theory as the origin of the
broad distribution of relaxation rates. Campbell et al.!
have modeled the effects of free-energy barriers in phase
space on relaxation in the Ising spin glass, by a random
walk on a bond-diluted hypercube. Dotsenko'? has
modeled relaxation in spin glasses in terms of diffusion on
a self-similar free-energy surface. Riera and Hertz!? find
a distribution of rates from a renormalization-group
analysis of the Ising spin glass on a Berker lattice. Their
results agree qualitatively with Monte Carlo simulations
by Ogielski.'* Huse and Fisher!> have shown that
stretched exponential relaxation exists'®!” in the ordered
phase of the ordinary two-dimensional ferromagnetic Is-
ing model. In this case, while there is presumably no
problem with metastable minima, the stretched decay is
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- the result of slowly decaying excitations (large domains)

far from equilibrium. Several models'® 26 introduce a

distribution or hierarchy of time scales explicitly. Palmer
et al.'® consider hierarchically constrained glassy dynam-
ics in which slow degrees of freedom can relax only after
the faster processes have taken place. Huberman and
Kerszberg?” have introduced diffusion in ultrametric
spaces??” %% as a model of anomalously slow relaxation.
However, for most of these models, stretched exponential
relaxation results only for special choices of the rate dis-
tribution. A physical model, explaining the form of the
distribution and how it might vary to produce a transi-
tion from simple to stretched exponential decay, is often
lacking. Much work has also been done on the problem
of diffusion in systems with energetic disorder,?’ 34 and
its relation to the glass problem. Analogies with the
phenomenon of localization in quantum systems have
been made.> %7

In this paper I discuss a simple microscopic model in
which localization provides the physical mechanism for a
transition to anomalously slow relaxation. I consider
diffusion in a one-dimensional space on a complicated
free-energy surface. The particle sits in a harmonic po-
tential, having a well-defined global minimum and equi-
librium distribution. However, a hierarchy of barriers is
placed between sites, so that each site acts as a local ener-
gy minimum. Asymmetric hopping over the barriers due
to thermal activation is the mechanism for relaxation to
equilibrium. I find a dynamic transition from simple to
stretched exponential relaxation, as a parameter control-
ling the barrier distribution is varied. The transition may
be characterized as a localization transition of the
lowest-lying eigenstates of the master equation, which
occurs when an effective diffusion constant vanishes. The
principle results have already been presented elsewhere;*8
here I provide details of the calculation, as well as several
new results concerning the decay of correlation functions
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in the anomalous region.

The rest of the paper is organized as follows. In Sec.
IT A the model is defined. In Sec. II B a derivation of the
hopping rates used in the model is presented, which in-
volves showing how to discretize the continuous dynam-
ics of a diffusive Langevin equation. In Sec. II C the prin-
ciple results of earlier work with a flat potential, and
hence symmetric hopping rates, is summarized. Section
III is concerned with an analysis of the low-lying states of
the master equation. In Sec. III A the lowest nonzero ei-
genvalue is computed numerically, and explained in
terms of scaling arguments. In Sec. IIIB a transition
seen in the behavior of this lowest eigenvalue is explained
in terms of a localization transition of the corresponding
eigenvector. Section IV explains the effects of the eigen-
state structure found in Sec. III, on the decay of correla-
tion functions. In Sec. IV A it is shown that the asymp-
totic long-time behavior in the anomalous region ap-
proaches a stretched exponential. In Sec. IV B numerical
simulations are used to calculate the decay of the correla-
tion function at shorter times. Although in these simula-
tions the times are too short for the results of Sec. IV A
to apply, the data are empirically found to be reasonably
approximated by a stretched exponential form. In Sec.
V, I present a summary and discussion of the results.

II. DISCUSSION OF MODEL
A. Definition of model

The model I consider is illustrated in Fig. 1. A classi-
cal particle moves on a chain of sites x =0,%1,
+2,...,=N/2, where N =3" is the total length of the
chain. At each instant in time the particle can hop from
site x to sites x £1 with a transition rate W, , ;. The dy-
namics of the particle is specified by the master equation
for the probability that the particle is at position x at
time t:

dP
—TI(Z’Q= 1 P+ +W, | P(x—1)
_(Wx,x+1+Wx,x—1)P(x)
=— 3 M, Px), @.1)
X

~ rate = R?
3
k= R
g
5 R
2

posi=tion X

FIG. 1. Hierarchical barriers in a harmonic potential E (x).
The state of the system sits on integer sites x. To move right or
left it must hop a barrier. These are arranged in a trifurcating
hierarchical fashion, labeled by the rate W®=R" to hop when
the potential is flat, i.e., k=0. Unlabeled barriers have rate
wo=1,

S. TEITEL 39

where M, ,. is the tridiagonal master equation matrix.
The rates W, , . are determined by two effects.

(i) To cross from site x to x £1 the particle must hop a
barrier. These barriers are arranged in a self-similar
hierarchical fashion. The rate to hop the barrier in the
absence of any external force is given by

(0) —_ 0 —
Wx,xil - )(ci‘)l,x _R"(X) ’ (2.2)

where O0<R =<1 and for x=20, n(x)=n if @|x]
+1)mod(3')=0 for all / <n (see Fig. 1). Parametrizing
these rates as

—nbdy/T

R"=e (2.3)

one can view the hopping as thermal activation over a
free-energy barrier whose height nA, increases linearly
with the level n of the hierarchy.

(ii) The particle feels a force from an external potential

E(x)=1lkgx?. 2.4

This potential introduces an asymmetry into the transi-
tion rates which is fixed by detailed balance
Wixx1 = lEM—EGEDYT
W,

x*l,x

(2.5)

T is the temperature and I take kz=1. The condition
(2.5) guarantees that the equilibrium probability distribu-
tion for the particle to be at site x is given by the Gibb’s
distribution

Pey(x)~e EX/T (2.6)

It will be convenient to define a reduced coupling k such
that

k=xo/T . (2.7

Many choices of the rates W, , ., would be consistent
with detailed balance (2.5), which just fixes the rate ra-
tios. I will choose rates such that the response of the sys-
tem to the external force is that of overdamped diffusion.
That is for the special case of equal barriers, R =1, the
dynamics will be equivalent to a discretized version of the

continuum Langevin equation®
dx dE
—=-—Dy——+&(1), .
dt O dx 5(1) @.8)

where D, is a diffusion coefficient, and ¢ is a thermal
noise with correlation

(E()E(t’))=2D,T8(t —1t') .

As I show in Sec. II B, the correct choice of rates that in-
cludes both the barrier hopping (2.2) and reduces to the
Langevin dynamics (2.8) is

Wx,x +1:R n(x)e[E(x)“E(x +1]2T ,

W1 =W +1€[E(x+1)—E(x)]/T (2.9)
P X X, X .

One may view the above as a simplified model of a sys-
tem diffusing in phase space on a complicated free-energy
surface. Each site x represents a- local free-energy
minimum which is separated from the neighboring mini-
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ma by a barrier. The barriers exist on all energy scales,
and the dynamics is that of the system hopping from
minimum to minimum, diffusing to the global minimum
at x =0.

It will be useful to transform the master equation (2.1)
to a symmetric form by the mapping®

1/1(x)EeE(")/2TP(x) ,

M. . =eEX2Tyy  ,—E(x)/2T (2.10)
XX X, X ,
so that the equation of motion (2.1) becomes
W) s g o
pr

dt

Detailed balance (2.5) and the definition (2.1) of M, ,. en-
sure that Mx,x, is a symmetric matrix. Its eigenvectors
¥;(x), with corresponding eigenvalues A;, therefore form
a complete orthonormal basis in terms of which one can
solve for the time evolution of the probability distribution
of the system,

P(x,t)——— E e_E(X)/ZTd'i(X)

X S F(x")P(x",0)e B2 TR g 1)
pr

The asymptotic long-time behavior is thus governed by

the smallest eigenvalues of M.

B. Derivation of hopping rates

In this section I show how the rates W, , ., given in
Eq. (2.9) follow from the.requirement that the master
equation (2.1) model the dynamics of overdamped
diffusion given by the continuum Langevin equation (2.8),
in the limit of equal barriers (R =1). I begin by review-
ing the solution for this continuum Langevin dynamics.

Using standard techniques,* one can derive from the
Langevin equation (2.8) the corresponding Fokker-
Planck equation for the probability distribution P(x,t)
that the system is at position x at time ¢z. One has

%P

dE
+D,T— .
o7 ax2

—d-)‘c‘P(x)

dP(x) d

ot :DOE;C— (2.13)

This equation is the continuum analog of the master
equation (2.1) for the discrete chain.

Making the transformation (2.10), ¥(x)=eZ*/2TpP(x),
transforms the Fokker-Planck equation to an imaginary
time Schrodinger equation,

oY _ _y
o DT (V(x)y ax? |’ (2.14)
where
2
— | E'(x) | _ E"(x)
Vix) 5T T (2.15)

and primes denote derivatives with respect to x. The
eigenfunctions ;(x) of this Schrédinger operator, togeth-
er with their corresponding eigenvalues A;, then provide
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a basis for expanding the general solution for the proba-
bility distribution P(x,t) as in Eq. (2.12).

For the harmonic potential E(x)=1k,x2, V(x)
=1x?x2— 1k, and so the problem reduces to the solution

of the quantum harmonic oscillator. The eigenvalues are

A,=D,Tkn, n=0,1,2,... (2.16)
and the lowest two eigenfunctions are
1/4
Yolx)= % e TR g () =Virxgy(x) . (2.17)

As seen from the transformation (2.10), ¥(x), with eigen-
value A, =0, is the eigenstate representing the equilibrium
Gibb’s probability distribution (2.6). 7=1/A;~1/k is the
asymptotic decay time to equilibrium.

Returning to the original problem on the discrete
chain, specified by the master equation (2.1) and its sym-
metric equivalent (2.11), we see what form the matrix M
must have if (2.11) is to represent a discretized version of
the Schrodinger equation (2.14). Replacing 82/3x2 in
(2.14) by its lattice equivalent results in

o(x) _

S5 = =D T{[V ()= 2]9(x) +9(x + DHy(x —1)} .

(2.18)

The matrix operator on the right-hand side of the above
equation has constant off-diagonal elements, while the
potential E (x) enters only the diagonal elements through
the term V(x). We want M to have this same form.

From the master equation (2.1) and the symmetrizing
transformation (2.10) one can write down the matrix M
as

M

— ,[E(x)—E(x")]/2T
x,x'—e[ * o Wx’,x(sx’,x+1+8x’,x—l)

_(Wx,x+1+Wx,X*1)8x',x . (219)

The choice for W,. , needed to agree with (2.18) is there-
fore

Wx’,x =D0 Te[E(x')—Efx)]/ZT . (2.20)

The resulting off-diagonal terms are just the constant
DT, while the resulting diagonal terms are

Wxx+1+Wxx_1:_DOT(e[E(x)“E(x+l)]/2T

_+_e[E(x)—E(x—l)]/2T) . (2.21)
Expanding the above to lowest order in E(x)—E (x=*1)
reproduces the diagonal term in (2.18), D T[V(x)—2],
except that now discrete derivatives of E (x) appear in
defining ¥ (x) as in Eq. (2.15).

The above (2.20) are the correct rates to discretize the
Langevin dynamics (2.8) for any potential E (x) defined
on a lattice. The generalization to higher dimensions is
straightforward.

The above arguments assumed that the barriers be-
tween sites on the chain were equal (R =1), and that in
the absence of any applied forces, i.e., E (x)=const, the
rate to hop left or right is the constant DT independent
of position x. To include the more general case we are in-
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terested in, where R <1 and the barriers are not equal, I
will assume that the natural extension to (2.20) is to re-
place this uniform rate DT by the local, spatially vary-
ing, barrier hopping rates W\’) ., =R"* given in Eq.
(2.2). The result is the rates given by Eq. (2.9) in Sec.
II A. As before, the external potential enters the sym-
metrized master equation matrix M in the diagonal ele-
ments only.

C. Flat potential E (x)=const

Much work??°~% has been done on the special case
k=0. The potential E (x) is constant, hopping rates are
symmetric, W, .. =W, ,, and all sites are equally
likely in equilibrium. In this section I review the results
of this case, which are most easily stated in terms of the
average diffusion constant of the system.*?

A general result by Zwanzig® states that the asymptot-
ic diffusion constant for any one-dimensional arrange-
ment of N barriers with symmetric hopping rates is given
by the average inverse hopping rate

1 _ 1 1
DN N2 W

X

(2.22)

For the rates of our model given by Eq. (2.2), and N =37,
the sum can be written as a geometric series
1 21
D(N) 3 <, 3R’

(2.23)
In the limit of N — o this sum yields

3

D(N— w,R)= '5

3 1—-1/3R
D(N_>°°’R)——2— 1_(1/3R)1nN/1n3

~N!*HIR/3_.0 for R <R, =1 .

For R > R_ =1 one gets ordinary diffusion

(x%(t))~D(R)t for R>R, (2.25)

with a diffusion constant D (R) that goes linearly to zero
as R—R,. For R <R_, the asymptotic behavior can be
obtained by the scaling argument

(x*(t))~D(N ~x,R)t .

Using Eq. (2.24) for D (N, R) and rearranging powers of x
gives anomalously slow diffusion

(xZ(t)>~t21n3/(ln3—lnR) for R <Rc , (2.26)

where the exponent of the time dependence decreases
continuously with R from a value of one at R..

The above scaling argument has been verified by vari-
ous renormalization-group calculations.**”**  The
dynamical transition in the asymptotic long-time behav-
ior of the average mean-square displacement, which
occurs at R, =1, can be thought of in the following way.
For R > R_, the time to go a distance x is determined by
the average hopping time of all the barriers encountered
in moving this distance. This average hopping time
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remains finite as x increases. For R <R_, however, the
time to go a distance x is dominated by the time to hop
the most difficult barriers encountered.

III. LOW-LYING EIGENSTATES
AND ASYMPTOTIC BEHAVIOR

In this section I return to the general model where
k>0, and the particle is affected by the force due to the
external harmonic potential E (x). We are interested to
see how the hierarchical barriers will effect the decay of
the particle to the global energy minimum at x =0, and
what will be the manifestation of the dynamic transition
discussed in Sec. II C for the force-free case.

A. Eigenvalues

As discussed at the end of Sec. II A, the asymptotic
long-time behavior of the system will be determined by
the low-lying eigenvalues of the symmetrized master
equation matrix M. For the infinite system, if this spec-
trum of eigenvalues has a finite gap between the lowest
two eigenvalues, A,=0 and A, then at long enough times
the decay will be exponential with a relaxation time
7=1/A,. If the spectrum has a continuous distribution
of eigenvalues as A—0, the asymptotic decay may be
slower than exponential.

I have numerically computed the smallest nonzero ei-
genvalue A, of the matrix M as a function of barrier pa-
rameter R and potential coupling « for chains of sizes
N =3%_3% As M is a symmetric tridiagonal matrix, the
eigenvalues were easily and efficiently found by an algo-
rithm based on use of the negative eigenvalue theorem*®
combined with a bisecting search. As the system size N
increased for fixed R and k, A, reached a limiting nonzero
value. Thus for finite k, the infinite system has a finite
gap to the lowest nonzero eigenvalue, and the true long-
time asymptotic decay to equilibrium is always exponen-
tial. It will be shown in Sec. IV, however, that as k—0,
the asymptotic decay over long intermediate times is a
stretched exponential.

The results for this asymptotic decay time 7=1/A, are
plotted in Fig. 2 versus potential coupling « for several
values of the barrier parameter R. A least-squares fit
(solid lines) to the form

7~B(R)x *® a5 k—0 (3.1)

gives excellent agreement. The exponent z(R) thus ob-
tained is shown in Fig. 3. In Fig. 4 is shown the scaling
amplitude B (R). The dots are the numerical results ob-
tained from the least-squares fits to the data of Fig. 2.
The dashed lines result from the predictions discussed
below.

As is clearly seen in Fig. 3, the exponent z (R) under-
goes a transition at the critical value R, =1. This is the
same R, as was found in the force-free case (Sec. II C).

Empirically I find that
z(R)=1 for R,R =1,
z(R)=—InR /In3 for 0O=R =R, .

(3.2)
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FIG. 2. Asymptotic relaxation time 7=1/A; vs « for several
values of barrier parameter R. The curves between R =1 and
R =0.25 are for R =0.8, 0.6, and 0.4, R,= 1 and 0.3. Dots are
numerically computed; solid lines are least-squares fits to the
form 7=B (R)x % A

The small disagreement from the above expressions ob-
served in the neighborhood of R, in Fig. 3 is due to

finite-size effects from the fit to the form (3.1) at finite «.-

For the values R =0.3,R,0.4, calculations of the relaxa-
tion time 7 were performed down to values of k=107
(the smaller k the larger the chain size N needed to reach
the N — oo limiting value of A;). Fits to the form (3.1) at
these lower values of k¥ produced a systematic decreasing
in the value of the exponent z obtained, in better agree-
ment with the expressions (3.2).

To explain the transition observed at R, in the diver-
gence of the relaxation time 7 as k—0, it is convenient to
try a scaling argument as in Sec. II C. Assume that the

3.0
-

—

0: 4

w “a 7~ 4R

] .

28]

:

%0, S zZR) = —InR/In3

O i /\/

TR

E Tw,

3] :

o = RN

S =

Be] . zZR) = 1

e we L/

8 34 R S S P

I

Q
© T T T T T T T T T T T T T T

0.05 0.1 0.2 0.4 1.0

barrier parameter R

FIG. 3. Exponent z(R) vs R. Dots are from least-squares fits
to the data of Fig. 2. Dashed line is prediction z(R)=1 for
R >R,,z(R)=—InR /In3 for R <R ,=1.
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FIG. 4. Scaling amplitude B(R) vs R. Dots are from least-
squares fits to the data of Fig. 2. For R <Rc=§, the dashed
line is the prediction from Eq. (3.9). For R >R_, the dashed
line is the prediction B(R)=1/D(2L.,R) with L,=1/Vk
evaluated at k=0.01.

eq»

only effect of the barriers on relaxation in the potential is
to provide an effective average diffusion constant D (L).
Here L is a length scale which depends on the potential
coupling «, that gives the effective size of the system sam-
pled as the particle decays to x =0. D(L) is the force-
free diffusion constant from the barriers within this
length L, as computed from Eq. (2.22). From the
Langevin equation (2.8), the relaxation time would then
be

7=1/D(L(k))k . (3.3)

As k—0, the potential becomes flatter, and one would ex-
pect the length L(k)—>ow. For R>R,, as L-— o,
D (L)— const, so the relaxation time diverges as 7~ 1/k.
In this region therefore z(R)=1, as is the case for equal
barriers (R =1). For R <R, however, as L-— o,
D(L)—0 as L1T"R/In3 [see Eq. (2.24)]. If L diverges as a
power of k, L ~k ™7, then the relaxation time diverges as

1—y —yInR/In3 . (3.4)

r~1L 1+InR /]n3K~K
In order to agree with the numerical result (3.2), one
therefore has to have y =1. The length scale L important
for the asymptotic relaxation therefore varies with poten-
tial coupling « as

L~1/k for R<R, . (3.5)

This is to be compared with the naive guess for L, the
equilibrium length scale of the Gibb’s distribution
L,=1/Vk.

These results for exponent z(R), scaling amplitude
B(R), and dynamic length scale L (k), can all be ex-
plained in terms of a simple Ansatz, motivated by the dis-
cussion of the force-free case in Sec. II C. I will assume
that for R > R, the asymptotic decay is governed by the
combined effects of all the barriers within a region
~*L,,=+1/Vk of the global minimum at x =0. For
R <R, however, I will assume that the asymptotic decay
is determined by the 'singe most difficult barrier to cross.
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This Ansatz leads to the following predictions.
(i) For R > R, the asymptotic decay time will be given
by

7=1/D(N=>2L, (3.6)

where D (N,R) is computed from Eq. (2.22). The ex-
ponent is z=1 as «k—0. The scaling amplitude is
B(K,R)=1/D(2Leq,R), and reaches a constant limiting
value 1/D(R) as k—0. These predictions are shown as
the dashed lines at R >R, in Figs. 3 and 4. In Fig. 4,
B (R) is evaluated at the finite value k=0.01, the average
of the values used in the data of Fig. 2. As k—0, B(R)
should diverge as R —R_, due to the vanishing of D (R,).
The absence of this divergence in Fig. 4 is due to the eval-
uation of B (R) at finite «.

(ii) For R <R, the asymptotic decay time is given by
the inverse rate to hop the single most difficult barrier as
the particle decays from finite x to x =0:

Rx, R>R,,

T=max(1/W,,,,), R<R,.

x>0

(3.7
Since the force-free barrier hopping rates W,(co)l +1=R"™®
grow logarithmically with distance from the origin [z (x)
~Inx /In3] while the force from the external harmonic

potential E (x) grows linearly with distance from the ori-

gin, there will be a well-defined most difficult barrier to
cross. To maximize Eq. (3.7) it is sufficient to consider
from the set of barriers of a given rate wO=Rgm only
that one which is closest to the origin x =0. As x in-
creases, the first occurrence of the barrier with rate R™
occurs between sites x =(3"—1)/2 and x + 1. Substitut-
ing this value of x into the expression (2.9) for the rates
W, +1.x, the maximization of (3.7) becomes the minimiza-
tion with respect to m of R ™exp(4«3™). This gives the
most difficult barrier to cross occurring at position x, at
level ng of the hierarchy,
3% __2IR

Xo="57""

) < 1n3 (3.8)

Thus we have the desired dynamic length scale L ~1/k.
Substituting x, back into the expression (2.9) for W, ,, ,
gives
=R —ng+1/In3

=R /M3exp{(—InR /In3)

X[In(—41nR /In3)—1]} . (3.9)

The exponent of the diverging x dependence is thus
z(R)=—InR /In3, as found empirically. The scaling am-
plitude B (R) may also be read off from (3.9) and is plot-
ted in Fig. 4 as the dashed line for R <R,.

As seen in Figs. 3 and 4, the agreement of these predic-
tions with the numerical results is excellent.

B. Eigenvectors and localization

The above analysis of the lowest nonzero eigenvalue A,
indicates a transition at R, from dynamics governed by
the average barrier to dynamics governed by the most
difficult barrier. This can be more directly seen by a
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study of the eigenvectors 1;(x) of the symmetrized mas-
ter equation matrix M. The spatial dependence of the
eigenvectors will give information about the barriers and
length scales important to the asymptotic dynamic be-
havior.

I have numerically computed the eigenvector v¥,(x)
corresponding to the lowest nonzero eigenvalue A;, for
several values of R and . The eigenvectors were found
using the NAG scientific library routine FO2BEF and then
iterated multiplicatively by M to check for stability.

In Fig. 5 is plotted ¢,(x) for the case R =0.4>R_, for
a few decreasing values of the potential coupling x (only
x 20 is shown; ¥, is antisymmetric about the origin). At
the higher values of «, the eigenvector takes discrete
jumps at various tall barriers. However, in the limit
k—0, it is seen that ¢,(x) approaches the form expected
for the equal barrier continuum case given by Eq. (2.17).
This continuum solution is shown by the dashed line in
Fig. 5. The length scale over which 1,(x) is extended is
the equilibrium length Leq=1/\/ k. As L., gets larger
than the length on which D(R) approaches its N — o
limit, the spatially varying barriers may be effectively re-
placed by a uniform average barrier. Thus in the limit

R=04>R,

!

eigenvector v (x)
000 0.05 010 0.5 020

0
9 position x
o
€
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FIG. 5. Eigenvector ¢,(x) for the lowest nonzero eigenvalue,
evaluated at R =0.4> R, at decreasing values of x. ¥, is an-
tisymmetric about the origin; only the positive x half is' shown.
The x axis is labeled by the locations of the various barriers in
the hierarchy. The dashed line is the continuum (equal barrier)
solution given by Eq. (2.17), which becomes an increasingly
better approximation in the limit k—0. The peak occurs at a
POSItion X jegx =V/'2/K~ L.
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x—0 one expects the model to behave identically to an
equal barrier model with uniform hopping rate
W), =D(R).

In Fig. 6 is shown ¥,(x) for the case R =0.285<R_,
for a few decreasing values of k. At the higher values of
k, Y¥,(x) has a similar form to that of Fig. 5, with discrete
jumps at tall barriers. However, now as k—0 the behav-
ior is radically different from the R > R case. The eigen-
vector ¥,(x), instead of approaching the equal barrier
form, becomes sharply localized at the most difficult bar-
rier to cross, located at =x,~ 1/« given by Eq. (3.8).

One can further verify the correctness of this localiza-
tion of the lowest-lying, nonequilibrium, state 1, by per-
forming the following variational calculation. Take as a
trial eigenvector the form

—1 _ewnr
—e for x < —x
VA m
P'™(x)= {0 for —x,, <x <x, (3.10)
+1 —E(x)/2T
— for x>x,, ,
V' A "
where A is the normalization constant
A=2 S e EW/T,
x>xm
3- R =0285<R,
=
oy & «= 0.009
= ©]
8
Q
Q)vd .
34
=2 < L L1
0 R° R* R R® R®
S_ position x
/_\O
Lo
b (b) = 0003
8
2]
= K
R= T N T O Y O R
0 R R> R R* R°
© position x
2
&)
EX=h (©) «= 0.001
St
S~
O o7
2
(=N
= £ T O T Y
0 R R’ ° R® R’

position x

FIG. 6. Eigenvector 3,(x) for the lowest nonzero eigenvalue,
evaluated at R =0.285 < R_, at decreasing values of k. ¥, is an-
tisymmetric about the origin; only the positive x half is shown.
The dashed line is the continuum (equal barrier) solution given
by Eq. (2.17). As k—0, ¥, localizes at the most difficult barrier
to cross, located at a position xo~1/k, far from equilibrium,
L.,~1/Vk.
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Vary this trial eigenvector over the integers m, where
x,, =(3™—1)/2 is the location of the first occurrence of a.
barrier of rate R™. The variational eigenvalue thus ob-
tained is
A= min 3 $"(x )My ™ (x)
. m X,X’

—[E(x,, +1+E(x,)]/2T

. R™2e
= min

o 1 (3.11)

I have performed this variational minimization numeri-
cally. In Table I is shown the exact eigenvalue A, and the
variational value A{"*" for several values of R <R, at
several decreasing values of k. As k—0, the variational
calculation is approaching the exact answer to within ar-
bitrary accuracy.

For R <R, it is interesting to examine the next low-
lying eigenstates. Since ; was antisymmetric about
x =0, ¥, will be symmetric. However since #,(x)—0 in
a finite neighborhood of x =0 as k—0, ¥, will just be the
symmetric transpose of ¥, ¥,(x)=sgn(x)y¥(x). Thus
A,— A, as k—0, and the eigenvalues become doubly de-
generate. It is thus sufficient to consider only the odd
numbered, antisymmetric eigenvectors. In Fig. 7 are
plotted the states ¥,,9¥3,...,%; and for the values
R =0.25 and «=0.002. 1, is localized at the most
difficult barrier to cross, at x,. 5 is localized at the
second most difficult barrier, at x,=x,/3. ¥, ¥, etc.
are localized at the third, fourth, etc. most difficult bar-
rier to cross. The sequence of localized states continues
until the barrier of interest is located within a distance
~Leq of the origin, and then the state becomes extended
about the origin with width ~L.,. For comparison, the
dashed lines in Figs. 7(d) and 7(e) represent the continu-
um (equal barrier) solutions ¥, and 1, respectively.

IV. CORRELATION FUNCTIONS
AND DYNAMIC TRANSITION

In this section I show how the structure of the low-
lying eigenstates discussed in Sec. III gives rise to a dy-
namic transition in the decay of the position correlation
function of the particle. I show that for R >R, as k—0,
decay is a pure exponential over all times. For R <R_, as
k—0, decay is the sum of many exponentials over long
intermediate times, which asymptotically approaches the
stretched exponential form.

TABLE 1. Comparison of numerically computed lowest
nonzero eigenvalue A; with values A{**” from the variational cal-

culation of Eq. (3.11).

R =0.285 Ay Afvar % error
K;——’O.l 3.302x 1072 3.647X 1072 10.0
xk=0.01 2.416X1072 2.453X107? 1.5
«k=0.001 1.756 X 1073 1.757x1073 0.07
R =0.25 A Ajvan) % error
xk=0.01 1.267X1072 1.274X1072 0.55
«k=0.001 7.017X107* 7.021X1074 0.057




7052

A. Correlation function and eigenstate structure

Consider the position correlation function

(x()x(0))= 3 xxoP(x,1/x(,0)Pey(xo) ,

X, X0

4.1)

where P (x,t|x,,0) is the probability for the particle to be
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FIG. 7. Lowest five antisymmetric eigenvectors, evaluated at
R =0.25< R, and k=0.002. The first three, 1, ¥;, and s, are
localized at the three most difficult barriers to cross, located at
positions x,, xo/3, and x,/3%. The fourth and fifth, ¥, and s,
are located with an equilibrium length of the origin, and so are
more greatly extended. The dashed lines in (d) and (e) are the
continuum (equal barrier) solutions for the two lowest antisym-
metric states ¥; and ;.
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at position x at time ¢, given it was at position x, at time
t =0, and P, is the equilibrium distribution (2.6). Using
Eq. (2.12) with the initial distribution P(x',0)=58, , to

compute P (x,]x,,0), we get

(x(Ox(0)=Sae 7, a=|3 xth(x)t,(x) |,

X

(4.2)

where 1, is the eigenstate with A;=0 corresponding to
equilibrium, y(x)=e EX2T/VZ —Z=3 e EW/T
Since ¥, is symmetric about the origin, only antisym-
metric ¥; will give a nonzero coefficient a; and contribute
to the correlation function sum (4.2).

For R > R_, it was shown in Sec. II B that as k—0, the
eigenvector ¥,(x) approaches the equal barrier continu-
um solution Eq. (2.17), ¥,(x)=V kxy(x). Hence we can
write for the coefficients, a;=|3 ¥,(x)¥;(x)|?>/k. The
orthogonality of the eigenvectors then implies that only
a,=1/k is nonzero and so the correlation function is

(x(1)x(0))y=—Le ™"
K

4.3)

decaying over all time as a pure exponential with relaxa-
tion time 7=1/A,. )

For R <R, however, x1, is no longer an eigenvector,
so many if not all of the a; are nonzero. The decay is
given by a sum of exponentials. As «—0, the low-lying
eigenstates are localized at the most difficult barriers to
cross. The terms which dominate the sum (4.2) at long
times will come from states localized by the barriers at
X, =Xx/3™ where x, is the most difficult barrier to cross
given by Eq. (3.8), x053n°/2= —21InR /xIn3. If we ap-
proximate these localized eigenstates by & functions we
have

_ 2
a, . =xivix,, ) ~x2e Kx'”/z, X, =Xo/37 . (4.4)
The eigenvalue A, ,  is just the rate to hop the barrier at
x,,. From Eq. (2.9) we have

—m [E(x, +1/2)—E(x, —1/D]/T
}Lm+1:Rn0 me m m
:Rnofmekx037m/2 4.5)
and using x,= —21InR /k1n3 gives
—m —(1/3™n3)
Ay =R " L (4.6)

The term (1/3™In3) in the exponent of R above rapidly
becomes a negligible correction as m increases, so except
at the longest time where small m terms dominate the
sum- (4.2), we can ignore it. Inserting Eqs. (4.4) and (4.6)
into (4.2) then gives

—(kx2372m 24"

(x()x(0))~ 3 x2e 4.7)
. m=0
As k—0, the asymptotic decay time 7=1/A;— 0.

For large t <7, we can approximate the sum over m in
(4.7) by the saddle-point term at
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— o
m*=In InR R t /ln R (4.8)
In3 Kx?3 32
yielding a stretched exponential form
(x(Ox(0) ~ | L | e—/?” 4.9)
T
with
21n3
=<0 4.10
B(R) 21n3—InR ( )
and
KX 23 | 1777 —m3
0 n —In —n
F=|— [1—"— —= |R kx}. (4.11
2 [1 InR InR wxp - @11

At the critical value R, =1, Eq. (4.10) gives B(R,)=2.
Thus B jumps discontinuously from 1 at R >R, to % at
R =R_, and then decreases continuously to zero for
R <R.. Had we considered a p-branching hierarchy of
barriers, instead of the tribranching hierarchy considered
above, the only change is that the relevant barriers now
occur at positions x,, =x,/p™. Now one finds B(R)
=21np/(21lnp —InR). However, calculation of the
diffusion constant (2.22) as in Sec. II C, shows** that the
critical value is now R, =1/p. So B(R,)=2 independent
of the branching ratio p.

Having demonstrated that the decay approaches a
stretched exponential at large t <7— o0, it is important
to consider how long it takes until this stretched ex-
ponential form is reached. Using Eq. (3.8), x053n° /2
= —2InR /kIn3, one can rewrite Eq. (4.11) in the form
"o2B(R)1/AR) (4.12)

with B(R) given by Eq. (4.10). Comparing with Eq. (3.9)
for the true asymptotic exponential relaxation time

—o+1/1n3
r=R "7 "™ we see that for fixed R,

F~V'T.

F=R

(4.13)

In order for the analysis above which derived the
stretched exponential to be valid, it is necessary that we
be considering times large enough that ¢tA,, . ~1 for m
representing some localized eigenstate. Otherwise, if
tA,, +1<<1 for all localized states, relaxation will be
governed by the eigenstates with shorter relaxation times
1/A which are extended about the origin on the equilibri-
um length scale, and so Egs. (4.4)-(4.6) will no longer ap-
ply. From Egs. (4.6) and (3.9) we have A,, . ;=R "® " so
the condition for the stretched exponential form to apply
becomes t ~R " n°, or using Eq. (4.12), ¢t must be large
enough that

—ng+ng/2
X 0 0 B 1/B8 ,
where 3" "™ /3 s the position of the localized eigen-
state closest to the origin. If we estimate this to occur at
a distance ~3Leq=3/\/:_(, use Eq. (3.8) for ng, and (4.10)
for 3, we get the requirement

t/7>R"me 4.14)
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InR /21n3 1—InR /21n3

_ InR
21n3

—InR
91n3

t/7T>

(4.15)

in order for the stretched exponential derived above to
apply. For values of R =0.3, 0.2, 0.1, and 0.05, one gets
t/7>6.2, 9.8, 20, and 39, respectively. As R decreases,
one must wait times an order of magnitude or more
greater than 7 in order to see the stretched exponential
form e /7", Thus in fitting data to this form one
should fit only in the long-time tail of the correlation
function, and not at shorter times ¢t ~7.

B. Simulation of correlation function

Since the stretched exponential behavior derived in
Sec. IV A above was shown to apply only at relatively
long times ¢ > 7, it is interesting to see how the correla-
tion function decays at shorter times. I have therefore
performed numerical simulations to directly compute the
correlation function {x (¢)x (0)). I have chosen a partic-
ular model where the parameters k and R may be related
to temperature 7 in a natural way

x=xo/T, R=e T (4.16)
so that
Ko
k=——InR . 4.17)

0

This choice corresponds to a model with no equilibrium
phase transition*’ at finite T, however, we expect a dy-
namic transition at T, =—A,/InR.. For such a model,
combining Egs. (4.17) and (3.8) gives the most difficult
barrier to cross occurring at

3" 24

o= - Koln3

(4.18)

independent of temperature. The true asymptotic relaxa-
tion time at low temperatures 7, Eq. (3.9), behaves as

/ T
and diverges with an Arrhenius form as T—0, provided
Ko/Ay<4e " !/In3.

I have numerically simulated a particle taking a one-
dimensional random walk with hopping rates given by
Eq. (2.9) with (4.17). In order to have decay times
sufficiently short that reasonable statistics could be ob-
tained, I have chosen a value «k3/A;=0.01. The initial
position of the particle was selected randomly from the
equilibrium distribution (2.6). At each update, the parti-
cle was moved one step to the right with probability
P=W, i1/ (W, 11T W, x—1) or one step to the left
with probability ¢ =1—p. After each update the time
was advanced by At =1/W, ., according to whether
the particle moved right or left. Thus a trajectory x (¢;)
was generated. The correlation function {x (¢)x (0)) was
computed by averaging over 50000 independent random
walks on a 3% site chain. Results, showing the decay of
the correlation function versus Int, are given in Fig. 8 for

n | —2 03 | +1
n4A0n

(4.19)

exp l—AO
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<x(t)x(0)>/<x2>
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time t

10000

FIG. 8. Correlation function {x (#)x(0))/{(x?) vs Int from
numerical simulations, for the values R =0.4, 0.3, 0.2, 0.1, and
0.05. The solid lines are empirical fits to a stretched exponential
form.

several values of R from 0.3 to 0.05.

For the value x,/A,=0.01, Eq. (4.18) gives the most
difficult barrier at ny=35 or x,=121. The equilibrium
length L., =1/V'k varies between 9.1 at R =0.3 and 5.8
at R =0.05. Thus there are at most three relevant local-
ized states, and it is questionable whether the approxima-
tions of Sec. IV A are applicable. Further, at the smallest
R’s where the states are most sharply localized, Eq. (4.15)
would give the predicted stretched exponential behavior
only at times much longer than were achieved in the
simulation. Nevertheless, we can still empirically fit the
decays gf Fig. 8 to a stretched exponential form

e /™" for the range of r shown. In Fig. 9 I show the
results of fits of In{—In[{x(#)x(0))/{x%)]} to a
straight line, determining the empirical 7* and B*. These
fits are shown as solid lines in Fig. 8. The resulting decay
times 7* are plotted in Fig. 10, together with the true
asymptotic exponential decay time 7 of Eq. (4.19) and the
asymptotic stretched exponential decay time 7 of Eq.

2,

-In[<x()x(0)>/<x">]

R=0,05 4
R=0.1
R=0.2
R=0.3
R=0.4

0.1 ! L .

10 100 1000 10 000 100 000
time t

FIG. 9. Data of Fig. 8 replotted as

In{—1In[{x(£)x(0)) /{x?)]} vs Inz. The solid straight lines
determine the parameters of the fitting stretched exponential

£
(x ()% (0)) /{x2)=e—t/™P"
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relaxation times
s
-

A A 1
Rz o T R,

FIG. 10. Time scales of the numerically simulated model vs
—InR ~1/T. 7=1/A, is the true asymptotic exponential decay
time given by the time to hop the most difficult barrier, Eq.
(3.9). 7 is the decay time of the long-time stretched exponential
given by Eq. (4.12). 7%, shown as dots, is the decay time of the
stretched exponential empirically fitted at shorter times, to the
data in Figs. 8 and 9. 7* diverges with an apparent Arrhenius
form.

(4.12) for comparison. The empirical 7* has an apparent
Arrhenius behavior. The resulting parameter B* is
shown in Fig. 11, with B(R) from Eq.-(4.10) for compar-
ison. B*=1 for R > R, and decreases continuously below
R, with no apparent jump at R,.

V. SUMMARY

In this paper I have extended previous work on hop-
ping in hierarchical structures to include the effects of a
background potential. The potential introduces asym-
metry in the hopping rates, and a unique global minimum
to which the system tries to relax. It was shown that the
vanishing of an effective diffusion constant, characteriz-
ing the barrier structure, led to localization of the low-
lying eigenstates of the master equation, at the most
difficult barriers to cross. This localization led to a tran-

1.0

0.8

0.6

0.2 :
0.01 0.1 A

R=e¢ AT ¢

FIG. 11. Exponent 8* of the empirically fitted stretched ex-
ponentials to the data of Figs. 8 and 9. B(R) from Eq. (4.10) is
shown as a solid line for comparison.
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sition from pure exponential relaxation at all times, to
stretched exponential relaxation at long times.

Although the model treated here is a very specific one,
the qualitative features found should apply more general-
ly, and be of relevance to more realistic glassy systems.
The specific form of the hierarchy chosen in this model
played an important role in deriving the asymptotic
stretched exponential relaxation in Sec. IV A. However,
it was shown that this asymptotic form is generally only
reached at very long times, and could in fact not be
detected in the simulations of Sec. IV B. Nevertheless,
even at shorter times where there are no strict arguments
predicting a stretched exponential, the stretched ex-
ponential provided a reasonable fit to the numerical simu-
lations. Similar observations have been made in other
models,'>!” and it has been noted experimentally® that
data-may often be equally well fit to the sum of a few ex-
ponentials. Thus it is unclear whether the stretched ex-
ponential form has a fundamental significance, or is
merely a convenient empirical parametrization for fitting
data.

To further test the sensitivity of the results to the par-
ticular hierarchy chosen, I have performed calculations
of the lowest, nonequilibrium eigenvector in a related
model in which the positions of the barriers are now ran-
domly shuffled. The same qualitative features as in the
hierarchical ordering were observed. For R > R_, where
the diffusion constant D >0, this lowest eigenvector al-
ways approached the equal barrier form (2.17) as k—0,
irrespective of barrier order. For R <R_, this eigenvec-
tor always became peaked at the most difficult barrier to
cross. If this barrier happened to be located far from
equilibrium, the state was well localized. If it was located
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within the equilibrium length 1/V'k it was peaked at the
barrier, but more spread out. Thus the eigenstate struc-
ture remains qualitatively different in the two regions,
and one would again expect to see a transition to anoma-
lously slow decay in the correlation function at R.

One may question whether effects similar to those
presented here will exist in higher dimensions, where the
system can find paths around particularly difficult bar-
riers. While it has been shown that, for all dimensions
greater than two, asymptotic motion is always diffusive in
models with short-range correlated random forces,*®
models with long-range correlated random forces can
have subdiffusive asymptotic behavior in any dimen-
sion.>>3% Thus the notion of the vanishing of an effective
diffusion constant describing motion on a complicated
free-energy surface may extend beyond the present one-
dimensional example to more general geometries. In
such cases, the idea that anomalous relaxation is associat-
ed with the localization of states in deep wells far from
equilibrium, may prove to be a realistic interpretation of
the phenomenon.
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