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We study the properties of a vortex-line liquid, within a uniformly frustrated three-dimensional
XY model, as a model for a type-II high-T. superconductor. The vortex structure function S(q.,¢-)
is computed with Monte Carlo simulations, and our results compared with hydrodynamic and two-
dimensional boson approximations. Properties of the elastic moduli are discussed.

Much recent research on the type-II high-T, supercon-
ductors has concerned fluctuations of the vortex lines in
the mixed phase. As temperature 7" is lowered below
the onset of sizable reversible magnetization, Te2(H), a
vortex-line liquid phase! is believed to exist, until the “ir-
reversibility line” is reached at lower 7" where the vortex-
line liquid freezes? (into either a lattice,>* or pinned
vortex-line glass®). Several theoretical works have sought
to describe behavior in this line liquid phase.35-13 A
particular quantity of interest is the vortex structure
function®”® S(k) which measures correlations between
the vortices in the planes perpendicular to the applied
magnetic field. From S(k) one may extract correla-
tion lengths, and infer properties of the effective elas-
tic moduli of the fluctuating line liquid. In this pa-
per we use Monte Carlo simulations to calculate S(k)
within a simplified model of a high-T, superconductor,
the uniformly frustrated three-dimensional XY model.
This model has been previously introduced by us!?® to
investigate vortex-line lattice melting, and vortex-line
cutting, and applies in the high field, dense line limit,
where the magnetic penetration length A > a,, the av-
erage spacing between lines. We compare our results

against the hydrodynamic”® and two-dimensional boson
approximations.”
Our model is given by the Hamiltonian
'H:JQZV(H,'—GJ' —-A,']'), (1)

(ij)

where 6; is the phase of the superconducting wave func-
tion at site i, A;; = (2¢/hc) [] A -dlis the integral of the
vector potential from site ¢ to site j, and the sum is over
nearest-neighbor sites of an Ly x L1 x L, cubic lattice.
We assume a uniform magnetic induction B = V x A
in the # direction, which induces an average density of
f = Ba%/®, vortex lines in the ground state (a is the
lattice constant, ®¢ is the flux quantum). We use the
Villain interaction4

V(a) = —(T/Jo)In ( Z exp[—3Jo(a - 27rm)2/T]>

N @)

F =

Hio=Z,Y
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as opposed to the cosine interaction of our previous study,
in order to eliminate the coupling between spin wave and
vortex excitations of the Hamiltonian (1).

A standard duality transformation'® gives the interac-
tion between the vortex lines of (1) as

Hy =2100 ) ) nu(i)nu ()G — 1), (3)
ij s

where n,(7) is the integer vorticity of the face with nor-
mal i = X, y, Z of the unit cell centered at the dual
lattice site . G is the lattice Green’s function which
solves D;;G(rj — ri) = —6;k, where D;; is the lattice
Laplacian. G(r) ~ 1/(4nr) for r > a. Taking Fourier
transforms, n,(k) = 3, n,(2) exp(ik - r;), we have

_ 2mw2J,

Hy = ~

Y nu(k)nu(~k)Gy, (4)
k,p

where N = L2 L,, and
Gr=1/K?=1/(K?+ K?),
K2=2-2cosk.a, (5)
K_2L =4—2coskza— 2 coskya.

Note K2 ~ (ka)? for small ka, however they are different
at large ka due to the discreteness of the lattice.

This model describes a lattice version of an isotropic
type-II superconductor where Jo = ®3/(1673A%). The
coherence length is £&g ~ a. Since the interaction be-
tween vortex lines is G = 1/K? instead of the London?®
1/(K?+ A~2), our model will only be correct for describ-
ing fluctuations of a superconductor on scales k > A~!.
However for the high-T. materials, A/&, is generally
large, so that for a wide range of applied magnetic field
H., < H < H.3, A > a,, the average vortex spacing.
For such H, our model will apply in the wide range of
interest A= < k < aj!.

Following the works of Marchetti® and Nelson and
LeDoussal” on continuum vortex lines, it is straightfor-
ward to derive the hydrodynamic limit of S(k) for our
lattice model. Coarse-grain averaging the microscopic
(4) gives a free energy on hydrodynamic scales k < a;’!,

Q,Vlfzz(m(k) > [6n“(k)6n“<—k>]+c1(k>6nz(k><snz<—k)>, ®)
k
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where the én,(k) give the deviation from the ground
state and are now viewed as independent continuous vari-

ables. c¢44 and ¢; are the tilt and bulk moduli on the
lattice with
ci(k) = 4% f2JpGr, caa(k) = (k) + fei (k). (7N

We write Jg instead of Jg to allow for possible renormal-
ization of the coupling constant in the coarse-graining
procedure. ¢; is the single-vortex-line tension, which
may depend!®!? on k, due to the interaction (3) be-
tween the different segments of the single line. The dif-
ference cq4 — ¢; just gives the additional energy needed
to create the elongation of the vortex lines described
by the transverse components of the fluctuation.® Us-
ing Jr = ®3/16w3)%, (7) are just the usual continuum
moduli,!® in the limit £ > A~!. Similar results have been
obtained by Sudbg and Brandt,!? expanding about the
elastic limit of the vortex-line lattice in a continuum.

Using (6) to average over én,(k) subject to the
constraint that vortex lines must be continuous,
2_u "u(k)[1 — exp(ik,)] = 0, one finds for the structure
function

S() = 3 {ma (k) (~K))
__TPK}
T a(K)K? + caa(k)K?2
B TK? @®
T 4nig + (k) fIKZ

Defining  the  Fourier  transform, S(ky,2)
= (1/L.) ), S(ky,k.)exp(—ik,z), if the pole of
S(ky,k.) is at small enough k so that the hydrodynamic
result (8) is valid, and €,(k,) =~ €,(0), we have

S(kJ_,Z):S(kJ_,z :O)e‘z/f(k.x.)’ (9)
where the decay length satisfies

1/€(ky) ~sinh[1/€(k.)]
TR
- 261(0)5(](_]_, z = O) ’

(10)

As noted by Nelson and LeDoussal,” this result has
exactly the same form as Feynman’s approximation'®
for the energy spectrum of a two-dimensional super-
fluid Bose gas, with the identifications: 2 = time axis,
€1(0) = the boson mass, T = hk, S(ki,z = 0)/f =
the two-dimensional static form factor for neutron scat-
tering off the boson fluid, 1/£(k) = the frequency (en-
ergy) spectrum of the superfluid excitations. Nelson®®:7
has extended this analogy by introducing the “two-
dimensional boson approximation,” in which the full
three-dimensional interaction between all vortex-line seg-
ments (3) is replaced by an effective two-dimensional
interaction between segments which lie in the same
z plane (“equal time boson interaction”), and hence
€1(k:) — €1(0), all k, (“frequency independent boson
mass”). The result of a Feynman approximation? in this
two-dimensional boson system is that (10) should hold
at all k, not just in the hydrodynamic limit. This is

5719
—r 6
10} 3
1 Vortex liquid 15 o
-
=08} TN T>T, 1]
: )
g Ground-state =}
S 0.6 vortex lattice I3 3=
=1
> + o
Foa 5 12
o) + o
o2t + 1 B
+ =]
&)
. ! o]
%0 10 T Te 20 3.0
FIG. 1. Helicity moduli T, and correlation lengths ¢,

parallel and perpendicular to the magnetic induction B.
Y:1 — 0, £-,1 — oo locates the superconducting, vortex
lattice melting transition 7T, ~ 1.7. The inset shows the po-
sitions of the vortex lines in their ground-state lattice, in a
plane perpendicular to B.

equivalent to assuming that, at all k, S(k) satisfies the
relation”1®

TK3/S(ky, k) = 4rJp(ky) + [a(0)/fIK2. (1)

To investigate these predictions for S(k) we have
carried out Metropolis Monte Carlo simulations of the
Hamiltonian (1). The results presented below are for an
N = 203 lattice, with periodic boundary conditions in all
directions. We consider the case f = %, giving 80 vortex
lines in our system. The unit cell of the ground-state vor-
tex lattice (a, = \/5) is shown as the inset to Fig. 1. We
use typically 30 000 passes through the lattice to compute
averages, after 5 000 passes for equilibration. Henceforth,
energy scales will be quoted in units of Jo, and lengths in
units of a. A simple algorithm!3 locates the vortex lines
in the phase variables 6;, and allows a direct computa-
tion of S(ky,z) which we Fourier transform to obtain
S(ky,k;). The allowed wave vectors are given by k, =
27my/L,, m, =0,...,L, —1. We have considered here
only the values of k; = (ks,ky) = (27my/L,)(2,1), in
the direction of the shortest periodicity of the ground-
state vortex-line lattice; for T' < T¢, S(ky,z = 0) has a
pth Bragg peak at |k, | = 27p/a,, or m, /L, = p/5 (for
L, = 20, these occur at m; = 4,8).

In Fig. 1 we show our results for the helicity mod-
uli T, ; and liquid phase correlation lengths ¢, ,, par-
allel and perpendicular to the magnetic field. T,
is computed using the standard fluctuation relation.2°
& = €(kyL = 27/ay) is obtained from a fit to Eq. (9) and
is just Nelson’s “entanglement correlation length.”3:%:7 ¢,
is estimated from the width of the peak in S(k.,z = 0).
As T increases, {, —~ 1 the spacing between planes,
while £, — a, = /5 the average spacing between vor-
tex lines in the plane. Y, , — 0 gives T, ~ 1.7 as the
superconducting transition temperature where phase co-
herence is lost. The divergence of £, at T, indicates
that this is also the vortex-line lattice melting temper-
ature. The increasing ratios T,/Y, and &,/£, as T, is
approached from both below and above, are suggestive
of the proposed anisotropic scaling in this system.3

In Fig. 2 we show the values of Jg and €;(0), resulting



5720
10 - 1.5
-~ . . .
~ ° L d )
S ; 2
= \ ~
=, 10
w \\ -
g 5 \\\ o Jr/Jdg ED
o o &(0)/J, a
s LN los 2
Q o nJy /I )nWrE,)| O
g ~\\ 4; R 0 z
= T -
3
f T °
?.5 2.0 T 25 3.0 0.0

FIG. 2. Hydrodynamic parameters Jr and €:(0) from fit-
ting to Eq. (8). The line tension ¢;(0) is in good agreement
with the form 7 JrIn(y/7€;), shown as the dashed line. &, is
taken from Fig. 1.

from a fit to the hydrodynamic form (8), as k — 0. The
coupling shows a noticeable renormalization, Jg ~ 1.2J.
The line tension €;(0) is found to decrease to zero as T
increases above T,. We can understand this behavior as
follows. For A > &p, the line tension of an isolated line, as
first given by Abrikosov, is €;(0) = (®o/47))2In(A/&) =
7JoIn(A/€). In our lattice model, although the range
of the bare vortex interaction is A — oo, the screened
interaction in the line liquid phase (where T — 0) has a
finite range ~ £,. This suggests that the hydrodynamic
€1(0) is given by the above Abrikosov result, but with
the replacement A — &, in the logarithm [or equivalently,
using the single line tension!®17 ¢, (k,) ~ mJo In(1/k, &)
evaluated at k, ~ 1/£,]. Using the same renormalization
factor as found for Jo, and approximating & by 7€2 =
a? =1, we plot in Fig. 2 as the dashed line, 7Jg In(/7€,),
using &, (7T) from Fig. 1. Provided &, is not too small (so
that the Abrikosov result remains valid), we find good
agreement with the hydrodynamic €;(0). When &, < 1,
€1(0) ~ 0, and the planes decouple.!®?!

In Figs. 3(a) and 3(b) we plot the quantity
TK?/S(ky,k;) [see Eq. (11)] versus K2 and K%, for
T = 1.75. In 3(a), the curves correspond to different val-
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FIG. 3. TK2%/S vs (a) K2 =2 -2 cosk, and (b) K3 =
4 —2cosk; — 2 cosky, at T = 1.75. In (a), the curves are
for different ky; my = 4 corresponds to |ki| = 2n/a..
The dashed lines at small K. indicate the increasing slope
for increasing k;. In (b) the curves are for different k..
k1| =2n/a, occurs at K3 = 5.
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FIG. 4. Decay length £(k1) vs k1 obtained from fitting

data to Eq. (9), compared with the two-dimensional boson ap-
proximation Eq. (10). The minima occur at the Bragg peaks
of the T < T¢ line lattice. Data is for 7" = 1.75.

ues of k; = (2rm_ /L;)(2,1); in 3(b) the curves are for
different values of k, = 2xm,/L,. The nonlinear shape
of the curves in Fig. 3(a), disagrees with the simple form
(11), and gives an €;(k.) that decreases as k, increases,
in qualitative agreement with predictions for c44 — ¢; [see
Eq. (7)] from continuum elastic theory.1®172! Lines are
softer to bending at smaller wavelengths. Furthermore,
although the curves in Fig. 3(a) have qualitatively the
same shape, the slopes as k, — 0 increase as k; increases.
Thus to put our data in the form (11), it is necessary to
let €; depend on both k, and k) (or equivalently let Jg
depend on k).

While these deviations from the simple form (11) are
due in part to the simplicity of the boson model in
approximating the three-dimensional interactions of the
vortex lines, we point out that the Feynman approxi-
mation which gives (11) for the Bose system, is in it-
self a very simple approximation (it gives a roton min-
imum twice as large as experiment!® when applied to
three-dimensional superfluid He) and that the true two-
dimensional boson dynamic structure function may be
more complicated than (11).

The m, = 0 curve in Fig. 3(b), gives the k; depen-
dence of the coupling Jg, or via Eq. (7), the bulk modu-
lus, Jg o ¢;K2. In the hydrodynamic approximation (8)
onscales ky < aj!, this is expected to be a constant. In
contrast, we see a fairly strong dependence, decreasing as
K%, until a minimum is reached at k; = 27/a,. It would
be interesting if such a softening of the macroscopic elas-
tic moduli is also present in the vortex-line lattice phase.

Finally, in Fig. 4 we show the decay length &(k ) ver-
sus k3, at T = 1.75, obtained from fitting our data to
Eq. (9). We compare this to the two-dimensional boson
approximation Eq. (10). Despite the quantitative inaccu-
racies of this approximation (as illustrated by Fig. 3) the
two curves show the same qualitative behavior, having
their minima at k; = 27p/a,, p = 1,2, where the vortex
lattice below T, has its Bragg peaks. That the curves
approach a finite value as k; — 0 (i.e., the “boson en-
ergy spectrum” is plasmonlike, rather than phononlike)
is a consequence of the vortex interaction in our model
being long ranged,'® Gy = 1/K?, rather than the finite
ranged 1/(K? 4+ A~2) (had our interaction been the lat-
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ter, we would expect the curves in Fig. 4 to decrease
linearly to zero once k; decreased below /\'1). The two
curves agree at small k) because €;(0) of Eq. (10) has
been obtained from the hydrodynamic fit at small k.
At larger k,, the boson model gives a factor ~ 2 — 3
too large. Had we instead chosen to apply Eq. (10) us-
ing €;(k, = 0) obtained from the slope of the curve in
Fig. 3(a) at k. = 27/a,, the two curves in Fig. 4 would
agree quite well for k; 2 27/a,, but disagree at smaller

We have checked our results for finite-size effects, by
also carrying out simulations on an N = 103 lattice. We
have found no appreciable differences, except very close
to T.. This is not surprising, as over most of the tem-
perature range for which we have analyzed our data, the
correlations lengths €, | < 6 (see Fig. 1) are significantly
smaller than the length L = 20 of the system. In partic-
ular, we expect our hydrodynamic fits in the vortex-line
liquid phase to be valid for T' > 1.75.

To conclude, we have computed the structure function
S(k) of a model high-T, superconductor in the dense line
limit, A > a,, and extracted from it information about
the correlation lengths and elastic moduli in the vortex-
line liquid phase. We find that the line tension €;(0) de-
creases in the liquid phase as £, decreases below A. Our
results show the importance of including the full three-
dimensional interaction between vortex lines for calcu-
lating the correct k dependence of elastic properties (in
particular €;). Nevertheless we have found that the sim-
plified two-dimensional boson approximation gives qual-
itatively correct behavior for many interesting features.
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