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We carry out Monte Carlo simulations of the uniformly frustrated three-dimensional XY model,
as a model for vortex-line fluctuations in high-temperature superconductors in an applied magnetic
field. We show, comparing systems of different size, that there are two distinct phase transitions. At
a lower T, , the vortex lattice melts, and coherence is lost in planes perpendicular to the magnetic
field. At a higher T.,, a vortex tangle percolates throughout the system, and coherence is lost
parallel to the magnetic field. Cooling below T, high-energy barriers for vortex-line cutting lead

to an entangled glassy state.

I. INTRODUCTION

In several earlier works''? we introduced the three-
dimensional uniformly frustrated XY model,® as a phe-
nomenological model for studying phase transitions, and
the effects of vortex-line fluctuations, in the mixed state
of high-temperature superconductors in a uniform ap-
plied magnetic field. This model applies in the strongly
type-II limit where the magnetic penetration length is
much greater than the average vortex-line separation,
A > a,, and the magnetic induction inside the super-
conductor is approximately uniform. In our most recent
work,? henceforth referred to as (I), we found evidence
that the system undergoes two distinct phase transitions
upon heating. First, at the lower T, , the vortex-line lat-
tice melts, destroying superconducting phase coherence
in directions perpendicular to the applied magnetic field;
coherence parallel to the field however remains. Then, at
the higher T.,, coherence parallel to the field is lost as
well.

In the present work we extend the results of (I) in
several major directions: (i) By presenting detailed stud-
ies of the system behavior as the system size is varied in
the directions parallel and perpendicular to the magnetic
field, we show clearly that the two distinct transitions
found in (I) are not artifacts of finite size effects. (ii) We
show that the upper transition T,, can be viewed as a per-
colationlike transition, where the vortex lines become so
completely interconnected through mutual intersections
that one may trace out a connected path of vortex-line
segments which travels completely around the system in
the direction perpendicular to the applied magnetic field.
(iii) We find, in contrast to our earlier results, that be-
low T., the energy barrier for vortex-line cutting grows
so large that cuttings are frozen out on the time scale of
our simulation, and the system can cool into an entangled
glassy state as in the “polymer glass” picture originally
proposed by Nelson* and further studied by Obukhov
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and Rubinstein.®

The remainder of our paper is organized as follows. In
Sec. II we outline our model and Monte Carlo method.
In Sec. III we present the results of our simulations.
Section III A gives results for the helicity modulus, which
measures superconducting phase coherence. Section III B
gives results for the average length of vortex lines due to
thermal fluctuations. Section IIIC analyzes the entan-
glement of the vortex lines by considering the winding
of the field induced vortex lines about the direction of
the magnetic field. Finite size dependences are investi-
gated. Section IIID gives results concerning the distri-
bution of thermally excited closed vortex rings. Section
IIIE discusses the “two-dimensional (2D) boson” ana-
logue to vortex-line fluctuations, as applied to our model.
In Sec. IV we summarize our results and discuss the pos-
sible connection to recent experiments.

II. MODEL
The model that we study is given by the Hamiltonian?®
HO:] = Jo Y V(0 —0; — Aij), (1)
(23)
where 6; is the phase of the superconducting wave func-

tion at site 7 of a three-dimensional cubic numerical mesh,
the sum is over all nearest neighbor bonds of this mesh,

J
Aij:%/A-dl (2)

is proportional to the integral of the fixed magnetic vector
potential A across bond (ij) (P9 = hc/2e is the flux
quantum),

oo

V(a) = —(T/Jo)ln{ >

m=—00

exp [—%Jo(a — 27m)? /T] }
(3)
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is the Villain interaction between neighboring sites, and
the coupling is

_ B3
07 16m3)2’ (4)

where we identify the vortex core radius £, with the lat-
tice constant a of our numerical mesh. For our numeri-
cal studies we take an isotropic uniform constant Jy, al-
though this could be varied if desired to model the effects
of anisotropy or randomness. Periodic boundary condi-
tions are chosen in all directions.® Numerical meshes of
various sizes L3 x L, are studied (the subscript “1” will
refer to the X and y directions, transverse to the applied
magnetic field).

The approximations which lead from the familiar
Landau-Ginzburg free energy functional to the Hamilto-
nian (1), and their justifications in the A > a, limit, have
been described in detail in (I). In the following, we study
the specific case where the uniform magnetic induction
B =V xAis f =1/25 flux quantum per plaquette of
the mesh, oriented in the Z direction. The ground state
is a square periodic lattice of straight magnetic field in-
duced vortex lines with spacing a,/a = 1/\/f = 5, as
shown in Fig. 1. Henceforth, we cite all lengths in units
of a ~ &y, and energies in units of Jy. The total number
of field induced lines is N, = fL2.

Our Monte Carlo simulations are carried out using the
standard Metropolis algorithm. Performing the simula-
tion in terms of the phase variables 6;, we locate the
vortex lines in any particular configuration by comput-
ing the net phase change around every plaquette of the
mesh. We define as an intersection, or cutting, between
two vortex lines whenever we find a unit cell of the mesh
which has more than one vortex line entering and leaving.
In such a situation, we randomly assign which exiting
segment is connected to which entering segment, for the
purpose of identifying the paths of these particular lines.
Each of our data points is typically the result of 2000
sweeps to equilibrate, followed by 15000 sweeps to com-

FIG. 1. Ground-state vortex-line lattice for a magnetic in-
duction of f = B£3/®o = 1/25 flux quantum per unit cell of
the numerical mesh. The view is along the direction of B and
(+) locates the positions of the straight vortex lines.
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pute averages, where each sweep refers to one updating
pass through the entire numerical mesh. Our calcula-
tions were carried out on a Sparc 10 workstation; for our
largest system, 252 x 200, each temperature point took
approximately 2 CPU days of computation.

II1. RESULTS
A. Helicity modulus

To investigate phase coherence, we compute the he-
licity moduli, which give the stiffness of the system to
twisted phase boundary conditions [see (I) for derivation].
In Fig. 2 we show our results for the helicity modulus
Y, (T) perpendicular to the magnetic field, and Y,(T)
parallel to the magnetic field, for lattices of fixed size
L, = 25, but varying L, = 50, 100, and 200. In Fig.
3 we show Y, (T) and Y,(T) for approximately equal
L, = 24, 25, but varying L, = 25 and 50. We see clearly
two transitions, with T, vanishing at T.; ~ 1.35, and
Y, vanishing at T, ~ 2.6. Comparing the results from
different L, and L,, finite size effects are generally seen
to be small; hence we have clear evidence for three dis-
tinct thermodynamic states. The middle state is one in
which superconducting phase coherence is destroyed in
planes perpendicular to the magnetic field, but coherence
is preserved in the direction parallel to the magnetic field.
Comparing the results for heating versus cooling, we see
only a small hysteresis in YT ,; however, hysteresis in T
increases with increasing L,. We will see that this hys-
teresis in Y is related to the entanglement of the vortex
lines as they cool into a glassy state.

B. Vortex-line lengths

As a first measure of the amount and nature of
vortex-line fluctuations, we consider the average density
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FIG. 2. Helicity modulus Y, along the direction of B, and
T, perpendicular to B, for lattice sizes L, = 25 and varying
L, = 50, 100, and 200. Both heating and cooling are shown.
The vanishing of Y. , indicates two separate transitions. No
significant finite size effects are seen.
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FIG. 3. Helicity modulus Y, along the direction of B, and
Y, perpendicular to B, for lattice sizes L, = 25, L, = 25
and L, =24, L, = 50. Both heating and cooling are shown.
No significant finite size effects are seen.

of vortex-line segments in different directions. In the
ground state, the total length of vortex-lines is N,L,
along Z, while zero along X and §. In Fig. 4 we plot the
vortex-line length density Al, versus temperature, where
Al, is defined as the total length of vortex-line segments
due to fluctuations (i.e.; in excess over the ground state
value) in direction fi, normalized by N,L,. Al, =1
represents an excess vortex-line length equal to that of
the straight field induced lines at T = 0. We see that
Alz 4, > Al, in the vortex-line lattice phase below T,
as well as for much of the vortex-line liquid phase be-
tween T, and T.,. This indicates that in these regions,
the dominant fluctuations are directed transverse fluctua-
tions of the magnetic field induced vortex lines, as shown
schematically in Fig. 5(a). Near and above T.,, however,
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FIG. 4. Line length densities Al,, measuring absolute
value of total vortex-line lengths in direction fi, normalized by
total length in ground-state N,L.. For Al., the ground-state
line length has been subtracted, in order to show only ex-
cess length due to fluctuations. Both heating and cooling
are shown for a fixed lattice size L, = 25, L, = 200. The
solid horizontal line indicates the total normalized length in
the ground state; the solid vertical lines mark the transition
temperatures as obtained from the vanishing of Y, ;.

the line pierces each plane of constant z only once. (b) shows
a field induced vortex line with an overhang. (c) shows a
closed vortex ring excitation.

we find that Al , ~ Al,. We will see that this is due
to the proliferation of closed vortex ring excitations as
shown in Fig. 5(c). Above T, Al, > 1, and the total
vorticity is dominated by the contribution from fluctua-
tions. We will see that this region is an interconnected
tangle of vortex-line segments, with no unambiguous sep-
aration between field induced lines and thermally excited
rings.

C. Entanglement

To consider the entanglement of the field induced vor-
tex lines, we make use of the periodic boundary condition
which is imposed along the direction of the magnetic field
z. If {r :(2)} are the positions in the zy plane where the
field induced vortex lines intersect the plane at constant
z, then the set of points {r;(0)} must be identical to the
set of points {r;(L.)}. If we view this periodic boundary
condition along Z as representing the circumference of a
three-dimensional torus, then the magnetic field induced
vortex lines will divide into distinct connected groups,
each of which makes a certain number of windings around
the system in the Z direction before closing back on itself.
A group making a winding m would consist of the m lines
11,12, ..., iy, satisfying the condition r;, (0) = ry,,(L.),
ri;,(0) =ri; (L), ..., r1i,(0) =114 (L,). For exam-
ple, in Fig. 6, we show a configuration with two lines of

z=L
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m=2 m=3

m=2

m=1 m=1

FIG. 6. Schematic of possible reconnections of field induced
vortex lines, under application of the periodic boundary con-
dition in the Z direction. This example shows two lines of
winding m = 1, two groups of lines with winding m = 2, and
one group of lines with winding m = 3. Solid, dashed, and
dotted lines are use to distinguish the different lines within a
particular winding group.
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winding m = 1, two groups of lines with winding m = 2,
and one group of lines with winding m = 3. Qualita-
tively, when a configuration contains only windings with
m = 1, we say that it is “unentangled.” When a configu-
ration contains many windings with large values of m, it
is highly entangled. To characterize the degree of entan-
glement, we compute the average distribution n(m) of
the total number of lines n which participate in windings
of value m: ) _n(m) = N,, the total number of field
induced vortex lines.

In Fig. 7 we plot versus T for several different sys-
tem sizes, the ratio R = n(1)/N, of lines which make a
winding of m = 1. R = 1 indicates a completely unentan-
gled set of lines. We see that for all sizes upon heating
from the ground state, R ~ 1 stays constant until about
T ~ 2.0 > T.,, then decreases to its high T' limit at T,.
Upon cooling, however, R starts to rise below T, and
saturates around T,., to a value R < 1, dependent on
system size. Only for our shortest system, L, = 50, do
we find disentanglement, i.e., R = 1 upon cooling. For
all larger L., the lines remain trapped in a nonequilib-
rium entangled state upon cooling [in (I) our system size
was L, = 24; hence we failed to see the entanglement
below T, that we now find]. The degree of this entan-
glement increases (i.e., R decreases) with increasing L,.
As this cooled state is not in equilibrium, it is unclear if
the low-temperature value of R may vary with indepen-
dent coolings, or if it may strongly depend on the rate of
cooling. To test this, we have carried out four indepen-
dent coolings of the system size L, = 25, L, = 100, and
find the T — 0 values of R = 0.64, 0.68, 0.75, and 0.79.
The second of these coolings was carried out using twice
the number of Monte Carlo sweeps per temperature as
for the rest of our data. We similarly have carried out
four independent coolings of the system size L, = 15,
L, = 100, finding values of R(T — 0) = 0.44, 1.0, 0.41,
and 0.38. The second run indicates that large fluctua-
tions in R are possible.

The strong hysteresis we find in R, which measures
the global topology of the lines, should be contrasted
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FIG. 7. Fraction of field induced vortex lines which are
unentangled, R = n(1)/N,, for various system sizes. Note the
strong hysteresis between cooling and heating. Entanglement
increases as L, increases.
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with the absence of hysteresis in the line length densi-
ties Al, (see Fig. 4), which are a local measure of line
fluctuations (the slight hysteresis in Al, , which appears
below T ~ 1.0 < T., is due to the extra geometrical
line length needed to make a quenched entangled state,
compared to a lattice of straight lines). This suggests
that the hysteresis in R is due to the energy barrier for
the cutting of vortex lines. As T decreases below T,
thermal activation over this energy barrier, which is nec-
essary to disentangle the lines, becomes frozen out on
the times scales of our simulation. As a measure of this
energy barrier, we compute the average number of line
cuttings N, (unit cells with more than one line entering
and leaving) present in the system. We then define the
cutting length {. = N, L,/N, as the average distance in
the Z direction between two successive cuttings of a sin-
gle line. We plot &. versus T in Fig. 8. Above T, we
find {. ~ 1-2 indicating a heavily interconnected tangle
of lines with much cutting. As T decreases below T, &,
increases rapidly, becoming of the order of L,. The ab-
sence of any size dependence in €. comparing the system
with L, = 50 (which disentangles upon cooling) versus
L, = 200 (which remains entangled upon cooling) sug-
gests that much of the cutting which determines £, in
the region below T' ~ 2.0 may be due to the intersection
between field induced lines and thermally excited closed
vortex rings, rather than between two field induced lines;
cuttings between field induced lines may only be occur-
ring on even larger length scales. This picture we find of
cooling into a nonequilibrium entangled state is therefore
similar to the “polymer glass” transition*° originally pro-
posed by Nelson. Comparing the data for L, = 50 with
L, =200 in Fig. 2, it is interesting to note that with re-
spect to phase coherence, entanglement has a noticeable
effect only on the helicity modulus T, ; T, seems entirely
unaffected.

As a further measure of the process of vortex line en-
tanglement, we now consider the complete distribution of
line windings n(m). In Fig. 9 we show n(m), for a fixed
system size of L, = 25, L, = 200, for various tempera-
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FIG. 8. Distance . along Z between two successive cuttings
of a single field induced vortex line. £, ~ 1-2 for T > T,
indicates a heavily interconnected vortex tangle.
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FIG. 9. Distribution of windings n(m) that field induced
vortex lines make in traveling around the system along the
Z direction. Several different temperatures are shown for the
fixed system size L = 25, L, = 200. For T > T., ~ 2.6, we
find n(m) = 1.

tures. The results shown were obtained upon cooling the
system. We find that for all T > T,., ~ 2.6, the distri-
bution is n(m) = 1 for all m; i.e., a field induced vortex
line selected at random is equally likely to belong to a
winding of any value m. This result is consistent with
the assumption that each vortex line ¢ is equally likely to
reconnect onto any other vortex line j, upon traversing
the system in the Z direction once; i.e., r;(0) =r;(L,)
is equally likely for any 7 and j. The most likely expla-
nation for such behavior is that above T, the lines be-
come so completely interconnected due to cuttings that
the global path of a given line is primarily determined
by our algorithm which makes a random choice for the
continuation of the line at each individual cutting. When
each line has sufficient cuttings with its neighbors, the re-
sulting line path our algorithm traces out is equally likely
to meander anywhere throughout the system. This con-
clusion is supported by Fig. 8 where we see {, ~ 1-2 for
T > T.,. We will see further evidence for this later when
we consider the distribution of thermally excited vortex
rings.

As T decreases below T, in Fig. 9, we find a steady
increase in n(m) at smaller m, compensated by a de-
crease in n(m) at the largest m. This is as one would
expect when the connectivity of any pair of field induced
vortex lines ¢ and j, i.e., r;(0) = r ;(L.), becomes dom-
inated by the thermal transverse wandering of the lines
as they pass through the system along Z, rather than by
line cuttings. As T decreases, the transverse wandering
decreases, and the probability for near neighbor recon-
nections increases with the resulting increase in n(m) for
small m. It is interesting to note, however, that even for
T moderately below T.,, there remains a wide region of
intermediate m, where we continue to find n(m) ~ 1. For
T = 2.3-2.6 we believe that, even though we are below
T.., the energy barrier for line cutting is still sufficiently
small compared to T that our data represent true equi-
librium behavior (see £, < 10 in Fig. 8, and the absence
of hysteresis in R in Fig. 7, for these values of T'). As T
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FIG. 10. Distribution of windings n(m) for fixed
T = 2.4 < T¢,, for system sizes L, = 25 and L, = 50, 100,
200. As L, increases, n(m) — 1; i.e., entanglement increases.

is cooled below ~ 2.3, the system gets trapped in some
random metastable nonequilibrium tangle.

We now consider the finite size dependence of entan-
glement. In Fig. reffiglO(c) we plot n(m) for systems
of fixed L, but varying L, = 50, 100, and 200. Our
data is for the fixed temperature T = 2.4, below T.,, yet
still high enough that we are sampling equilibrium. We
see that as L, increases, n(m) approaches the T' > T,
limit of unity. This may be understood as a result of the
increased transverse wandering of lines as L, increases,
thus decreasing the probability of neighboring pair re-
connections. Considering the value of n(1), we see that
it decreases by a factor ~ 2 as L, increases from 100 to
200, consistent with a random-walk-like behavior for the
vortex-line transverse fluctuations. This leads one to ex-
pect that in the limit L, — oo, for fixed L, the system
will remain completely entangled at all T < T..

In Fig. 11 we plot n(m) at T = 2.4 for systems of fixed
L, = 100, but varying L, = 15, 20, and 25. These are
systems with a total of N, = 9, 16, and 25 field induced
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FIG. 11. Distribution of windings n(m) for fixed

T = 2.4 < T, for system sizes L, = 100 and L, = 15,
20, 25. Distribution remains flat, n(m) ~ 1, for wide region
of intermediate m as L, increases.
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vortex lines, respectively. As the maximum winding is
always mupyax = N, the falloff of n(m) at large m oc-
curs at different m ~ N, for the different L. If we
normalize the different curves in Fig. 11 by N, [recall,
> n(m) = N,], we find that R = n(1)/N, is approach-
ing a constant value as L, — oo (see also Fig. 7). Thus
the fraction of disentangled lines is approaching a well-
defined value. However, we show the curves without this
normalization to point up the wide intermediate region
where we continue to find n(m) ~ 1 as L, increases.
These observations suggest that for T' < T, for fixed L,,
as L, increases, the equilibrium probability distribution
of windings n(m) /N, approaches a limiting form, but the
average value of m diverges.

D. Vortex ring excitations

We now consider the proliferation of thermally excited
closed vortex ring excitations as illustrated in Fig. 5(c).
Defining g(p) as the total number of vortex rings with
perimeter p, we plot in Fig. 12 the logarithm of ¢(p) ver-
sus 1/T, for p = 2,...,40. Our data is for the system
size L, = 100, L, = 25. We show the results obtained
from cooling; comparison with data from heating shows
no significant hysteresis. For T' < T,, the data fall along
straight lines over several orders of magnitude, clearly
indicating a thermally activated form. These lines inter-
sect at roughly the same temperature, 1/To ~ 0.3, thus
suggesting the low-temperature form

q(p) ~ goe EW@(/T=1/To) (5)

In Fig. 13 we plot the value of E(p), extracted from the
data of Fig. 12, versus p and find the linear dependence
E(p) = —1.14 + ep, e = 3.32. (6)

Thus for T < T¢,, the number of rings g(p) is deter-
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FIG. 12. Distribution of thermally excited closed vortex
rings of perimeter p versus 1/T for fixed system size L = 25,
L. = 100. Straight solid lines for T < T., show thermally
activated behavior.
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FIG. 13. Energy barrier E(p) for vortex rings of perimeter
p, as extracted from the T < T, data of Fig. 12. E(p) scales
linearly with p.

mined by the excitation energy to create the ring, and
this energy scales linearly with the ring perimeter. As T
decreases, large rings get exponentially suppressed.

For T > T.., we see from Fig. 12 that ¢(p) saturates to
a constant value, and that rings on all length scales p are
now present. As discussed above in connection with the
winding distribution n(m), we believe that this satura-
tion of ¢(p) is the result of a transition in which the vor-
tex lines become so heavily interconnected through cut-
tings that a connected vortex tangle percolates through
the entire system. In this heavily interconnected limit,
there is in general no unambiguous way to classify a given
vortex-line segment as belonging to a particular ring of
size p, or even as belonging to a ring versus a field induced
line. The distribution g(p) would then be dominated by
the statistics of our line tracing algorithm which makes
random choices at each line cutting, rather than by any
energetics.

In Fig. 14 we replot our data as g(p) versus p for
several different 7. We show only data for sizes p in
which the finite size effects, comparing different L, = 15,
20, 25, are small [to determine these finite size effects,
we compared the normalized ring densities g(p)/L,L? ].
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FIG. 14. Distribution of thermally excited closed vortex
rings of perimeter p versus p. Several different temperatures
are shown for the fixed system size L, = 25, L, = 100. For
T < T., ~ 2.6 solid lines are the best fit to an exponential
decay. For T' > T.. solid lines are the best fit to an algebraic
decay.
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For low T < T., ~ 2.6, we see an exponential de-
cay q(p) ~ exp(—¢'p/T), consistent with the discussion
above. Comparison with Eqgs. (5) and (6) gives for the
effective ring line tension, €', at low temperatures,

e =01-T/Tp)e. (7

For larger T' > T.,, we see a slower than exponential
decay, which is well fit by an algebraic power law, g(p) ~
p~*, x ~ 2.56, 2.69, 3.07, 3.75 for T = 5.0, 3.5, 3.0, 2.8,
respectively. The crossover from exponential to algebraic
decay occurs near T,,. The transition at 7., can therefore
be described as the vanishing of the ring line tension &’
as T increases to T,,. This picture has some similarities
with proposed vortex ring unbinding theories of the phase
transition in the ordinary three-dimensional XY model.”

E. 2D boson analogy

As a final indication that T,, is a vortex percolation-
like transition, we compute a quantity motivated by Nel-
son’s analogy* between the field induced vortex lines of
a superconductor, and the imaginary time world lines of
two-dimensional bosons. According to this analogy, the
2D boson superfluid density p, is nonzero only when su-
perconducting coherence parallel to the applied magnetic
field is lost.871% A convenient expression for p, has been
given by Ceperley and Pollack!! in terms of the “winding
number” W of boson world lines, p, = mThoson{W?2)/2k?
where Tyoson i1s the temperature of the boson system.
The mapping* to the superconductor problem is given
by A/Tvoson = Lz i = Tsyper, m — €1 ~ wJy, the single
vortex-line tension. Hence p, ~ (W2)/L,. The winding
number is defined!! in terms of the boson world lines, or
equivalently in terms of the magnetic field induced vortex
lines, as

LM
W = L, g[l‘u(Lz) —r1;(0)]. (8)

W measures the net “winding” of the lines about the
system in the zy plane [W should not be confused with
our earlier distribution n(m) which measures winding of
lines about the Z direction]. Since the periodic boundary
condition along Z implies that the set of points {r;(0)}
is equivalent to the set of points {r ;(L;)}, W can be
nonzero only if periodic boundary conditions also exist
in the % and ¥ directions. If we assume that the only
vortex lines present in the system are the magnetic field
induced lines, then W is just equal to the net vorticity
in the directions perpendicular to the magnetic field, or
equivalently the perpendicular part of the ¢ = 0 Fourier
transform of the vortex demsity n(r ,z) = (1/27)V x
v,

mg=0 — (2 - ng=0)]- (9)

Note a crucial difference between ng—¢ and the line densi-
ties Al, we defined earlier: Al, measures the total length
of vortex-line segments, independent of the direction of
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the vorticity; ng—o measures net vorticity; i.e., two line
segments oriented in opposite directions will cancel in
their contribution to ng—o.

The Hamiltonian of our system Eq.
expressed? in terms of the vortex density as

(1) can be

27T2J()

Hing) = ——2
97 L.12

> (ng — f264,0) - (g — f284,0)Gq, (10)
q

where the interaction G, ~ 1/g% as ¢ — 0. To keep the
total energy finite, we are thus rigorously constrained
in our model to configurations where nI;L:o = 0. Hence
as long as we assume that the only vortex lines present
in the system are the field induced lines, we must have
W = 0. If we now include the possibility of closed vortex
ring excitations, the identification of Eq. (9) continues
to be correct provided the rings remain of finite length
p; the net vorticity of a finite ring always vanishes as
the vorticity must always reverse direction in order for
the ring to close back on itself. Only if we have rings
so large (i.e., infinite as L | — oo) that they wind com-
pletely around the system in the X or § direction, making
use of the periodic boundary conditions to close back on
themselves without ever reversing the direction of their
vorticity, will the identification between W and n;IL___O in
Eq. (9) break down. A nonzero W computed as in Eq.
(8) is now possible, provided its contribution to nj_, is
exactly canceled by an oppositely oriented contribution
to n;]L:() from the infinite transverse ring.

In Fig. 15 we plot (W?2)/L, versus T for system sizes
L, =100, L, = 15, 20, 25, and L, = 50, L, = 25. We
see that W?2 is only nonzero above T., ~ 2.6. Thus only
above T,, do we find vortex rings that travel completely
around the system in the direction transverse to the ap-
plied magnetic field. This is only possible once the vor-
tex tangle, of interconnected magnetic field induced lines
and thermally excited rings, percolates throughout the
entire system. Note that our results for (W?)/L, show
some difficulties with the interpretation of this quan-
tity as a 2D boson superfluid density. Comparing sizes
L, = 25, L, = 50, 100, we see no change in (W2)/L,,
even though different L, correspond to different temper-
atures Thoson/h = 1/L. in the 2D boson problem. For
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FIG. 15. Winding number (W?)/L, versus temperature

for system sizes L. = 100, L, = 15, 20, 25, and L. = 50,
L, =25 W?2>0 only for T > T., ~ 2.6.
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fixed L, = 100, and increasing L, we see a steady de-
crease in (W2)/L, towards zero, in contrast to expec-
tations that the 2D boson p, should approach a finite
constant. We do not fully understand these size depen-
dences. It has been suggested® that the results of Ceper-
ley and Pollack for p, may not apply in the limit of a
long range gauge interaction between 2D bosons, such as
is the case in our superconductor problem. Nevertheless
our results continue to support the view that T, is a
vortex percolation transition.

IV. DISCUSSION

Although we have not tried in this work to model a par-
ticular high-T,. copper oxide superconductor, it is worth
indicating in what cases our results may qualitatively de-
scribe behavior in these materials. Our approximation of
a uniform magnetic induction inside the material (for-
mally equivalent to A — o00) means our model should
apply only in the limit where both the applied magnetic
field is large enough? that A > a, ~ 1/®,/B, and the
Josephson coupling between the CuO planes dominates!?
over the magnetic coupling, A. < A%,/d (where A, Agp
are the magnetic penetration lengths perpendicular to
and within the CuO planes, respectively, and d is the sep-
aration between the CuO planes). Behavior in the high-
T. materials has been further characterized with refer-
ence to a critical magnetic field,!271* B, ~ $oA2%, /A2d2.
For B < B, vortices within different CuO planes may be
thought of as correlated strings, an anisotropic Landau-
Ginzburg description is adequate, and the melting of the
vortex line lattice is “three dimensional.” For B > B,
vortices within different CuO planes are weakly coupled,
the layered Lawrence-Doniach model'® is more appropri-
ate, and melting is “quasi-two-dimensional.” Since in our
simulation we have taken Jy ~ 1/A% constant in all di-
rections, and the spacing between vortices is a, /a = 5, if
we identify the lattice constant of our numerical mesh
a with the spacing between CuO planes d, we have
®y/a2 = B < B, and our results apply in the region
where melting is three dimensional.'®

One of the primary results of this paper has been to
substantiate the existence in our model of two separate
phase transitions at T., and T.,. The transition at T,
implies the existence of two distinct vortex-line liquid
states. Nelson? had originally suggested a similar tran-
sition, between an entangled and a disentangled line lig-
uid, as a finite size effect when the entanglement length
&, ~ L,. However, as our measured Y, shows no depen-
dence at all on L, (except very close to T, ), no hysteresis
on heating versus cooling, and no dependence on the de-
gree to which the low-temperature state is entangled, we
rule out such finite size effects as the origin of our tran-
sition at T.,. In particular, using our earlier results from
(I) (see Fig. 5 of Ref. 2), we find that at least for the re-
gion 2.2 < T < T,,, &, < 10 remains many times smaller
than our largest system size L, = 200.

At the lower transition T.,, the vortex-line lattice
melts upon heating [see (I)], T, — 0, and supercon-
ducting coherence is lost in the planes perpendicular to

the applied magnetic field. At the upper transition T,
a vortex tangle percolates completely through the sys-
tem in the directions transverse to the applied magnetic
field, T, — 0, and superconducting coherence is lost in
the direction parallel to the magnetic field. Identifying
the loss of superconducting coherence with the onset of
linear electric resistivity, we therefore would expect the
following experimental consequences: As T is decreased,
the linear resistivity for currents applied parallel to the
magnetic field will vanish below T.,. However, linear
resistivity for currents applied perpendicular to the mag-
netic field will continue to remain finite below T,, until a
lower T, is reached. This result is in precise agreement
with earlier predictions by Feigel’'man and co-workers,°
who work within the two-dimensional boson approxima-
tion; similar behavior has been suggested by Glazman
and Koshelev!? for B < B,.

Recent experiments!? by Steel, White, and Graybeal
on synthetic MoGe/Ge multilayers appear to show pre-
cisely such behavior. In these experiments, in which
the magnetic field is applied perpendicular to the layers,
the authors observe a well-defined temperature “Tp” at
which the resistivity parallel to the magnetic field shows a
dramatic drop, accompanied by the onset of substantial
nonlinearities in the I-V characteristics. This suggests
a transition where the linear resistivity in this direction
vanishes. The resistivity perpendicular to the magnetic
field shows a kink at Tp, however, continues to remain
linear for temperatures T' < Tp. Such behavior is consis-
tent with that of our middle phase T.;, < T < T,,, if we
identify the experimental Tp with our T.,. These exper-
iments however appear to be in the region B > B, and
so the direct application of our results remains unclear.

A second important result of our paper has been the
observation that upon cooling below T.,, lines can get
trapped in a disordered entangled state where vortex-
line cutting is frozen out except on long time scales.
Here the disorder is purely topological in nature® and
not due to any random impurities. The importance of
such entanglement on transport properties determined by
vortex-line diffusion, has been stressed by Nelson and co-
workers,*!® particularly with regard to pinning by large
scale impurities.

Finally, we have identified the upper transition of our
model, T.,, as the temperature at which an intercon-
nected tangle of wandering vortex lines and thermally
excited vortex rings percolates through the system. Our
analysis of the vortex ring distribution suggests that this
is the temperature at which the effective vortex-line ten-
sion vanishes. Since a vortex line may qualitatively be
viewed as a one-dimensional “interface” between different
ground states of the 3D XY model, the two transitions
of our model might be viewed in analogy to the behavior
of interfaces in the 3D Ising model. Our lower melting
transition 7,.; might be viewed like a “roughening” tran-
sition. Below 7., lines remain straight as L, — oo, and
are periodically ordered. Above T, line wandering in-
creases with increasing L,, and lines are disordered in
the plane; however, lines retain a finite line tension and
so remain well-defined fluctuating objects. Our upper
transition 7., might be viewed as the “bulk” transition
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where the effective line tension vanishes, and detached
“bubbles,” i.e., vortex rings, proliferate. A similar pic-
ture is implied in work by Bulaevskii et al.!® and by
Glazman and Koshelev.!2

In our discussion of the 2D boson analogy in Sec. IITE,
we derived the important consequence that p, = 0 for all
T below the vortex percolation transition, from the ob-
servation that the vortex-line interaction of our model?
was G4 ~ 1/¢%, and hence energy conservation strictly
requires W ~ njzo = 0. This is a direct consequence of
our approximation A — oco. For finite )\, the interaction®
is G; ~ 1/(¢*> + 272), and now fluctuations with finite
n;zL:() > 0 are energetically possible in the vortex-line
liquid phase. This could imply finite p,, and vanish-
ing superconducting coherence along the direction of the
magnetic field. Recent work by Chen and Teitel,'® how-
ever, suggests that, for finite )\, superconducting coher-
ence along the magnetic field may still persist in a hexatic
vortex-line liquid state,2® which might exist intermediate

YING-HONG LI AND S. TEITEL 49

to the vortex-line lattice, and normal vortex-line liquid
states. In this case, it remains to be seen if the hexatic
to normal line liquid transition coincides with the vor-
tex percolation transition of our model, or if the vortex
percolation remains a sharp thermodynamic transition at
all. Even if a finite A should turn out to destroy the sharp
transition we find at T,,, our results may still apply in
the limit of a sample of thickness d < A (as in the exper-
iments of Ref. 17), and should indicate the existence of a
strong crossover region in thicker samples.
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