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Phase transitions in high-Tc superconductors and the anisotropic three-dimensionalXY model

Tao Chen and S. Teitel
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627

~Received 18 October 1996!

We carry out simulations of the anisotropic uniformly frustrated three-dimensionalXY model, as a model
for vortex line fluctuations in high-Tc superconductors. We compute the phase diagram as a function of
temperature and anisotropy, for a fixed applied magnetic fieldB. We find that superconducting coherence
parallel toB persists into the vortex line liquid state, vanishing at aTcz above the meltingTm. Both Tcz and
Tm are found in general to lie well below the crossoverTc2 from the vortex line liquid to the normal state.
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I. INTRODUCTION

From a phenomenological point of view, ‘‘high-Tc’’ su-
perconductors are believed to differ from convention
type-II superconductors primarily because of the dram
cally enhanced importance of thermal fluctuations.1–3 In an
applied magnetic fieldH, such thermal fluctuations are be
lieved to melt the Abrikosov vortex line lattice at a tempe
tureTm well below the mean fieldTc2 which marks the onse
of strong diamagnetism.4,5 In betweenTm andTc2 is a new
vortex line liquid state. Experimentally, this picture has be
supported by the observation that, in high-Tc materials, the
onset of reversible diamagnetism occurs at a tempera
well above that where resistance vanishes;6 the separation
between these temperatures increases with increasingH. Ac-
cording to this picture, the onset of diamagnetism atTc2 is
associated with a growth in local superconducting corre
tions, giving rise on short length scales to a finite superc
ducting wave functionc(r ) in terms of which vortex lines
can be defined. ThisTc2 marks a strong crossover regio
rather than a sharp thermodynamic transition. In the resul
vortex line liquid, free diffusion of vortex lines gives rise t
‘‘flux flow’’ electrical resistance. The vanishing of resistan
only occurs at a lower temperature when the line liqu
freezes into a lattice or glass.

To investigate the effect of thermal fluctuations on pha
transitions in type-II superconductors, within a numeric
simulation, Li and Teitel have previously introduced7,8 the
three-dimensional~3D! uniformly frustrated XY model.
Simulations of this model in the isotropic coupling limit, at
low vortex line density, gave the surprising result that sup
conducting coherence parallel to the applied magnetic fi
appeared to persist above the vortex line lattice melting t
perature, into the vortex line liquid phase.8 The goal of the
present work is to extend these simulations to a model w
uniaxial anisotropic couplings, so as to better model the l
ered structure of the high-Tc materials. We will consider
only the case where the applied magnetic field is paralle
the anisotropy axisẑ. We will map out the phase diagram i
the anisotropy-temperature plane, looking for the presenc
parallel coherence in the vortex liquid phase and dimensio
crossover as the anisotropy increases. The rest of this p
is organized as follows. In Sec. II we describe our model,
550163-1829/97/55~17!/11766~12!/$10.00
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limits of validity, and the specific parameters of our simu
tions. In Sec. III we give our numerical results, mapping o
the phase diagram, and characterizing the nature of vo
line fluctuations. In Sec. IV we discuss our results a
present our conclusions.

II. MODEL

Our model starts from the Ginzburg-Landau~GL! free
energy functional for a continuum superconductor. Maki
the London approximation that the amplitude of the sup
conducting wave function is constant outside of the norm
vortex core, we have

H@u,A#5E d3r H 12(m J̃mU¹mu2
2p

f0
AmU21 1

8p
u“3Au2J ,

~1!

whereu(r ) is the phase angle of the superconducting wa
function, andA(r ) is the magnetic vector potential. The fir
term is the kinetic energy of flowing supercurrents, and
second term is the magnetic field energy. The integra
implicitly to be cut off at the core of a vortex. In the large
k approximation which we will be making, the decrease
total condensation energy associated with vortex core
small compared to the kinetic energy term,1 and so it is ig-
nored in Eq.~1! and henceforth. The couplingsJ̃m are given
by

J̃m5
\2uc0u2

mm
5

f0
2

16p3lm
2 , ~2!

wheremm is the anisotropic mass of the superconduct
electrons in directionm̂, f05hc/2e is the flux quantum, and
the amplitudeuc0u of the superconducting wave functio
outside the normal vortex cores is related to the magn
penetration length lm in direction m̂ by2

lm
25mmc

2/16pe2uc0u2.
Our next approximation, which we discuss further belo

will be to ignore spatial variations and fluctuations in t
internal magnetic field, taking“3A5Bẑ as a uniform con-
stant. The second term in Eq.~1! thus becomes a constan
and is henceforth ignored.
11 766 © 1997 The American Physical Society
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55 11 767PHASE TRANSITIONS IN HIGH-TC . . .
Finally, we discretize the kinetic energy term of Eq.~1! to
an orthorhombic grid of points, with grid spacingsam in
direction m̂, to get8

H@u i #52(̂
i j &

Ji jcos~u i2u j2Ai j !, ~3!

whereu i is the phase angle of the wave function at sitei of
the discrete grid, the sum is over nearest-neighbor bo
^ i j &, Ai j5(2p/f0)* i

jA•dl is the integral of the magneti
vector potential across the bond, andJi j5(axayaz /am

2 ) J̃m is

the coupling for a bond in directionm̂. We make the standar
substituition of cosine for the the quadratic in Eq.~1! so as to
preserve the periodicity ofH with respect to 2p rotations of
the phase anglesu i .

We identify the grid spacingsam with the short distance
cutoff at a vortex core. For a high-Tc superconductor with
CuO layers in thexy plane, we therefore takeax5ay5j'

andaz5d, wherej' is the coherence length within the Cu
planes, andd is the spacing between the CuO planes. W
then haveJi j5Jz or J' , where

J'5
f0
2d

16p3l'
2 , Jz5

f0
2j'

2

16p3lz
2d
, ~4!

and l' and lz are the magnetic penetration lengths with
and normal to the CuO planes, respectively. We define
anisotropy parameterh as

h[AJ'

Jz
5

lz

l'

d

j'

. ~5!

Note that if the coherence length alongẑ is larger than the
interplanar spacing,jz.d, then one should replaced by jz
in Eqs. ~4! and ~5! above. In this case, since the GL fre
energy with anisotropic masses gives2 jz /j'5l' /lz ; we
have h51 and hence isotropic couplings. This isotrop
model we have investigated previously.8 In the present pape
we extend these studies to the anisotropic caseh.1.

Our approximation of a uniform magnetic field should
valid providedB is so large that the magnetic fields asso
ated with each vortex line strongly overlap, i.e.,

av5Af0 /B!l' , ~6!

whereav is the spacing between vortex lines. HoweverB
should still be small enough thatav@j' ~so details of the
vortex cores are not important!. The anisotropy must also b
such that

d,l'
2 /lz or, equivalently, h,l' /j' , ~7!

so that the Josephson coupling between the planes domi
over the magnetic coupling.9,10 Formally, our model corre-
sponds to the limit ofk[l' /j'→`, keepingJ' constant.
For our simulations, we take theAi j as fixed constants, cho
sen to give a particular fractional density,
ds

e

n

-

tes

f[Bj'
2 /f0 , ~8!

of vortex lines penetrating thexy plane.
Using the model of Eq.~3!, which is in terms of the phase

anglesu i , we will also study vortex line fluctuations. T
locate a vortex line, we compute the phase angle differe
@u i2u j2Ai j # across each bond, restricting this angle to t
interval (2p,p#. The circulation of these angle difference
around any plaquettea must then be 2p(na2 f a), where
f a50 or f depending on the orientation of the plaquette, a
a nonzero integer value ofna indicates the presence of
vortex line piercing the plaquette. Computing the vorticity
each plaquette in this fashion, we can then trace out the p
of the vortex lines.

To model a particular material, we would like to map o
the phase diagram as a function ofT and magnetic fieldB,
for a fixed value of anisotropyh. However, due to commen
surability difficulties between the triangular vortex lattic
preferred in a continuum and the discrete sites permitted
our numerical grid, different vortex line densities wou
form lattice structures of differing symmetry in the groun
state. Since we are computationally limited to a fairly coa
grid, this would make direct comparison of systems w
different B difficult. We therefore choose to map out th
phase diagram as a function ofT and anisotropyh, for fixed
B. We can see, however, using dimensional arguments,
increasingh at fixedB is similar to increasingB at fixed
h. If we measure any transition temperatureTc in units of
J' , then the dimensionlessTc /J' can only depend on the
other dimensionless parameters of the Hamiltonian~3!, the
anisotropy h5lzd/l'j' , and the vortex line density
f5Bj'

2 /f05(j' /av)
2. Since our London approximation ig

nores details of the vortex cores, if we consider the c
tinuum limit of our model,av@j' , we expect thatTc /J'

should be at most weakly dependent11 on the vortex core
radiusj' . The only combination ofh and f that is indepen-
dent of j' is h2f . Thus, the dominant dependence
Tc /J' on h and f can only be through some function o
h2f;h2B.

We can further argue how transition temperatures sho
depend on the quantityh2f . In the limit of extreme anisot-
ropy, h→`, we have completely decoupled planes, and
transition temperature should be independent ofh; thus we
expectTc;J' . In the limit of a nearly isotropic system
h;1, we expect thatTc should be independent of the spa
ing between planesd; thus we expectTc;J' /hAf
5(f0

2/16p3l'
2 )(l' /lz)(f0 /B)

1/2. These are in fact the pre
dictions for the melting temperature based on Lindema
criterion calculations.2,4,5

The crossover from small to largeh, where the discrete-
ness of the layering alongẑ becomes important and one a
proaches the two-dimensional limit, can be estimated by
criterionhcr

2 f.1 or, usingf5Bj'
2 /f05(j' /av)

2, as

hcr5av /j' . ~9!

Using an effective elastic medium approximation to d
scribe vortex line fluctuations in the line lattice, one c
show2,9 that for h,hcr , the dominant wave numberqz of
fluctuations at melting satisfies the conditiond,p/qz , and
hence the layering of the material is averaged over.
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11 768 55TAO CHEN AND S. TEITEL
h.h cr , however, the dominant wave number is
d5p/qz , and layering is important. Some theoretic
models9,12,13 have predicted thathcr ~or equivalently
Bcr5f0l'

2 /lz
2d2) will mark a dramatic change in behavio

reflecting a three-dimensional to two-dimensional crosso
Looking for any such crossover behavior athcr will be one
of the goals of this work.

Our simulations consist of standard Metropolis Mon
Carlo simulations of the Hamiltonian~3!, using periodic
boundary conditions in all directions, on grid siz
L'
23Lz . We use a magnetic fieldB which yields a fractional

density of vortex linesf51/15. The ground state vortex la
tice, shown in Fig. 1, is a nearly triangular vortex line latti
with sides of lengthA183A183A17 in units ofj' . To map
out theh-T phase diagram, we have done simulations va
ing T at different fixed values ofh on lattices of size 153.
We have also carried out simulations of larger system s
for the specific cases ofh2510,hcr

251/f515 and
h2550.hcr

2 . Our runs are typically 10 000 sweeps throu
the grid to equilibrate, followed by 128 000 sweeps to co
pute averages. These simulations are about 9 times lo
than in our previous work.8 Errors are estimated by a sta
dard data-blocking procedure.

III. NUMERICAL RESULTS

A. Phase diagram

To test for superconducting coherence, we compute
helicity moduliY'(T) andYz(T) which measure the stiff-
ness with respect to applying a net gradient~‘‘twist’’ ! in the
phase angle of the wave function along directions perp
dicular and parallel to the applied magnetic field.8 The helic-
ity modulus in directionm̂ is given by the phase angle co
relation

FIG. 1. Ground-state locations of vortex lines in thexy plane for
line densityf51/15 on a cubic grid.
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Ym~T!5
1

L'
2Lz

K (̂
i j &

Ji jcos~u i2u j2Ai j !~ êi j •m̂ !2L
2

1

TL'
2Lz

K F (̂
i j &

Ji jsin~u i2u j2Ai j !~ êi j •m̂ !G2L ,
~10!

where êi j is the unit vector from sitei to j . WhenYm is
positive, the system can carry a supercurrent, and so
sesses superconducting coherence in directionm̂. WhenYm
vanishes, superconducting coherence is lost.

To determine the vortex line lattice melting temperatu
we compute the density-density correlation function of v
tices within the same plane,

S~k'!5
1

Lz
(

r' ,r'8 ,z

eik'•~r'2r'8 !^nz~r' ,z!nz~r'8 ,z!&,

~11!

wherenz(r' ,z) is the vorticity at siter' in the xy plane at
heightz ~henceforth, we will refer to the vortices in thexy
planes as the ‘‘pancake’’ vortices!. Below melting, we ex-
pect to see a periodic array of sharp Bragg peaks in thek'

plane. Above melting, we expect to see the broad circu
rings characteristic of a liquid.

We also compute the specific heat per site of the syst
C, using the usual energy fluctuation formula. A peak inC
locates the temperature at which, upon cooling, there
dramatic freezing out of thermal fluctuations and the syst
loses the bulk of its entropy. We will take the location of
high-temperature peak~above any phase transitions! in C as
indicating the crossover temperatureTc2 where the supercon
ducting wave function develops on small length scales, v
tex lines become well-defined objects, and one has the o
of strong diamagnetism.

In Fig. 2 we show our results forY' andYz for the case
h2510. We see thatY' vanishes at aTc' significantly lower
than theTcz whereYz vanishes. We show data for heatin
and cooling, for three different grid sizes 153, 303, and
1523120. Comparing heating and cooling, we see no app
ciable hysteresis forYz . Hysteresis inY' appears only for
the 303 system, where we failed to cool back into a lattic

FIG. 2. Helicity moduliY' andYz vs temperatureT for anisot-
ropy h2510 and vortex line densityf51/15. Heating and cooling
data for three different system sizes are shown, along with re
sentative errors.
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FIG. 3. Structure functionS(k') for h2510 andf51/15 for system size 303, upon heating. The crossover from Bragg peaks to liquidl
rings occurs atTm/J'.0.43.
es

th
th
u

n
a

a

en
it
e
lts

n

t-
he
a-

re

.
the
n
g
at

Let

is
ill
e
uld
ter of

e-

t-
at
ue
There are no obvious shifts inTcz or Tc' due to finite-size
effects asL' andLz are varied. We determine our estimat
Tc' /J'.0.36 andTcz /J'.0.58 by visually extrapolating
the curves to zero from the inflection point that marks
onset of the high-temperature tails. We have found that
size of these tails tends to decrease with increasing sim
tion time, as well as with system size.

It is important to note that the finiteTc' in our model is
strictly an artifact of the discretizing grid, which acts like a
effective periodic pinning potential for the vortex lines. In
continuum model, one would findY'50 at all
temperatures,14 as the vortex line lattice is free to slide as
whole, giving ‘‘flux flow resistance.’’ A discretizing grid
removes this translational symmetry, resulting in a comm
surately pinned vortex line lattice at low temperatures, w
Y'.0. For a high density of vortex lines, it is likely that th
vortex lattice remains commensurately pinned until it me
In such a case one expectsTm5Tc' . However, recent
simulations,15–17with a more dilute vortex line density tha
studied here, have claimed evidence for a depinningTc'
which is lower thanTm, with the intermediate phase a floa
ing vortex line lattice. It is thus important to determine t
meltingTm of our vortex lattice independently from our me
surement ofY' .

In Fig. 3 we show intensity plots at various temperatu
e
e
la-

-
h

.

s

of S(k') in the k' plane, for the 303 system upon heating
Looking at when the Bragg peaks disappear, we estimate
melting temperature to beT/J'.0.43, somewhat higher tha
Tc' /J'.0.36. To try to quantify the location of the meltin
transition, we now look at the heights of the Bragg peaks
the reciprocal lattice vectors. We denote by$K1% the six,
almost equal, smallest nonzero reciprocal lattice vectors.
$K18% be the six vectors obtained by reflecting the$K1%

through thex̂ axis. Since the vortex line lattice breaks th
reflection symmetry of the square discretizing grid, we w
haveS(K1).S(K18) for the lattice phase. However, once th
lattice has melted, the reflection symmetry of the grid sho
be restored. We can therefore define as an order parame
the melting transitionDS(K1)[S(K1)2S(K18). Normaliz-
ing by S0[S(K50) and averaging over the six$K1%, we
plot, in Fig. 4,DS(K1)/S0 versusT, for the three system
sizes 153, 303, and 1523120.DS(K1)/S0 decreases linearly
over a large intermediate range ofT. From the 303 system
we estimateTm/J'.0.44. Note that there is a greater finit
size effect and more hysteresis forDS(K1)/S0 than there is
in Y',z . The estimate forTm tends to decrease asL' in-
creases. Our resultTc',Tm suggests the presence of a floa
ing vortex line lattice. However, it remains possible th
Tc' and Tm will merge as the system size increases, d
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11 770 55TAO CHEN AND S. TEITEL
either to the finite-size dependence observed inTm or to the
possibility that Tc' actually lies farther out in the high
temperature tail ofY' than we have estimated.

Finally, in Fig. 5 we show the specific heatC. The high-
temperature peak inC at T/J'.1.0 we identify with the
crossoverTc2, which is thus seen to lie well aboveTc' ,
Tm, andTcz . A suggestion of a smaller peak is seen at
lower temperatureTc' .

In Fig. 6 we showY' andYz for the caseh2550, for
system sizes 153 and 303. Here the data have considerab
more scatter than in Fig. 2~in general, we found it increas
ingly difficult to achieve good equilibration ash increased!.
Nevertheless, there again appears to be two distinct tra
tions, with Tc' /J'.0.19,Tcz /J'.0.24. Intensity plots of
the structure functionS(k') are shown in Fig. 7 and the pea
height differencesDS(K1)/S0 in Fig. 8. These suggest
melting Tm/J'.0.21. In Fig. 9 we show the specific he
C. The high-temperature peak atT/J'.1.0 is again associ
ated withTc2. However, comparing with Fig. 5, there is no
a more clearly defined smaller peak atTc' .

Carrying out simulations at other values ofh on a 153

grid, we show in Fig. 10 the resulting phase diagram in
h-T plane. TheTcz line denotes the loss of phase coheren
parallel to the applied magnetic field, as measured by
vanishing ofYz . The Tm line denotes the melting of th
vortex line lattice, as measured by the vanishing
DS(K1)/S0. TheTc' line denotes the depinning of the vorte

FIG. 4. Bragg peak heightsDS(K1)/S0 for h2510, f51/15,
and different system sizes.

FIG. 5. Specific heatC vs T for h2510, f51/15, and various
system sizes. The high-temperature peak locates the cross
Tc2.
e

si-

e
e
e

f

line lattice from the discretizing grid, as measured by t
vanishing ofY' . We see thatTm coincides withTc' in the
h;1 andh@hcr limits, but is somewhat greater thanTc' in
the vicinity of the crossover anisotropyhcr5av /j'5A15.
BetweenTm and Tcz we have a vortex line liquid which
retains superconducting coherence in the direction paralle
the applied magnetic field. The dashed lineTc2 locates the
high-temperature peak of the specific heat and marks
crossover from the the vortex line liquid to the normal met
The dotted lines labeledjc5n will be explained at the end o
the following section.

Thus, forTc2,T we have the resistive normal metal wit
weak diamagnetism. ForTcz,T,Tc2 we have a vortex line
liquid, with strong diamagnetism but still with resistive b
havior in all directions. ForTm,T,Tcz we have a vortex
line liquid with superconducting coherence parallel toB. For
T,T m we have an Abrikosov vortex line lattice. Fo
T,Tc' the vortex line lattice is pinned.

If we fit the lowest five data points~those forh<hcr) to
a power law, we findTc';h20.8860.09, Tcz;h20.9860.05, and
Tm;h20.6660.07. The results forTc' and Tcz are in good
agreement with our dimensional argument that character
temperatures at smallh should scale asT;h21. The agree-
ment of Tm with this form is much poorer. Whether thi
reflects the inclusion of too large values ofh in the fit or
whether it reflects a poor determination ofTm due to finite-
size effects or incomplete equilibration remains unclear.
large h, all three lines approach the constant valueTc

2D ,
which we have found from independent simulations to be
melting temperature for an isolated two-dimensional plan18

We see thatTc2 for h.hcr becomes independent ofh,
and is located at the same temperature as the specific
peak in the ordinary (B50) 2D XY model19 ~which lies
about 10% above the 2DXY Kosterlitz-Thouless transition
at TKT /J'.0.9). Thus, at these high temperatures,hcr does
indeed mark the dimensional crossover where our thr
dimensional system is behaving as effectively decoupled
layers; the crossoverTc2 is due to the proliferation of vortex
antivortex pairs within these decoupled layers. However
lower temperatures, we see no dramatic change in the be
ior for Tc' , Tm, andTcz as hcr is crossed. Layers remai
ver

FIG. 6. Helicity moduliY' andYz vs temperatureT for anisot-
ropy h2550 and vortex line densityf51/15. Heating and cooling
for two different system sizes are shown, along with representa
error bars.
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FIG. 7. Structure functionS(k') for h2550 andf51/15 for system size 303, upon heating. The crossover from Bragg peaks to liquidl
rings occurs atTm/J'.0.21.
p

We
c-

the

over
coupled, and in particular, whileTc' , Tm, andTcz appear to
merge ash increases, we continue to findTc'<Tm<Tcz for
all h.hcr studied.

Note that in the limit of weak anisotropy,h→1, Tcz and
Tc2 become close, as was observed in earlier isotro
simulations.8 However, once the anisotropyh increases,

FIG. 8. Bragg peak heightsDS(K1)/S0 for h2550, f51/15,
and different system sizes.
ic

Tcz falls well belowTc2. The transition atTcz is thus clearly
distinct from any mean-field-like crossover phenomena.
will discuss this point in greater detail in the following se
tion. Using the analogy between increasingh and increasing
B as discussed in Sec. II, the increase in the width of

FIG. 9. Specific heatC vs T for h2550, f51/15, and various
system sizes. The high-temperature peak locates the cross
Tc2. A lower-temperature peak corresponds toTc'.
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11 772 55TAO CHEN AND S. TEITEL
vortex line liquid region in Fig. 10, as anisotropy increas
is in agreement with the general experimental features
cussed in the Introduction.

B. Vortex line fluctuations

We now discuss several measures of the vortex line fl
tuations in our model, in order to try and clarify the nature
the phenomena atTcz andTc2.

The first quantity we consider isDl m , defined as the the
total number of vortex line segments due to fluctuations
directionm̂, normalized by the total number of field-induce
‘‘pancake’’ vortices in thexy planes,f L'

2Lz . Note that in
computingDl m , line segments are added without regard
the sign of their direction; oppositely oriented segments
not cancel out. In Figs. 11~a! and 11~b! we show our results

for Dl '[ 1
2 (Dl x1Dl y) and Dl z for the two cases of

h2510 andh2550, respectively. We see that in both cas
Dl z is at least two orders of magnitude smaller thanDl ' in
the vicinity of Tcz and below. Thus, only transverse vorte
fluctuations appear to be important at the phase transiti
Only at the higher crossoverTc2 doesDl z start to become
comparable toDl ' . This is consistent with our interpreta
tion of Tc2 as the temperature at which vortex-antivort
pairs start to enter thexy planes.

One possible explanation for the transition atTcz has been
proposed by Nelson and Seung4 in terms of the entanglemen
of vortex lines. If we assume, as in the Nelson-Seung pict
that the transverse fluctuation of a vortex line in the liqu
phase is like that of a random walk, then sinceDl ' is the
net transverse fluctuation per pancake vortex, the total tr
verse deflection of a line in traveling down the length of t
system will beu5ALzDl ' . Geometric entanglement20 of
lines should occur when u.av or when
Dl '.av /ALz51/Af Lz. For our system withf51/15, this
criterion gives entanglement at values ofDl '51.0, 0.71,
and 0.35 for thicknessesLz515, 30, and 120, respectively
Noting thatDl ' shows no apparent dependence onLz near
the transitions, we would conclude that geometric entan
ment takes place noticeablybelow Tcz for systems of thick-
nessLz.15. It is interesting to note that in both cases, Fi
11~a! and 11~b!, Tcz appears to coincide with the point whe

FIG. 10. Phase diagram in the anisotropy-temperature plane
vortex line densityf51/15.jc is measured in units ofd. Tc2 locates
the peak in specific heat.
,
s-

c-
f

n

o

,
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e,

s-

e-
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Dl '.1. We have similarly observed this to be true at oth
values ofh. However, we have no explanation for this coi
cidence.

The above argument assumed that all of the vortex
fluctuations consisted of transverse motions of the magne
field-induced vortex lines. However, there is additionally t
possibility of forming thermally excited closed vortex ring
which for large enoughh and temperatures low compared
Tc2 should tend to lie between two adjacentxy planes. We
now describe our algorithm to trace out the paths of vor
lines, which will allow us to measure both the distribution
such closed rings, as well as the entanglement of the fi
induced lines. We start by searching the plaquettes fo
penetrating vortex line segment. We then trace its path
and out of subsequent unit cells of the grid. Such a line
belong either to a field induced vortex line or to a clos
vortex ring. Tracing the line, we measure the net displa
ment parallel toẑ that is traveled before the line closes ba
upon itself. If we have a closed ring, this net displacemen
zero, and we measure the perimeter of the ringp. If we have
a field induced line, then because of our periodic bound
conditions parallel toẑ, this net displacement must bemLz
with integerm51,2, . . . ,f L'

2 . If m51, the line closes back
upon itself upon traversing the length of the systemLz . For
m.1, the line belongs to a group ofm lines that are braided
with each other. This is schematically illustrated in Fig. 1
The distribution of values ofm is a measure of how geo
metrically entangled the field induced lines are. With th
procedure, we search through all plaquettes until all vor
line segments are found and classified as belonging to e

or

FIG. 11. Excess vortex line length due to fluctuations in tra
verse,Dl ' , and parallel,Dl z , directions.~a! is for h2510; ~b! is
for h2550. Dashed lines are guides to the eye only.
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a ring of perimeterp or an entangled braid of orderm. The
only complication in the above algorithm occurs when tw
or more vortex lines segments intersect, i.e., go in and ou
the same unit cell of the grid. In this case we random
choose which segment is connected to which. In practice
was achieved as follows. Once a line was traced into a
cell, we searched the remaining five faces in a random o
to see which face the line is leaving through. Once we fin
line leaving, we take it to be the continuation of the line w
are tracing.

In Figs. 13~a! and 13~b! we show our results for the dis
tribution q(p) of the number of closed rings of perimeterp
per unit volume LzL'

2 , for the two casesh2510 and
h2550 ~we show results for cooling; no significant hyste
esis was observed comparing heating and cooling!. Plotting
the logarithm ofq(p) versus 1/T, we see approximately
straight lines at lowT, indicating thermal activation. Thes
lines have a change in slope in the vicinity of the melti

FIG. 12. Schematic example of the possible reconnection
field-induced vortex lines, under application of the periodic bou

ary condition in theẑ direction. Solid, dashed, and dotted lines a
used to distinguish the different lines within a particular braid.

FIG. 13. Number of closed vortex ringsq(p) of perimeterp, per
unit volume.~a! is for h2510; ~b! is for h2550.
of
y
is
it
er
a

Tm, which is mild for h2510, but more pronounced fo
h2550. At the higherTc2 the curves saturate. We believ
this is consistent with the interpretation ofTc2 as the cross-
over temperature at which, upon heating, vorticity explod
throughout the system, and superconducting order is los
even small length scales. The saturation ofq(p) occurs be-
cause, aboveTc2, the distribution of ring sizes is governe
more by the statistics of random intersections among
lines, rather than by energetics. Note that in Ref. 8, wh
only the isotropic case was studied, we incorrectly associa
this explosion of vorticity, as indicated by the saturation
q(p), with the transition atTcz . From the phase diagram o
Fig. 10, we now see that this mistake was due to the pr
imity of Tc2 andTcz which occurs only in the isotropic limit.
For anisotropic systems,Tcz drops belowTc2 and lies in the
region whereq(p) is still governed by thermal activation.

From the data of Figs. 11 and 13, we can now comp
how much of the vortex line fluctuations is contained in t
wandering of the field-induced vortex lines versus how mu
is contained in the thermally excited vortex rings. We sh
in Figs. 14~a! and 14~b! the total length ofall vortex line
fluctuations~per pancake vortex!, Dl tot[2Dl '1Dl z , and
the total length contained in closed vortex rings~per pancake
vortex!, Dl ring[ f21(ppq(p), for the casesh2510 and
h2550, respectively. We see that at low temperatures, ri
constitute a negligible fraction of the total vortex line flu
tuations. At the transitionTcz they are only about 3.5% of the
fluctuations forh2510 and 1.5% forh2550. It thus seems
that as anisotropy increases, the importance of disconne
thermally excited vortex rings decreases. It is worth noti

of
-

FIG. 14. Total length of all vortex line fluctuations,Dl tot , and
total length of lines in closed vortex rings,Dl ring , per number of
pancake vortices.~a! is for h2510; ~b! is for h2550.
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however, that ring excitations which connect to field-induc
lines may still play a role in determining the wandering
the magnetic-field-induced lines between planes. An
ample is illustrated in Fig. 15. Such ‘‘connected’’ ring exc
tations, which lie betweenxy planes, are degrees of freedo
distinct from the pancake vortices, which lie within th
planes. In Figs. 16~a! and 16~b!, we show snapshot views o
vortex line configurations, at various temperatures, for
casesh2510 andh2550, for a system of size 153. The
bottom row in each figure is a view of all vortex line se
ments that lie between a typical pair of adjacentxy planes. A
‘‘ t ’’ shaped segment in these bottom row views indicate
connected ring excitation. We see that they are present in
system at virtually all temperatures shown; however, it
mains unclear how, if at all, they correlate with the tran
tions.

We turn now to consider the fluctuations of the magne
field-induced vortex lines. As mentioned in connection w
our line tracing algorithm, we can classify each such line
belong to an entangled braid ofm lines,m51, . . . ,f L'

2 ~see
Fig. 12!. We denote byn(m) the number of lines which
participate in a braid of orderm, andR[n(1)/ f L'

2 is the
fraction of unentangled lines. In Figs. 17~a! and 17~b! we
plot R versusT for the casesh2510 andh2550, respec-
tively. We see that upon heating,R51 up toTm, throughout
the vortex line lattice phase. AboveTm, R starts to drop,
tending to saturate to its high-T limit aroundTcz . Upon cool-
ing, R starts to increase atTcz , and in most cases reaches
completely disentangled configuration withR51 at Tm.
These features were found at all values ofh studied. For the
thickest sample ofLz5120 ath2510, however, we cool into
a glassy entangled state withR.0.47 frozen belowTc' , as
has been seen in previous isotropic simulations.8 From
Fig. 17 it seems clear that the transition atTcz is related to
the braiding of lines.

To see this another way, we plot in Figs. 18~a! and 18~b!,
for h2510 andh2550, respectively, the braid distributio
n(m) versusm, for several different temperatures nearTcz .
We use our data for systems of size 303, which have 60 lines.
We see that forT,Tcz , n(m) is strongly peaked at sma
m, decaying rapidly asm increases. However, asTcz is ap-
proached, the peak at smallm decreases and the distributio
n(m) becomes flat and equal to unity for an increasin
wide range of intermediatem. The transition atTcz therefore
seems to be associated with braids involving a macrosc
cally large number of lines. Whenn(m)51 for all m, it
indicates that a linei which starts out atr i'(z50) in the

FIG. 15. Schematic example of how ‘‘connected’’ vortex rin
between planes contribute to the wandering of field-induced li
between planes.
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xy plane atz50 is equally likely to match onto the startin
position of any other linej , after traveling down the thick-
ness of the system; i.e.,r i'(z5Lz)5r j'(z50) is equally
likely for any pair i and j ~see Fig. 12!. We may speculate
that precisely this condition is achieved atTcz in the limit of
large system sizes and long simulation times.

An intriguing question concerning behavior in the vort
line liquid is how easily lines can cut through each oth
This has important consequences for line diffusion. If lin
cannot cut, they can be effectively pinned by their mutu
entanglements.4,21For our system in particular, with periodi
boundary conditions parallel to the magnetic field, the deg
of entanglement can only change due to the cutting and
connecting of lines. To investigate this we have compu
the average number of vortex line intersections,Nc , present
in any instantaneous configuration of the system. An int
section is defined when two vortex lines enter and leave
same unit cell of the grid, and corresponds to vortex lin
with overlapping cores. Once two lines intersect, they
free to cut through each other or even to detach and rec
nect different ingoing and outgoing segments. We define
‘‘cutting length’’ jc[ f L'

2Lz /Nc as the average distance~in

units of d) along ẑ between cuts of the magnetic-field
induced vortex lines.jc gives a crude measure of the avera
length over which a vortex line remains a well-defined stri
or equivalently, a measure of the number of planes wh
remain correlated. In Fig. 19 we plotjc versusT for the two
casesh2510 andh2550. In the phase diagram of Fig. 1
we show contours of constantjc52, 4, 6, and 10. We see
that planes are essentially uncorrelated at temperatures a
the crossoverTc 2. However, correlations grow and get larg
as one cools belowTc2 towardsTcz . The picture presented
by the contours ofjc in Fig. 10, combined with the behavio
of R in Fig. 17 andn(m) in Fig. 18, is that intersections sta
to freeze out belowTc2, with lines becoming well defined on
longer and longer length scales. This presumably will aff
the time scales on which lines are able to diffuse about, w
a corresponding signature to be expected in dynamic p
nomena. However, the equilibrium degree of entanglem
as measured byR and n(m), remains largely unchange
down toTcz . BelowTcz , the behavior ofR andn(m) shows
that the lines start to disentangle, yet cutting is still frequ
enough to change the degree of entanglement for all t
peratures down toTm. BelowTm the lines remain either in a
disentangled lattice phase or a metastable state with a fro
degree of entanglement.

IV. DISCUSSION

We have computed the phase diagram of a fluctua
type-II superconductor in the anisotropy-temperature pla
Our results are consistent with general experimental ob
vations that vortex lattice melting occurs well below th
crossoverTc2 associated with the formation of local supe
conducting order and that the width of this region increa
with increasing magnetic field~anisotropy!. As was found in
earlier isotropic simulations, we continue to find as anis
ropy increases that there exists a finite region of the vor
line liquid which possesses superconducting behavior pa
lel to the applied magnetic field. Such a region has not b
seen in other simulations22 which have used a higher vorte

s
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FIG. 16. Snapshot views of vortex line configurations at various temperatures for~a! h2510 and~b! h2550, for 153 size system. For
each case we show perspective views from the side~top row! and looking straight down along the applied field~middle row!. Solid dots
indicate a point of intersection between two vortex line segments. The bottom row is a view of all vortex line segments that lie be
typical pair of adjacentxy planes.
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line densityf51/5, 1/6, and 1/8. The transition atTcz from
the superconducting line liquid to the normal line liquid a
pears to be associated with the braiding of a macroscopic
large number of field-induced vortex lines, in qualitati
agreement with the Nelson-Seung picture based on an a
lly

al-

ogy with the superfluid transition of two-dimension
bosons.4 However, unlike the Nelson-Seung picture,Tcz does
not appear to decrease with increasingLz . Such a possibility
has been proposed by Feigel’man and co-workers23 in terms
of an analogy to 2D bosons with long-range interactio



a
he
s-
a

g
ce
.
s
al

a
i

e,
in

n-

-
se

t
ll

s

the
t as
en
do

re
ver

s
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Recently, Tesˇanovićhas proposed24 a mechanism for such
transition in terms of a vortex loop unbinding analog of t
transition atB50. Our numerical results indicate that di
connected thermally induced closed vortex rings do not
pear to be playing any significant role atTcz , once the an-
isotropy has increased enough thatTcz is significantly below
Tc2. However, it remains unclear whether or not vortex rin
between planes, which are connected to the field indu
lines~see Figs. 15 and 16!, are important degrees of freedom

We have studied behavior as the anisotropy is increa
beyond the ‘‘3D-2D’’ crossover, which simple dimension
analysis gave ashcr

2 f51. We found that this did indeed
mark the crossover fromh-dependent~3D! behavior to
h-independent~2D! behavior, at the high crossover temper
ture Tc2. hcr also corresponds to the region where there
the widest relative width for the floating vortex line lattic
Tc',T,Tm. However, we see no qualitative changes
critical behavior ashcr is crossed. Ash increases above
hcr , Tc' , Tm, andTcz all approach each other, but we co
tinue to findTc'<Tm<Tcz .

Glazman and Koshelev,9 by considering the effect of elas
tic distortions of the vortex line lattice on interplanar pha
fluctuations, have argued thatTcz should decrease below
Tm, with a dependenceTcz;h21, when the anisotropy in-
creases above a value;10hcr . Freyet al.

13 have argued tha
whenh@hcr , the proliferation of vortex lattice defects wi
create a ‘‘supersolid’’ phase, leading toTcz;1/lnh, which
again falls belowTm for large enoughh. Similar results were
earlier proposed by Feigel’manet al.12 We were unable to
equilibrate our system at such high anisotropies so a
more thoroughly check these predictions~very large values

FIG. 17. Fraction of unentangled linesR vs T for various sys-
tem sizes.~a! is for h2510; ~b! is for h2550.
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of h require relatively large values ofL' , so that thetotal
interplanar coupling energy remains large compared toT).
Recently, simulations16 by Nguyenet al., of a vortex line
model with a finite value ofl',av , find evidence for
Tcz,Tm for moderate anisotropies. They findTcz;h22,
scaling with the coupling between planes, in contrast to
above two theoretical predictions. They attribute the effec
due to the proliferation of closed vortex rings lying betwe
planes, in contrast with our own findings that such rings
not exist in significant numbers. The point where theirTcz
crosses belowTm occurs at the value of anisotropy whe
magnetic coupling between planes starts to dominate o
Josephson coupling,h.l' /j' . Their results thus lie out-
side the range of validity of our infinitel' model @see Eq.
~7!#. Simulations by Sˇ ášik and Stroud,25 on an anisotropic

FIG. 18. Braid distributionn(m) vsm for several temperature
near Tcz , for system size 303. ~a! is for h2510; ~b! is for
h2550.

FIG. 19. Cutting lengthjc vs T for h2510 and 50, for various
system sizes.
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model in the ‘‘lowest Landau level’’ approximation~also a
l'→` approximation!, always findTcz5Tm for all anisotro-
pies studied. Thus the possibility that parallel coherence
vanish at alower temperature than melting and, if so, th
nature of the mechanism responsible remain yet to be c
fied numerically.

Finally, we have shown that the effective length ov
which vortex lines can be considered well-defined connec
objects, as measured by the distance between intersec
jc , steadily increases once one cools belowTc2 into the vor-
tex line liquid. This is consistent with the analysis of ‘‘non
local’’ conductivity in flux transformer experiments, whic
indicate that correlations parallel toB start to grow right
from the onset of strong diamagnetism.26 Nevertheless, we
find that vortex line cutting remains sufficiently easy ov
most of the vortex line liquid region. This is illustrated b
B.
s.
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the absence of any hysteresis in the measurement of ou
tanglement parameterR, for most of the temperature rang
Tm,T ~recall that for our periodic boundary conditions,R
can only change value due to the cutting and reconnectio
lines!. Only for h2510 and our thickestLz5120 did we find
freezing into a nonequilibrium state with finite entangleme
that sets in nearTm and saturates belowTc' . In earlier iso-
tropic simulations,8 this freezing out of equilibrium was
found to occur at a higher temperature, a little belowTcz .
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