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Phase transitions in highd . superconductors and the anisotropic three-dimensionaKyY model
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We carry out simulations of the anisotropic uniformly frustrated three-dimensk¥ahodel, as a model
for vortex line fluctuations in higf-. superconductors. We compute the phase diagram as a function of
temperature and anisotropy, for a fixed applied magnetic fel@Ve find that superconducting coherence
parallel toB persists into the vortex line liquid state, vanishing at.aabove the meltingd’,,,. Both T, and
T, are found in general to lie well below the crossovgs from the vortex line liquid to the normal state.
[S0163-18297)12117-9

[. INTRODUCTION limits of validity, and the specific parameters of our simula-
tions. In Sec. Il we give our numerical results, mapping out
From a phenomenological point of view, “highs’ su- the phase diagram, and characterizing the nature of vortex

perconductors are believed to differ from conventionalline fluctuations. In Sec. IV we discuss our results and
type-1l superconductors primarily because of the dramatiPresent our conclusions.

cally enhanced importance of thermal fluctuatiomsin an

applied magnetic fieldd, such thermal fluctuations are be- Il. MODEL

lieved to melt the Abrikosov vortex line lattice at a tempera-

ture T,, well below the mean field ., which marks the onset i . .
energy functional for a continuum superconductor. Making

of strong dlgm'agnetlsr‘h. In b'etweenTm apd TCZ ISaNEW ~ e London approximation that the amplitude of the super-
vortex line liquid state. Experimentally, this picture has been

) . ) conducting wave function is constant outside of the normal
supported by the observation that, in highmaterials, the vortex core. we have
onset of reversible diamagnetism occurs at a temperature ’

Our model starts from the Ginzburg-LandéGL) free

well above that where resistance vanishebge separation e — 20 1
between these temperatures increases with increékidg-  H[ 6,A]= f dSr‘ Ez Ju|V,.0— (?AM 24+ §|V ><A|2] ,
y7 0

cording to this picture, the onset of diamagnetisnTgtis &
associated with a growth in local superconducting correla-

tions, giving rise on short length scales to a finite superconwhere 6(r) is the phase angle of the superconducting wave
ducting wave functiony(r) in terms of which vortex lines function, andA(r) is the magnetic vector potential. The first
can be defined. ThiJ ., marks a strong crossover region, term is the kinetic energy of flowing supercurrents, and the
rather than a sharp thermodynamic transition. In the resultingecond term is the magnetic field energy. The integral is
vortex line liquid, free diffusion of vortex lines gives rise to implicitly to be cut off at the core of a vortex. In the large-
“flux flow” electrical resistance. The vanishing of resistance s approximation which we will be making, the decrease in
only occurs at a lower temperature when the line liquidtotal condensation energy associated with vortex cores is
freezes into a lattice or glass. small compared to the kinetic energy te+rang so it is ig-

To investigate the effect of thermal fluctuations on phaseyored in Eq.(1) and henceforth. The couplinds, are given
transitions in type-ll superconductors, within a numericalby

simulation, Li and Teitel have previously introduéédhe
three-dimensional(3D) uniformly frustrated XY model. 2(, |2 2
. . i ) . ; AR ~ B b
Simulations of this model in the isotropic coupling limit, at a J.= m 16732
low vortex line density, gave the surprising result that super- s ©
conducting coher_ence parallel to the _appheql magnetic flel(&j/vherem is the anisotropic mass of the superconducting
appeared to persist above the vortex line lattice melting tem- BT T T o i
perature, into the vortex line liquid pha&dhe goal of the €lectrons in directiou, ¢o=hc/2e is the flux quantum, and
present work is to extend these simulations to a model wittihe amplitude|y,| of the superconducting wave function
uniaxial anisotropic couplings, so as to better model the layoutside Fhe normal vortex cores is .relat'ed to the magnetic
ered structure of the higli; materials. We will consider penetration  length X, in direction pn by’
only the case where the applied magnetic field is parallel to\i=mM02/16we2|¢o|2.

the anisotropy axig. We will map out the phase diagram in ~_Our next approximation, which we discuss further below,
the anisotropy-temperature plane, looking for the presence oFill be to ignore spatial variations atld fluctuations in the
parallel coherence in the vortex liquid phase and dimensionahternal magnetic field, takin§ X A=Bz as a uniform con-
crossover as the anisotropy increases. The rest of this papstant. The second term in E¢l) thus becomes a constant
is organized as follows. In Sec. Il we describe our model, itsand is henceforth ignored.
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55 PHASE TRANSITIONS IN HIGHT: ... 11767

Finally, we d.iscre.tize the I_(inetic energy term o_f Et) to f=B&/ ¢y, (8)
an orthorhombic grid of points, with grid spacings, in
direction 4, to gef of vortex lines penetrating they plane.

Using the model of Eq(3), which is in terms of the phase
angles g, we will also study vortex line fluctuations. To
H6;]=— 2, Jjjcod 6;— 6;— Ay, (3)  locate a vortex line, we compute the phase angle difference
{n [6,— 6,—A;j] across each bond, restricting this angle to the
where 6, is the phase angle of the wave function at sitf  interval (— 7r,7r]. The circulation of these angle differences
the discrete grid, the sum is over nearest-neighbor bondaround any plaquettee must then be z(n,—f,), where
(ii), Aij=(27l ¢o) JIA-d/ is the integral of the magnetic f,=0 orf depending on the orientation of the plaquette, and
vector potential across the bond, a’]ﬂZ(axayaz/ai)\]ﬂ is @ nonzero ipteger value af, indicates thg presence pf a
the coupling for a bond in direction. We make the standard vortex line piercing t'he plaquette. Computing the vorticity of
substituition of cosine for the the quadratic in Etj. S0 as to each plaguette in this fashion, we can then trace out the paths

L . - of the vortex lines.
fr:gsp?r:\;zéh;ngig?dlmy dit with respect to 2r rotations of To model a particular material, we would like to map out

We identify the grid spacinga, with the short distance the phase diagram asa functionfand magnetic field,
M . for a fixed value of anisotropy). However, due to commen-
cutoff at a vortex core. For a highs superconductor with o e 1 . .
) o surability difficulties between the triangular vortex lattice
CuO layers in thexy plane, we therefore taka,=a,=§,

i : X preferred in a continuum and the discrete sites permitted by
Slr;dnaezs_ gln\gjh?sret%e Izgztzirﬁghs;vr\;ggrie{;]g;hcvxg]IBI;ZZSCUVOVeour num_erical grid, differe_nt vortex line de_nsities would
then hr;lveJ-- —3 ord. . where ’ form Iat_tlce structures of dlffe_zrlng symmetry in th_e ground

vz Lo state. Since we are computationally limited to a fairly coarse
grid, this would make direct comparison of systems with
¢2d ¢2§2 different B difficult. We therefore choose to map out the
B :%, Z:%, (4) phase diagram as a function ®fand anisotropyy, for fixed
167"\ 16m°\d B. We can see, however, using dimensional arguments, that

increasingzn at fixed B is similar to increasingd at fixed

. If we measure any transition temperatdrgin units of

|, then the dimensionlesE;/J, can only depend on the
other dimensionless parameters of the Hamiltor(@n the
anisotropy n=\,d/\, &, , and the vortex line density

and\, and\, are the magnetic penetration lengths within
and normal to the CuO planes, respectively. We define a
anisotropy parametey as

7 O\ d f= Bgf/¢0=(§i /a,)?. Since our London approximation ig-
7=\ [t "2 (5) nores details of the vortex cores, if we consider the con-
2 A& tinuum limit of our model,a,> ¢, , we expect thafl./J,

should be at most weakly dependénon the vortex core

Note that if the coherence length alomgs larger than the radiusé, . The only combination of; andf that is indepen-

interplanar spacing;,>d, then one should replaakby &, ot of is »2f Thus. the dominant dependence of
in Egs. (4) and (5) above. In this case, since the GL freeT /3 Oné_?] andﬂf .can oniy be through somepfunction of
energy with anisotropic masses gives /&, =\, /\,; we %finzB

have =1 and_ hencg Isotropic cogpllngs. This isotropic We can further argue how transition temperatures should
model we have investigated previouslin the present paper depend on the quantity?f. In the limit of extreme anisot-

weoexrteand :Qe.snfa?gg'gf;o ;hf%rﬂ'aogr%%&o?i% .sho Id be ropy, n—oo, we have completely decoupled planes, and the
ur approximat uni gnetic i U1d D€ ansition temperature should be independentpthus we

V?“g v?,ir%VIdethvlsrfilﬁlrzge :?ar: tlhe r\r/1arg|]net|ic fields assoc"expectTc~J . In the limit of a nearly isotropic system,
ate each vorte € strongly overiap, 1.€., n~1, we expect thal; should be independent of the spac-
ing between planesd; thus we expectT.~J, /7f

B =(¢3/16m3\2) (N, IN,)(¢o/B)Y2 These are in fact the pre-
A= Nbo/B=hL, ©) dictions for the melting temperature based on Lindemann

. . . o L 245
wherea, is the spacing between vortex lines. Howe®r criterion calculations:

should still be small enough that,>¢, (so details of the The crossover from small to largg, where the discrete-
vortex cores are not importaniThe anisotropy must also be ness of the layering alongibecomes important and one ap-
such that proaches the two-dimensional limit, can be estimated by the

criterion 72f=1 or, usingf=B&?/ o= (¢, /a,)?, as
d<\?/x, or, equivalently, <\, /¢, , 7) ne=alé . 9)

so that the Josephson coupling between the planes dominatgsing an effective elastic medium approximation to de-
over the magnetic coupling'® Formally, our model corre- scribe vortex line fluctuations in the line lattice, one can
sponds to the limit olk=\, /&, —o, keepingd, constant. show?® that for < 7, the dominant wave numbey, of
For our simulations, we take th%; as fixed constants, cho- fluctuations at melting satisfies the conditidr 7/q,, and
sen to give a particular fractional density, hence the layering of the material is averaged over. For
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FIG. 2. Helicity moduliY, andY, vs temperaturd for anisot-
. ropy #°=10 and vortex line densitf=1/15. Heating and cooling

data for three different system sizes are shown, along with repre-

. sentative errors.
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FIG. 1. Ground-state locations of vortex lines in thyeplane for _ 1 R A A AN A
line densityf=1/15 on a cubic grid. TLEqu(iEj) Jijsin(6;— 0;— Aj))(&;- p) >

10
7>1ne, however, the dominant wave number is at . ] o ( _)
d=m/q,, and layering is important. Some theoretical Wheree; is the unit vector from site to j. WhenY, is
model€2%% have predicted thaty, (or equivalently positive, the system can carry a supercurrAent, and so pos-
Be= doh2/\2d?) will mark a dramatic change in behavior, S€SSes superconducting coherence in diregtiokvhenY ,
reflecting a three-dimensional to two-dimensional crossoverv@nishes, superconducting coherence is lost.

Looking for any such crossover behavior s, will be one To determine the vortex I|n_e lattice m_eltlng temperature,

of the goals of this work. we compgte the density-density correlation function of vor-
Our simulations consist of standard Metropolis Montelices within the same plane,

Carlo simulations of the Hamiltonia3), using periodic 1 ,

bcz)undary conditions in _aII_ d|rec_t|0ns_, on grld_ sizes Sk, )= T E X =ring,(r, ,2ny,(r! ,2)),

LY XL,. We use a magnetic fiel which yields a fractional Zr .z

density of vortex lined =1/15. The ground state vortex lat- 11

tice, shown in Fig. 1, is a nearly triangular vortex line lattice

with sides of length/18x \/18x \/17 in units of&, . To map

out the »-T phase diagram, we have done simulations vary

ing T at different fixed values ofy on lattices of size 15

We have also carried out simulations of larger system sizeg

for the specific cases of7?=10< n§r= 1/f=15 and rings characteristic of a liquid.

7*=50> .. Our runs are typically 10 000 sweeps through e also compute the specific heat per site of the system,
the grid to equilibrate, followed by 128 000 sweeps to com-C, ysing the usual energy fluctuation formula. A pealkCin
pute averages. These simulations are about 9 times longgjcates the temperature at which, upon cooling, there is a
than in our previous work.Errors are estimated by a stan- gramatic freezing out of thermal fluctuations and the system
dard data-blocking procedure. loses the bulk of its entropy. We will take the location of a
high-temperature pealabove any phase transitioria C as
indicating the crossover temperaturg where the supercon-

I1l. NUMERICAL RESULTS ducting wave function develops on small length scales, vor-
tex lines become well-defined objects, and one has the onset
of strong diamagnetism.

To test for superconducting coherence, we compute the |n Fig. 2 we show our results for | andY, for the case
helicity moduli Y, (T) and Y (T) which measure the stiff- 7,2=10. We see thaY', vanishes at &, significantly lower
ness with respect to applying a net gradiéitivist” ) inthe  than theT,, whereY, vanishes. We show data for heating
phase angle of the wave function along directions perpenand cooling, for three different grid sizes *530°, and
dicular and parallel to the applied magnetic figlthe helic-  152x 120. Comparing heating and cooling, we see no appre-
ity modulus in directionx is given by the phase angle cor- ciable hysteresis fok',. Hysteresis inY , appears only for
relation the 3¢ system, where we failed to cool back into a lattice.

wheren,(r, ,z) is the vorticity at siter, in the xy plane at
heightz (henceforth, we will refer to the vortices in they
planes as the “pancake” vorticesBelow melting, we ex-
ect to see a periodic array of sharp Bragg peaks irkthe
lane. Above melting, we expect to see the broad circular

A. Phase diagram
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T/J, =0.36 T/J, = 0.40 T/, = 0.42

T/J, =0.44 T/J, =0.46 | T/J, =0.50

FIG. 3. Structure functioS(k ) for »?=10 andf =1/15 for system size 3Qupon heating. The crossover from Bragg peaks to liquidlike
rings occurs aff,,/J, =0.43.

There are no obvious shifts ifi;, or T, due to finite-size of S(k,) in thek, plane, for the 3 system upon heating.
effects ad., andL, are varied. We determine our estimatesLooking at when the Bragg peaks disappear, we estimate the
Te /3,=0.36 andT/J, =0.58 by visually extrapolating melting temperature to b&J, =0.43, somewhat higher than
the curves to zero from the inflection point that marks theT_ /J, =0.36. To try to quantify the location of the melting
onset of the high-temperature tails. We have found that thgansition, we now look at the heights of the Bragg peaks at
size of these tails tends to decrease with increasing simulahe reciprocal lattice vectors. We denote f¢,} the six,

tion time, as well as with system size. almost equal, smallest nonzero reciprocal lattice vectors. Let

It is important to note that the finit€, in our model is "\ pa the six vectors obtained by reflecting thi
strictly an artifact of the discretizing grid, which acts like an {Ka) a . .y . 9 1.} .
effective periodic pinning potential for the vortex lines. In a through thex axis. Since the vortex line lattice breaks this
continuum model, one would findY, =0 at all reflection symmetry of the square discretizing grid, we will

temperature& as the vortex line lattice is free to slide as a "aveS(K)>S(Ky) for the lattice phase. However, once the
whole, giving “flux flow resistance.” A discretizing grid lattice has melted, the reflection symmetry of the grid should
removes this translational symmetry, resulting in a commenbe restored. We can therefore define as an order parameter of
surately pinned vortex line lattice at low temperatures, withthe melting transitiorAS(K;)=S(K ;) —S(K ;). Normaliz-
Y, >0. For a high density of vortex lines, it is likely that the ing by Sy=S(K=0) and averaging over the spK,}, we
vortex lattice remains commensurately pinned until it meltsplot, in Fig. 4, AS(K1)/Sqy versusT, for the three system
In such a case one expect,=T. . However, recent sizes 18, 3¢°, and 15x120.AS(K,)/S, decreases linearly
simulations'®>~*” with a more dilute vortex line density than over a large intermediate range of From the 36 system
studied here, have claimed evidence for a depiniiyg  we estimateT ,,/J, =0.44. Note that there is a greater finite-
which is lower thanT,,, with the intermediate phase a float- size effect and more hysteresis #6(K 1)/S, than there is
ing vortex line lattice. It is thus important to determine thein Y, ,. The estimate fofT, tends to decrease ds in-
melting T,,, of our vortex lattice independently from our mea- creases. Our result,, <T,, suggests the presence of a float-
surement ofY | . ing vortex line lattice. However, it remains possible that
In Fig. 3 we show intensity plots at various temperaturesl,, and T,, will merge as the system size increases, due
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FIG. 4. Bragg peak heighta S(K;)/S, for 7?=10, f=1/15, FIG. 6. Helicity moduliY, andY, vs temperaturd for anisot-
and different system sizes. ropy »?=50 and vortex line densitf=1/15. Heating and cooling

for two different system sizes are shown, along with representative
either to the finite-size dependence observed jror to the  error bars.
possibility that T, actually lies farther out in the high-

temperature tail o, than we have estimated. _ line lattice from the discretizing grid, as measured by the
Finally, in Fig. 5 we show the specific he@t The high- | 4nishing ofY, . We see thal, coincides withT,, in the
temperature peak i€ at T/J, =1.0 we identify with the n~1 andz> 7, limits, but is somewhat greater than, in

crossoverT.,, which is thus seen to lie well abovE, , the vicinity of the crossover anisotropy,=a,/¢, = J15.

Tm, andTe. A suggestion of a smaller peak is seen at theBetweenTm and T, we have a vortex line liquid which
lower temperaturd, .

In Fig. 6 we showY, and Y, for the casen?=50, for retains superconducting coherence in the direction parallel to

system sizes £5and 3§. Here the data have considerably Lhehapplied magnetic Ee“:' :]—he das_rf1_edhl|‘ﬁ@§ locates tze h
more scatter than in Fig. @ general, we found it increas- Mgh-temperature peak of the specific heat and marks the

ingly difficult to achieve good equilibration ag increaseyi ~ CrOSSover frpm the the vortex !ine liquid tp the normal metal.

Nevertheless, there again appears to be two distinct trans-n€ dotted lines labeleg.=n will be explained at the end of

tions, with T, /J, =0.19<T,/J, =0.24. Intensity plots of the following section.

the structure functiod(k, ) are shown in Fig. 7 and the peak ~ Thus, forT,<T we have the resistive normal metal with

height differencesAS(K ;)/S, in Fig. 8. These suggest a Weak diamagnetism. Fdf,,<T<T., we have a vortex line

melting T,,/J, =0.21. In Fig. 9 we show the specific heat liquid, with strong diamagnetism but still with resistive be-

C. The high-temperature peak &tJ, =1.0 is again associ- havior in all directions. Folf,<T<T. we have a vortex

ated withT.,. However, comparing with Fig. 5, there is now line liquid with superconducting coherence paralleBta~or

a more clearly defined smaller peakTaf . T<T,, we have an Abrikosov vortex line lattice. For
Carrying out simulations at other values gfon a 15 T<T, the vortex line lattice is pinned.

grid, we show in Fig. 10 the resulting phase diagram in the If we fit the lowest five data pointéhose fory<= 73.,) to

n-T plane. TheT, line denotes the loss of phase coherencea power law, we findr,, ~ 7~ 088009 T~ 570982005 g4

)

parallel to the applied magnetic field, as measured by the ~ ;70665007 The results forT,, and T, are in good

vanishing ofY,. The Ty, line denotes the melting of the agreement with our dimensional argument that characteristic

vortex line lattice, as measured by the vanishing Oftemperatures at smai} should scale a§~ 7~ L. The agree-
AS(K1)/So. TheT,, line denotes the depinning of the vortex ment of T,, with this form is much poorer. Whether this

reflects the inclusion of too large values gfin the fit or

1O . . T whether it reflects a poor determination Bf, due to finite-
n?=10 size effects or incomplete equilibration remains unclear. At
O 0.8} } } 1 large », all three lines approach the constant vaT[rzeD,
- H@} which we have found from independent simulations to be the
% 0.6 °H ] melting temperature for an isolated two-dimensional pne.
o H‘ o 15% heat { We see thafl, for »> 7. becomes independent af,
G o4 o 15j cool ] and is located at the same temperature as the specific heat
& 30 hent peak in the ordinary B=0) 2D XY model® (which lies
0.2 T, T/, T3, To/J, 15120 heat ] about 10% above the 2Y Kosterlitz-Thouless transition
B 152120 cool at Ty7/J, =0.9). Thus, at these high temperatureg, does
00 02 04 06 o8 1o 13 T+ Te 13 20 indeed mark the dimensional crossover where our three-
Temperature T/J, dimensional system is behaving as effectively decoupled 2D

layers; the crossovér,, is due to the proliferation of vortex-
FIG. 5. Specific hea€ vs T for »?=10, f=1/15, and various antivortex pairs within these decoupled layers. However, at
system sizes. The high-temperature peak locates the crossovd@wer temperatures, we see no dramatic change in the behav-
Te. ior for T¢,, Ty, and T, as 7, is crossed. Layers remain
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FIG. 7. Structure functioS(k, ) for »?=50 andf =1/15 for system size 3Qupon heating. The crossover from Bragg peaks to liquidlike
rings occurs aff,,/J, =0.21.

coupled, and in particular, whil&;, , T,,, andT., appearto T, falls well belowT.,. The transition af , is thus clearly
merge asy increases, we continue to fifld, <T,,<T, for  distinct from any mean-field-like crossover phenomena. We
all »> 5., studied. will discuss this point in greater detail in the following sec-

Note that in the limit of weak anisotropy;—1, T, and  tion. Using the analogy between increasip@nd increasing
T., become close, as was observed in earlier isotropi® as discussed in Sec. I, the increase in the width of the
simulations® However, once the anisotropy increases,
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FIG. 9. Specific hea€ vs T for 7;2=50, f=1/15, and various
FIG. 8. Bragg peak heightdS(K,)/S, for »°=50, f=1/15, system sizes. The high-temperature peak locates the crossover
and different system sizes. Teo. A lower-temperature peak correspondsTto.
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We now discuss several measures of the vortex line fluc- Temperature T/J,

tuations in our model, in order to try and clarify the nature of

the phehomena é_ﬁcz anch2'_ . . FIG. 11. Excess vortex line length due to fluctuations in trans-
The first quantity we consider i8/,,, defined as the the yerse A/, and parallela 7, directions.(a) is for 72=10; (b) is
total numAber of vortex line segments due to fluctuations irg,, 7?="50. Dashed lines are guides to the eye only.
direction i, normalized by the total number of field-induced
“pancake” vortices in thexy planes,fL2L,. Note that in A/, ~1. We have similarly observed this to be true at other
computingA/,,, line segments are added without regard tovalues of. However, we have no explanation for this coin-
the sign of their direction; oppositely oriented segments daidence.
not cancel out. In Figs. (&) and 11b) we show our results The above argument assumed that all of the vortex line
for A/, =3(A/+A/,) and A/, for the two cases of fluctuations consisted of transverse motions of the magnetic-
7?=10 and5?=50, respectively. We see that in both Cases,f|eld—_|n.d_uced vortgx lines. Howeve(, there is addltlonal!y the
A/, is at least two orders of magnitude smaller ties, in po§5|b|llty of forming thermally excited closed vortex rings,
the vicinity of T, and below. Thus, only transverse vortex Which for large enough; and temperatures low compared to
fluctuations appear to be important at the phase transitiond.c2 Should tend to lie between two adjacent planes. We
Only at the higher crossovér,, doesA/, start to become NOW desgrlbe our algorithm to trace out the pa}ths_ of vortex
comparable ta\/, . This is consistent with our interpreta- lines, which will allow us to measure both the distribution of

tion of T, as the temperature at which vortex-antivortex SUch closed rings, as well as the entanglement of the field
pairs start to enter they planes. mducedllmes. We start by searching the plaqL_Jettes fo_r a
One possible explanation for the transitiorTat has been penetrating vortex line segment. We then_ trace its pgth into
proposed by Nelson and Sedrig terms of the entanglement and out qf subsequgnt unit cells of the grld. Such a line can
of vortex lines. If we assume, as in the Nelson-Seung picturd?€1ong either to a field induced vortex line or to a closed
that the transverse fluctuation of a vortex line in the liquidVOrtex ring. Tracing the line, we measure the net displace-
phase is like that of a random walk, then sinke’, is the = ment parallel taz that is traveled before the line closes back
net transverse fluctuation per pancake vortex, the total trangtpon itself. If we have a closed ring, this net displacement is
verse deflection of a line in traveling down the length of thezero, and we measure the perimeter of the pn¢f we have
system will beu=L,A/, . Geometric entangleméfitof & field induced line, then because of our periodic boundary
lines should occur when u=a, or when conditions parallel t@, this net displacement must bel,
A/ =a,/\JL,=1/fL,. For our system witif =1/15, this  with integerm=1,2,... ,fL2. If m=1, the line closes back
criterion gives entanglement at values ®#, =1.0, 0.71, upon itself upon traversing the length of the system For
and 0.35 for thicknessds,= 15, 30, and 120, respectively. m>1, the line belongs to a group of lines that are braided
Noting thatA/, shows no apparent dependencelgmear  with each other. This is schematically illustrated in Fig. 12.
the transitions, we would conclude that geometric entangleThe distribution of values ofn is a measure of how geo-
ment takes place noticeabbelow T, for systems of thick- metrically entangled the field induced lines are. With this
nessL,>15. It is interesting to note that in both cases, Figs.procedure, we search through all plaquettes until all vortex
11(a) and 11b), T, appears to coincide with the point where line segments are found and classified as belonging to either
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FIG. 12. Schematic example of the possible reconnections of £ T. /Jlx/ /Ta” °2/Jil
S i
field-induced vortex lines, under application of the periodic bound- > 103 : '

ary condition in thez direction. Solid, dashed, and dotted lines are
used to distinguish the different lines within a particular braid.

210 ‘ . ‘ .
. . . E b) n2=50 - AT

a ring of perimeteip or an entangled braid of orden. The . n= PP
only complication in the above algorithm occurs when two Zf ol L
or more vortex lines segments intersect, i.e., go in and out ofﬂ ;M
the same unit cell of the grid. In this case we randomly %, o e Ar

=00 L . v ring |
choose which segment is connected to which. In practice thls_] ! &

/ [
was achieved as follows. Once a line was traced into a unit o ,‘ I% o 15
cell, we searched the remaining five faces in a random order'j ol « 9 4300
to see which face the line is leaving through. Once we find a 3 1! /J of T
line leaving, we take it to be the continuation of the line we & = e
g 2 o \:,// L

are tracing.

In Figs. 13a) and 13b) we show our results for the dis-
tribution q(p) of the number of closed rings of perimeter
per unit volumeL,L?, for the two casess?=10 and

0.0 0.2 0.4 0.8 1.0 1.2 1.4
Temperature T,

0.0 04 06 08 1.0 1.2 1.4
Temperature T/J,

FIG. 14. Total length of all vortex line fluctuationd/,;, and

7°="50 (we show results for cooling; no significant hyster- total length of lines in closed vortex ring4,/ ying, PEr NnuUmber of

esis was observed comparing heating and coaliRtptting
the logarithm ofq(p) versus 1T, we see approximately
straight lines at lowT, indicating thermal activation. These T, which is mild for »?=

pancake vorticega) is for 72=10; (b) is for °=50.

10, but more pronounced for

lines have a change in slope in the vicinity of the melting =50, At the higherT., the curves saturate. We believe
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FIG. 13. Number of closed vortex ringgp) of perimetemp, per
unit volume.(a) is for »?=10; (b) is for »*=50.

this is consistent with the interpretation ©f, as the cross-
over temperature at which, upon heating, vorticity explodes
throughout the system, and superconducting order is lost on
even small length scales. The saturatiom) occurs be-
cause, abovd .,, the distribution of ring sizes is governed
more by the statistics of random intersections among the
lines, rather than by energetics. Note that in Ref. 8, where
only the isotropic case was studied, we incorrectly associated
this explosion of vorticity, as indicated by the saturation of
g(p), with the transition aff,. From the phase diagram of
Fig. 10, we now see that this mistake was due to the prox-
imity of T., andT., which occurs only in the isotropic limit.
For anisotropic system3,., drops belowT, and lies in the
region whereg(p) is still governed by thermal activation.
From the data of Figs. 11 and 13, we can now compare
how much of the vortex line fluctuations is contained in the
wandering of the field-induced vortex lines versus how much
is contained in the thermally excited vortex rings. We show
in Figs. 14a) and 14b) the total length ofall vortex line
fluctuations(per pancake vortexA/,=2A/, +A/,, and
the total length contained in closed vortex rir(ger pancake
vortex) A/ ing=F" 1Eppq(p) for the casesy’=10 and
=50, respectively. We see that at low temperatures, rings
const|tute a negligible fraction of the total vortex line fluc-
tuations. At the transitiofi ., they are only about 3.5% of the
fluctuations for»?=10 and 1.5% forp?=50. It thus seems
that as anisotropy increases, the importance of disconnected
thermally excited vortex rings decreases. It is worth noting,
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Xy plane atz=0 is equally likely to match onto the starting
position of any other ling, after traveling down the thick-
ness of the system; i.er;, (z=L,)=r;, (z=0) is equally
+ 4/_(:7= likely for any pairi andj (see Fig. 12 We may speculate
that precisely this condition is achievedTay, in the limit of
large system sizes and long simulation times.
An intriguing guestion concerning behavior in the vortex
line liquid is how easily lines can cut through each other.
This has important consequences for line diffusion. If lines
cannot cut, they can be effectively pinned by their mutual
FIG. 15. Schematic example of how “connected” vortex rings entanglement$?! For our system in particular, with periodic
between planes contribute to the wandering of field-induced “”efboundary conditions parallel to the magnetic field, the degree
between planes. of entanglement can only change due to the cutting and re-
connecting of lines. To investigate this we have computed
hOWeVer, that I’ing excitations which connect to field'induceqhe average number of vortex line intersectidﬁ@l present
lines may still play a role in determining the wandering of jn any instantaneous configuration of the system. An inter-
the magnetic-field-induced lines between planes. An exsection is defined when two vortex lines enter and leave the
ample is illustrated in Fig. 15. Such “connected” ring exci- same unit cell of the grid, and corresponds to vortex lines
tations, which lie betweeny planes, are degrees of freedom with overlapping cores. Once two lines intersect, they are
distinct from the pancake Vortices, which lie within the free to cut through each other or even to detach and recon-
planes. In Figs. 1@) and 16b), we show snapshot views of nect different ingoing and outgoing segments. We define the
vortex line configurations, at various temperatures, for the:cytting length” £.=fL2L,/N, as the average distan¢e
casesn’=10 and »?°=50, for a system of size $5The . ~ o
units of d) along z between cuts of the magnetic-field-

bottom row in each figure is a view of all vortex line seg- . : )
. ; : : induced vortex linesé, gives a crude measure of the average
ments that lie between a typical pair of adjaceniplanes. A , . . ' .
length over which a vortex line remains a well-defined string

L” shaped segment in these bottom row views indicates r equivalently, a measure of the number of planes which

gogtr;?gtz? \r/lirr]'gjSI)I(CEH“?Q&V\/;;S?;QTJQV%'a;]eofvree\/seinti;nrg}%mam correlated. In Fig. 19 we plét versusT for the two
y y P ’ ' = "“casesp?=10 and»?=50. In the phase diagram of Fig. 10

mains unclear how, if at all, they correlate with the tran3|-We show contours of constagit—2, 4, 6, and 10. We see

tions. that planes are essentially uncorrelated at temperatures above
We turn now to consider the fluctuations of the magnetic- P y P

field-induced vortex lines. As mentioned in connection Withthse;r:zssggggéiowwﬁgf\,;rzzqelat?r?es g:;ﬁr:ndrgsé;?ége
our line tracing algorithm, we can classify each such line a c2 = cz- 1N€ PIC P )

. . o 2 y the contours ot in Fig. 10, combined with the behavior
belong to an entangled braid of lines,m=1, ... fL{ (see fRInFi g is that | .

Fig. 12. We denote byn(m) the number of lines which of Rin Fig. 17 andn(m) in Flg. 18,ist a_t mtersectlo_ns start
.t' ; .t . braid of ord dR=n(1)/fL2 is th to freeze out below ,, with lines becoming well defined on
fpar |f:|paef N a brai | % I(')r eml ar'1:. =n( )d 1i tl)s € longer and longer length scales. This presumably will affect
rlact|on 0 unenftanghe ines. n |gs.g5172a_n b) we e time scales on which lines are able to diffuse about, with
plot R versusT for the casesy”=10 and»"=50, respec- 5 corresponding signature to be expected in dynamic phe-
tively. We see that upon heating=1 up toTy,, throughout 5 eng. However, the equilibrium degree of entanglement,

the vortex line lattice phase. AbovE,,, R starts to drop,

. e as measured by and n(m), remains largely unchanged
tending to saturate to its highdimit aroundT,. Upon cool-  j5wn toT,,. BelowT,,, the behavior oR andn(m) shows

ing, R starts to increase dt;,, and in most cases reaches ana the lines start to disentangle, yet cutting is still frequent
completely disentangled configuration wiR=1 at Tn.  gnough to change the degree of entanglement for all tem-
These features were found at all valuesyodtudied. For the peratures down t@,,. Below T, the lines remain either in a

. _ 2_ .
thickest sample of ;= 120 at7"= 10, however, we cool into  gisentangled lattice phase or a metastable state with a frozen
a glassy entangled state wilt=0.47 frozen belowl ., , as degree of entanglement.

has been seen in previous isotropic simulatforiSrom
Fig. 17 it seems clear that the transitionTg} is related to

the braiding of lines. IV. DISCUSSION

To see this another way, we plot in Figs(aBand 1&b), We have computed the phase diagram of a fluctuating
for »?=10 and »?=50, respectively, the braid distribution type-Il superconductor in the anisotropy-temperature plane.
n(m) versusm, for several different temperatures ndag.  Our results are consistent with general experimental obser-

We use our data for systems of siz€ 3@hich have 60 lines. vations that vortex lattice melting occurs well below the
We see that folT<T,, n(m) is strongly peaked at small crossoverT., associated with the formation of local super-
m, decaying rapidly asn increases. However, &%, is ap-  conducting order and that the width of this region increases
proached, the peak at small decreases and the distribution with increasing magnetic fielthnisotropy. As was found in
n(m) becomes flat and equal to unity for an increasinglyearlier isotropic simulations, we continue to find as anisot-
wide range of intermediate. The transition af, therefore  ropy increases that there exists a finite region of the vortex
seems to be associated with braids involving a macroscopline liquid which possesses superconducting behavior paral-
cally large number of lines. When(m)=1 for all m, it lel to the applied magnetic field. Such a region has not been
indicates that a liné which starts out at;, (z=0) in the  seen in other simulatioAswhich have used a higher vortex
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FIG. 16. Snapshot views of vortex line configurations at various temperaturés) fgf=10 and(b) »?>=50, for 15 size system. For
each case we show perspective views from the @idje row) and looking straight down along the applied fi¢ididdle row). Solid dots
indicate a point of intersection between two vortex line segments. The bottom row is a view of all vortex line segments that lie between a
typical pair of adjacenky planes.

line densityf=1/5, 1/6, and 1/8. The transition &, from  0ogy with the superfluid transition of two-dimensional
the superconducting line liquid to the normal line liquid ap- Posons: However, unlike the Nelson-Seung pictufe, does
pears to be associated with the braiding of a macroscopicalljot appear to decrease with increasing Such a possibility
large number of field-induced vortex lines, in qualitative has been proposed by Feigel'man and co-worRersterms
agreement with the Nelson-Seung picture based on an anal an analogy to 2D bosons with long-range interactions.
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FIG. 18. Braid distributiom(m) vs m for several temperatures
near T.,, for system size 30 (a) is for 7°=10; (b) is for
2__
7n°=50.

FIG. 17. Fraction of unentangled lin€&vs T for various sys-
tem sizes(a) is for »?=10; (b) is for »?=50.

Recently, Téanovichas proposed a mechanism for such a of 7 require relatively large values df, , so that thetotal
transition in terms of a vortex loop unbinding analog of theinterplanar coupling energy remains large compared)to
transition atB=0. Our numerical results indicate that dis- Recently, simulation§ by Nguyenet al, of a vortex line
connected thermally induced closed vortex rings do not apmodel with a finite value of\, <a,, find evidence for
pear to be playing any significant role &t,, once the an- T_,<T,, for moderate anisotropies. They firt,~ 7 2,
isotropy has increased enough tfigf is significantly below  scaling with the coupling between planes, in contrast to the
Tc.. However, it remains unclear whether or not vortex ringsabove two theoretical predictions. They attribute the effect as
between planes, which are connected to the field inducedue to the proliferation of closed vortex rings lying between
lines(see Figs. 15 and }6are important degrees of freedom. planes, in contrast with our own findings that such rings do

We have studied behavior as the anisotropy is increasefbt exist in significant numbers. The point where tHEig
beyond the “3D- ZD" crossover, which simple dimensional crosses belovl,, occurs at the value of anisotropy where
analysis gave asgj f=1. We found that this did indeed magnetic couplmg between planes starts to dominate over
mark the crossover fromp-dependent(3D) behavior to  Josephson couplingg>\, /&, . Their results thus lie out-
n-independent2D) behavior, at the high crossover tempera-side the range of validity of our infinite, model[see Eq.
ture T.,. 74 also corresponds to the region where there ig7)]. Simulations by &k and Stroud?® on an anisotropic
the widest relative width for the floating vortex line lattice,

T, <T<T,. However, we see no qualitative changes in 120 e '

critical behavior asy, is crossed. Asy increases above ol . . 152 heat

Ner» Tel» Tm, @andT, all approach each other, but we con- R X ;(5)3 ﬁ‘e’:t‘

tinue to findT <T,<Tg. o 80 L * & 30 cool
Glazman and Koshelelby considering the effect of elas- & R = 152120 heat

tic distortions of the vortex line lattice on interplanar phase B ool 2i50 M=10 §° @ 152120 cool 7

fluctuations, have argued that, should decrease below 2’ w0l 1 a o ]

Tm. With a dependenc& ~ » %, when the anisotropy in- g . L

creases above a valuelOz,,. Freyet al®®have argued that  © 20 ‘. .o ]

when »> 7, the proliferation of vortex lattice defects will e, te

create a “supersolid” phase, leading T,~ 1/In;, which &5 02 04 06 0.8 1.0

again falls below ,, for large enoughy. Similar results were Temperature T/J,

earlier proposed by Feigel'maet al!> We were unable to
equilibrate our system at such high anisotropies so as to FIG. 19. Cutting lengttt, vs T for ?=10 and 50, for various
more thoroughly check these predictiofvery large values system sizes.
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model in the “lowest Landau level” approximatiof@lso a
\ | — o0 approximation, always findT .,= T, for all anisotro-
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the absence of any hysteresis in the measurement of our en-
tanglement parametd®, for most of the temperature range

pies studied. Thus the possibility that parallel coherence cai,,<T (recall that for our periodic boundary conditiori?,
vanish at alower temperature than melting and, if so, the can only change value due to the cutting and reconnection of
nature of the mechanism responsible remain yet to be clariines). Only for »?=10 and our thickest ,= 120 did we find

fied numerically.

freezing into a nonequilibrium state with finite entanglement

Finally, we have shown that the effective length overthat sets in neaf, and saturates beloW, . In earlier iso-
which vortex lines can be considered well-defined connectettopic simulations, this freezing out of equilibrium was
objects, as measured by the distance between intersectioftaind to occur at a higher temperature, a little belbw.

&, steadily increases once one cools belwinto the vor-
tex line liquid. This is consistent with the analysis of “non-
local” conductivity in flux transformer experiments, which
indicate that correlations parallel #® start to grow right
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