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Phase diagram of the two-dimensional lattice Coulomb gas
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~Received 30 August 1996!

We use Monte Carlo simulations to map out the phase diagram of the two-dimensional Coulomb gas on a
square lattice, as a function of densityr and temperatureT. We find that the Kosterlitz-Thouless transition
remains up to higher charge densities than has been suggested by recent theoretical estimates.
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The nature of phase transitions in the two-dimensio
~2D! neutral Coulomb gas~CG! has remained a topic of con
siderable interest. The CG can be related via duality tra
formation to the 2DXY model, and thus to superfluid an
superconducting films.1 The pioneering work of Kosterlitz
and Thouless2 ~KT! showed that, at low charge density, the
is a second order transition from an insulating to a condu
ing phase, due to the unbinding of neutral charge pairs.
the charge density is increased, several authors3–6 have pre-
dicted that this KT transition should become first order. R
cently, Levin et al.,5 using a modified Debye-Hu¨ckel ap-
proach, have estimated that, for a continuum CG, the
transition ends in a tricritical point at the surprisingly lo
density ofrc.0.004/a2, wherea is the hard core diamete
of the charges.

To investigate this issue, we report here on new Mo
Carlo simulations of the 2D CG on a square lattice, comp
ing the phase diagram as a function of density and temp
ture. We make sensitive tests of the nature of the transit
and conclude that it remains second order up to dens
much higher than estimated by Levinet al.

Our work follows that of Lee and Teitel,7 with a few
modifications. We take for the Hamiltonian,
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where the sums are over all sitesi , j of a 2D periodic
L3L square lattice, with unit grid spacing
G8(r )[G(r )2G(0), whereG(r ) is the solution to the lat-
tice Laplacian with periodic boundary conditions. F
r!L, G8(r ).2 lnr2 1

2ln(8e
2g), whereg.0.5772 is Euler’s

constant.2,8 ni50,61,62, . . . , are theinteger charges, and
neutrality( ini50 is imposed. The third term inH tends to
suppress charges withuni u.1, and is needed to stabilize th
system in the very dense limit. Assuming therefore that
charges satisfyuni u<1, so thatuni u5ni

2 the second term is
just2urL2 with r5L22( i uni u the charge density. Thusu is
the chemical potential. The last two terms inH are effective
boundary terms, which arise in the duality mapping to
CG from the 2D XY model with periodic boundary
conditions.9–11 HereP[( inir i is the net dipole moment o
the charges, andV(f) is the Villain function,12
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e2V(f)/T[(m52`
` e2(1/4pT)(f22pm)2. With these boundary

terms, it is easy to compute9,11 the inverse dielectric tenso
emn

21 which is the equivalent of the helicity modulus of th
correspondingXY model,13,14

emn
2152p KV9S 2pPm

L D L dmn

2
2p

T KV8S 2pPm

L DV8S 2pPn

L D L , ~2!

whereV8 andV9 are first and second derivatives ofV. For an
isotropic system,emn

215e21dmn . According to the KT insta-
bility criterion,2 in the insulating phase we must have t
inequality e21>4T. This will enable us to set an uppe
bound on the transition to the conducting phase.

We carry out standard Metropolis Monte Carlo simu
tions for various values ofu andT. At each point an initial
20 000 MC passes are discarded to equilibrate with an a
tional 128 000 MC passes to compute averages. Errors
estimated from block averages.

The u-T phase diagram, as found previously by Lee a
Teitel,7 is shown in Fig. 1. At lowu, upon increasingT,
there is a KT transition to a conducting liquid. At lowT,
upon increasingu, there is a first-order transition to an insu
lating charge solid atu05p/8. IncreasingT within this
charge solid gives first a KT transition to a conducting sol
followed by an Ising melting of the solid. The two KT line

FIG. 1. Phase diagram of the CG in theu-T plane.
2756 © 1997 The American Physical Society
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meet the first-order line at the sameT*.0.125, slightly
lower than the tricritical point where the first order and Isi
lines meet.

In Fig. 2, we present our new results for this phase d
gram in ther-T plane. The coexistence boundary is det
mined as follows. The low temperature branches are
tained by simulating withu just above and just belowu0,
measuring the average densityr as T increases. To deter
mine the boundary closer to the tricritical point, we simula
with fixed u.u0, increasingT, and measuring the histogram
of the values ofr found at each value ofT. When one is in
either the solid or the liquid phase, this histogram ha
single peak. However, when one crosses the first-order
this histogram develops double peaks.15 The locations of the
two peaks determine the densities of the two coexist
phases. In Fig. 3 we show an example of such histogra
Varying u.u0 then maps out the rest of the coexisten
boundary. In Fig. 2 we show the coexistence boundary fo
in this way from simulations withL516 andL532. As is
seen, and as is expected, our results near the tricritical p
are limited by finite size effects. However it is clear that t
KT line at small u joins the first-order line at a densit
r.0.1, much larger than the estimate of Levinet al.

Next we verify that what we have called the ‘‘KT’’ line a
smallu actually does remain a second-order KT transition
the way up to the first-order line separating the insulating
and insulating solid. To locate the transition temperat

FIG. 2. Phase diagram of the lattice CG in ther-T plane. Open
symbols are from simulations with system sizeL516; solid sym-
bols are fromL532.

FIG. 3. Histograms of charge densityr for u50.4 just above
u05p/8. At the coexistence boundary the histogram is bimoda
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T* for u50.39, just belowu0, we computee
21(T) for vari-

ous L, using Eq.~2!. Our results are shown in Fig. 4. Th
intersection of these curves with the line 4T determines the
upper boundT*.0.125. No hysteresis or other suggestion
a first-order transition was observed ine21.

As a more precise test that the transition is indeed K
like, we use the finite size scaling procedure of Weber a
Minnhagen.16,17 Precisely at the KT transition temperatur
the finite size dependence ofe21 is given by

e21~L !5e21~`!F11
1

2lnL1cG . ~3!

Fitting data for variousL at fixed T to Eq. ~3!, with
e21(`) andc as free parameters, one determinesTKT as that
temperature which gives the smallestx2 error of the fit. The
fitted value ofe21(`) at theTKT so determined, should the
turn out to be preciselye21(`)54TKT , so as to obey the
universal KT prediction. We show the results of such a
below. In Fig. 5~a! we show thex2 of the fit versus tempera
ture, where we have included sizesL58264, 12264, and
16264 in the fit. In each case, the minimum ofx2 occurs at
T*50.1235. In Fig. 5~b! we show the corresponding fitte
value of e21(`)/T versus temperature. We see th
e21(`)/T54 at essentially the sameT* wherex2 has its
minimum. This analysis strongly supports the transition
being of the KT type.

Finally, in Fig. 6 we show histograms of the densityr for
u50.39 and several values ofT passing throughT* , for the
largest system size we have studied,L564. We have chosen
the values ofT shown in Fig. 6 so that the histograms b
tween neighboring values have a significant overlap. As
clearly seen, all the distributions are single peaked. Ther
no sign at all of the bimodal distribution that would chara
terize a first-order transition. While we cannot rule out t
possibility of a weak first-order transition with
j(T* ).64, our results clearly suggest that the ‘‘KT’’ line a
small u does indeed remain a second-order Kosterl
Thouless transition all the way up tou0.

Our lattice simulation has the advantage that it is easie
equilibrate at high densities than continuum simulatio
However the presence of the discrete lattice does hav
strong influence on the location of the phase boundaries
particular, the coexistence boundary of Fig. 2 at sm

FIG. 4. Inverse dielectric functione21(T) for various lattice
sizesL, for u50.39 just belowu05p/8. The intersection with the
line 4T gives the KT upper bound on the transition temperat
T* .
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T,0.1 is well described by a simple model of excited is
lated dipoles and quadrupoles. For the lower branch we
r2(T)5(1/L2)(2Nde

2bEd14Nqe
2bEq), whereEd and Eq

are the excitation energies of an isolated dipole and qua
pole respectively, andNd54L2 andNq52L2 are the number
of ways of putting them down on the square lattice. For

upper branch we get r1(T)512(1/L2)(2Nd8e
2bEd8

14Nq8e
2bEq8) whereEd8 andEq8 are the energies for remov

ing an isolated dipole and quadrupole, andNd852L2 and
Nq85L2 are the number of ways this may be done. Clea
these expressions will change with the geometry of the
cretizing lattice, or if a continuum is used. Nevertheless
the very low densitiesr;0.004 and high temperature
T.0.25 where Levinet al. estimate a tricritical point, we
would be very surprised if the lattice is qualitatively differe
from the continuum.

Using a discrete lattice also has the effect that it tend
stabilize the charge solid phase aboveu0 to high tempera-
tures. Indeed, our charge solid only melts after it has alre
become conducting via a KT transition arising from the e
citation and diffusion of vacancies throughout the solid. T
present model does not possess any first-order trans
from an insulating to a conducting phase. In contrast, rec
simulations18,19 of the CG in a flatcontinuumwith periodic
boundary conditions find that the charge solid phase

FIG. 5. Fitting ofe21(T,L) to Eq. ~3!. ~a! shows thex2 of the
fit vs T; ~b! shows the value of the fittede21(`)/T vs T.
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melted at any finite temperature. Here, a first-order line se
rates the insulating gas from a dense conducting liquid, e
ing at a critical point at relatively low temperature and hi
density: (Tc ,rc)5(0.056,0.21) according to Ref. 18, an
Tc50.032 according to Ref. 19. Similar results were fou
earlier for the continuum CG on the surface of a sphere20

(Tc ,rc)5(0.087,0.11). In these models, the KT line en
either at or near this critical point.

Although the geometry of the CG system clearly affe
the location of the end of the KT transition line, it is inte
esting to compare our results for the square lattice with
predictions of the continuum self-consistent screening the
of Minnhagen and Wallin.3 To do so, it is necessary to
note2,8 that if the interactionG(rW) on the lattice is chosen s
as to asymptotically match the continuum2 lnr as r→`,
then the lattice CG withu50 acts like a continuum mode
with a chemical potentialm052 1

4ln(8e
2g).0.8085. Thus a

chemical potentialu05p/8 on the grid acts like a chemica
potential m5u02m0520.416 in the continuum. Minn-
hagen and Wallin predict that the KT line will end a
T*50.144 and fugacityz*50.054, giving a chemical poten
tial m5T* lnz*520.420.

To conclude, we show that the 2D neutral CG continu
to have an ordinary KT transition up to high densiti
r;0.1, in contrast with recent theoretical estimates. T
result, obtained here for the square lattice CG, is consis
with recent simulations in the continuum.

One of us~P.G.! would like to thank Calin Ciordas for
interesting discussions and the Department of Physics of
University of Rochester for support. This work was su
ported by U.S. Department of Energy Grant No. DE-FG0
89ER14017.

FIG. 6. Histograms of charge densityr for u50.39 just below
u05p/8. Histograms remain single peaked as one passes thro
the transition atT*.0.1235.
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