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Phase diagram of the two-dimensional lattice Coulomb gas

Pramod Gupta and S. Teitel
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 30 August 1996

We use Monte Carlo simulations to map out the phase diagram of the two-dimensional Coulomb gas on a
square lattice, as a function of densjiyand temperaturd@. We find that the Kosterlitz-Thouless transition
remains up to higher charge densities than has been suggested by recent theoretical estimates.
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The nature of phase transitions in the two- d|menS|ona[9—V(¢)/T 5% e—(1/4ﬂ)(¢—2wm)2. With these boundary
(2D) neutral Coulomb gatCG) has remained a topic of con- oy ms it is easy to compdté! the inverse dielectric tensor
siderable interest. The CG can be related via duality transefl which is the equivalent of the helicity modulus of the
formation to the 2DXY model, and thus to superfluid and coFrespondin@(Y modelt314
superconducting film$.The pioneering work of Kosterlitz '
and Thouless(KT) showed that, at low charge density, there

is a second order transition from an insulating to a conduct- )

ing phase, due to the unbinding of neutral charge pairs. As e,“}=27r< V”( 3 “)> v

the charge density is increased, several authbtsave pre-

dicted that this KT transition should become first order. Re- 2 27P 27P,

cently, Levin et al.,> using a modified Debye-ttkel ap- —?<V’( 3 ”) ’( 3 )> 2

proach, have estimated that, for a continuum CG, the KT

transition ends in a tricritical point at the surprisingly low

density ofp,~0.004A2, wherea is the hard core diameter whereV’ andV” are first and second derivatives\df For an

of the charges. isotropic systeme = e‘léw. According to the KT insta-
To investigate this issue, we report here on new Monteility criterion,? in "the insulating phase we must have the

Carlo simulations of the 2D CG on a square lattice, computinequality e l>4-|-. This will enable us to set an upper

ing the phase diagram as a function of density and temperayound on the transition to the conducting phase.

ture. We make sensitive tests of the nature of the transition, We carry out standard Metropolis Monte Carlo simula-

and conclude that it remains second order up to densitie§ons for various values afi and T. At each point an initial

much higher than estimated by Lewal. 20 000 MC passes are discarded to equilibrate with an addi-
Our work follows that of Lee and Teitélwith a few  tional 128 000 MC passes to compute averages. Errors are
modifications. We take for the Hamiltonian, estimated from block averages.
The u-T phase diagram, as found previously by Lee and
=%Z niG’(ri—r-)nj—uE ”i2+2 (nizu_niz) Teitel,” is shown in Fig. 1. At lowu, upon increasingr,

there is a KT transition to a conducting liquid. At loW,
upon increasingl, there is a first-order transition to an insu-
V(erPy) (1) lating charge solid aty= /8. IncreasingT within this
L )’ charge solid gives first a KT transition to a conducting solid,
followed by an Ising melting of the solid. The two KT lines

Y 2Py
L

where the sums are over all sitésj of a 2D periodic
LXL square lattice, with unit grid spacing.

G’'(r)=G(r)—G(0), whereG(r) is the solution to the lat- 0.60

tice Laplacian with periodic boundary conditions. For . Insulating

r<L, G'(r)=—Inr—3In(8¢*"), where y=0.5772 is Euler's 2 050 F 4—  Solid

constan® n;=0,+-1,+2, ..., are thanteger charges, and =R

neutrality =;n; =0 is imposed. The third term i tends to 3 First Order T”;;’;fal , ]
suppress charges with;|>1, and is needed to stabilize the _8- 0.30 - 00 Conducti E
system in the very dense limit. Assuming therefore that all ~ § _ t 00 N Tiquid -
charges satisfyn;|<1, so that|n]|=n? the second term is = Insulating N

just —upL? with p=L~23,|n;| the charge density. Thusis S 010 F Gas ]
the chemical potential. The last two termsZifhare effective N T S ]
boundary terms, which arise in the duality mapping to the 000 005 010 015 020 025 - 030
CG from the 2D XY model with periodic boundary Temperature T
conditions’ ' Here P==,n;r; is the net dipole moment of

the charges, andV(¢) is the Villain function? FIG. 1. Phase diagram of the CG in theT plane.
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FIG. 2. Phase diagram of the lattice CG in g plane. Open
symbols are from simulations with system size- 16; solid sym-

bols are fromL=32.

meet the first-order line at the sanmi& =0.125, slightly
lower than the tricritical point where the first order and Ising

lines meet.
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FIG. 4. Inverse dielectric functior™*(T) for various lattice
sizesL, for u=0.39 just belowuy= 7/8. The intersection with the
line 4T gives the KT upper bound on the transition temperature

T* for u=0.39, just belowuy, we computes~1(T) for vari-
ousL, using Eq.(2). Our results are shown in Fig. 4. The
intersection of these curves with the ling 4letermines the

In Fig. 2, we present our new results for this phase diaY/PPer bound*=0.125. No hysteresis_g)g other suggestion of
gram in thep-T plane. The coexistence boundary is deter-a first-order transition was observedeén™.
mined as follows. The low temperature branches are ob- AS @& more precise test that the transition is indeed KT-

tained by simulating withu just above and just belowy,
measuring the average densjgyas T increases. To deter-
mine the boundary closer to the tricritical point, we simulate

with fixed u>ug, increasingr, and measuring the histogram
of the values ofp found at each value of. When one is in
either the solid or the liquid phase, this histogram has a

single peak. However, when one crosses the first-order lin
this histogram develops double pedRghe locations of the

e H(L)=€"Y(»)

1+

2InL+c

like, we use the finite size scaling procedure of Weber and
Minnhagen:®!’ Precisely at the KT transition temperature,
the finite size dependence ef! is given by

()

%itting data for variousL at fixed T to Eq. (3), with

~1(x) andc as free parameters, one determifigs as that
two peaks determine the densities of the two coexistinqee (<) P R

phases. In Fig. 3 we show an example of such histogramsﬁt
Varying u>ug then maps out the rest of the coexistence

mperature which gives the smallggterror of the fit. The
ted value ofe () at theTyr so determined, should then

. . rn out to be precisely 1()=4Txr, So as to obey the
boundary. In Fig. 2 we show the coexistence boundary founé’lJ P ¥ (=) KT y

in this way from simulations with. =16 andL=232. As is

niversal KT prediction. We show the results of such a fit

: . _below. In Fig. a) we show they? of the fit versus tempera-
seen, and as is expected, our results near the tricritical point

are limited by finite size effects. However it is clear that the
KT line at smallu joins the first-order line at a density

p=0.1, much larger than the estimate of Leenal.

Next we verify that what we have called the “KT” line at
smallu actually does remain a second-order KT transition all

ure, where we have included sizes-8—-64, 12-64, and
16— 64 in the fit. In each case, the minimum gt occurs at
T*=0.1235. In Fig. B) we show the corresponding fitted
value of e Y()/T versus temperature. We see that
€ 1()/T=4 at essentially the saniE* where y? has its

; . . . . minimum. This analysis strongly supports the transition as
the way up to the first-order line separating the insulating gag Y gly supp

and insulating solid. To locate the transition temperature

eing of the KT type.

Finally, in Fig. 6 we show histograms of the densityor
u=0.39 and several values @f passing througi*, for the
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FIG. 3. Histograms of charge densipyfor u=0.4 just above
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largest system size we have studiee; 64. We have chosen
the values ofT shown in Fig. 6 so that the histograms be-
tween neighboring values have a significant overlap. As is
clearly seen, all the distributions are single peaked. There is
no sign at all of the bimodal distribution that would charac-
terize a first-order transition. While we cannot rule out the
possibility of a weak first-order transition with a
&(T*)>64, our results clearly suggest that the “KT"” line at
small u does indeed remain a second-order Kosterlitz-
Thouless transition all the way up tg.

Our lattice simulation has the advantage that it is easier to
equilibrate at high densities than continuum simulations.
However the presence of the discrete lattice does have a
strong influence on the location of the phase boundaries. In

Up= /8. At the coexistence boundary the histogram is bimodal. particular, the coexistence boundary of Fig. 2 at small
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[ 1 FIG. 6. Histograms of charge densjyfor u=0.39 just below

[ . uo= /8. Histograms remain single peaked as one passes through
4.0 [universal KT criterion ™ _____...._.....] the transition aff* =0.1235.

fitted value of £!(eo)/T

melted at any finite temperature. Here, a first-order line sepa-

S T rates the insulating gas from a dense conducting liquid, end-
0120 0.121 0'122T 0'123 ;)'124 0125  0.126 ing at a critical point at relatively low temperature and high
emperature density: (T,p.)=(0.056,0.21) according to Ref. 18, and

- T.=0.032 according to Ref. 19. Similar results were found
-1 2 Cc

fit VFSI_GI_j ?B)':S'Eg'ﬁsotfhee Vgl—l’;)(:fo t:g'ﬁ(tz' aﬂal)(it;%visthfx ofthe  earlier for the continuum CG on the surface of a sphere:
' ' (Te,pc)=(0.087,0.11). In these models, the KT line ends

T<0.1 is well described by a simple model of excited iso-€ither at or near this critical point.
lated dipoles and quadrupoles. For the lower branch we get Although the geometry of the CG system clearly affects
p_(T):(1/|_2)(2Nde—BEd+4|\|qe—BEq), where Ey and E the location of the end of the KT transition line, it is inter-

are the excitation energies of an isolated dipole and quadri@sting to compare our results for the square lattice with the
pole respectively, anNy=4L2 anquzzLZ are the number predictions of the continuum self-consistent screening theory
of ways of putting them down on the square lattice. For thedf Minnhagen and Walliri. To do so, it is necessary to
upper branch we getp.(T)=1—(1/L?)(2Nje #E:  not&’thatif the interactiorG(r) on the lattice is chosen so
+4N’e‘5Eé) whereE’ andE’ are the eneraies for remov- as to asymptotically match the continuumlnr asr—oo,
. a-. - —d d 9 2 then the lattice CG withu=0 acts like a continuum model
mg ar12 isolated dipole and quadru_pole, aNg=2L" and with a chemical potentiako= — 3In(8¢?")=0.8085. Thus a
Ng=L" are the number of ways this may be done. Clearlychemical potentiatiy= /8 on the grid acts like a chemical
these expressions will change with the geometry of the disyqiential pw=Uy— po=—0.416 in the continuum. Minn-
cretizing lattice, or if a continuum is used. Nevertheless, a agen and Wallin predict that the KT line will end at
the very low densitiesp~0.004 and high temperatures 1+ - 144 and fugacitg* =0.054, giving a chemical poten-
T=0.25 where Levinet al. estimate a tricritical point, we g pw=T*Inz* =—0.420.
would be very surprised if the lattice is qualitatively different 1 conclude, we show that the 2D neutral CG continues
from the continuum. , to have an ordinary KT transition up to high densities
Using a discrete lattice also has the effect that it tends t%~0.1, in contrast with recent theoretical estimates. This
stabilize the charge solid phase abaygto high tempera-  regt, obtained here for the square lattice CG, is consistent
tures. Indeed, our charge solid only melts after it has alreadyith recent simulations in the continuum.
become conducting via a KT transition arising from the ex-
citation and diffusion of vacancies throughout the solid. The One of us(P.G) would like to thank Calin Ciordas for
present model does not possess any first-order transitianteresting discussions and the Department of Physics of the
from an insulating to a conducting phase. In contrast, recerntniversity of Rochester for support. This work was sup-
simulation$®° of the CG in a flatcontinuumwith periodic  ported by U.S. Department of Energy Grant No. DE-FG02-
boundary conditions find that the charge solid phase I89ER14017.
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