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Search for a vortex loop blowout transition in a type-II superconductor in a finite magnetic field
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The three-dimensional uniformly frustratedXY model is simulated to search for a predicted ‘‘vortex loop’’
transition within the vortex line liquid phase of a strongly type-II superconductor in an applied magnetic field.
Results are shown to strongly depend on the precise scheme used to trace out vortex line paths. While we find
evidence for a transverse vortex path percolation transition, no signal of this transition is found in the specific
heat.
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I. INTRODUCTION

In pure extreme type-II superconductors, such as the h
Tc superconductors, the Abrikosov vortex line lattice me
via a sharp first-order phase transition1 into a vortex line
liquid as the temperature is increased above a criticalTm .
The properties of this vortex line liquid phase have been
subject of considerable investigation. Theoretical argume2

and early simulations3–5 suggested that the vortex line liqui
might retain superconducting phase coherence parallel to
applied magnetic field, within some temperature inter
aboveTm . Later, better converged simulations6 found that
phase coherence is simultaneously lost in all directions u
melting.

Subsequently, Tesˇanović7 proposed that, for small mag
netic fields, there still remains a sharp thermodynamic ph
transition at a temperatureTF within the vortex liquid state,
associated with diverging fluctuations of closed vortex loo
such as drive the superconducting transition in the z
magnetic-field case. Considering the limit of infinite penet
tion lengthl, Tešanović proposed that, in a finite field, th
fluctuations of the magnetic-field-induced vortex lines act
screen the interactions of thermally excited closed vor
loops, in the same way that magnetic-field fluctuatio
screen the vortex loop interactions of a finitel model in zero
applied magnetic field. Pursuing this argument, he predic
that the proposed vortex loop ‘‘blowout’’ transition atTF

may be an invertedXY transition, as is the case of the zer
field Meissner transition for the finitel model. Suggestions
of such a vortex loop blowout transition had earlier be
claimed in simulations by Ryu and Stroud.5

Following Tešanović’s predictions, Nguyen and
co-workers8–10 carried out numerical simulations of th
three-dimensional~3D! uniformly frustratedXY model of a
type-II superconductor. They claimed to find evidence
Tešanović’s transition, which they associated with the form
tion of a vortex line path that percolates entirely around
system in the direction transverse to the magnetic field.

Most recently, measurements11 on high-purity
YBa2Cu3O7 ~YBCO! single crystals produced evidence of
steplike anomaly in the specific heat at a temperature hig
than the meltingTm , reminiscent of an inverted mean-fie
transition. It has been argued11 that this feature may be evi
0163-1829/2003/67~14!/144514~10!/$20.00 67 1445
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dence for Tesˇanović’s transitionTF .
In order to further investigate this issue, we have carr

out new simulations on the 3D uniformly frustratedXY
model, both repeating the approach of Nguyen and
workers, and measuring new quantities that make a m
direct test of Tesˇanović’s theory. After correcting certain in-
consistencies in the earlier numerical work, we show t
whether or not one finds indications of a vortex loop blowo
transition depends crucially on how one chooses to reso
vortex line paths at points where two or more lines interse
Making the choice that favors the blowout interpretation,
find the critical exponentn.1, rather than the value;2/3
expected for an inverted 3DXY transition. Finally, we make
high-precision measurements of the specific heat, in se
of a thermodynamic signature for a blowout transition, b
no such signature is found.

II. MODEL

The model that we use is the 3D uniformly frustratedXY
model,3–6,8–10,12which models a type-II superconductor
the limit of infinite magnetic penetration length,l→`, and
is given by the Hamiltonian

H@u i #52(
i ,m

Jmcos~u i 1m̂2u i2Aim!. ~1!

Here i are the nodes of a cubic grid of sites,m5x, y, andz
are the directions of the grid axes; and the sum is over
nearest-neighbor bonds of the grid.u i is the phase angle o
the superconducting wave function on sitei, Aim

5(2p/F0)* i
i 1m̂A•dr is given by the integral of the mag

netic vector potentialA across the bond at sitei in direction
m̂, andF05hc/2e is the flux quantum. The argument of th
cosine is the gauge-invariant phase angle difference ac
the bond. The circulation of theAim around any plaquette o
the grid is equal to 2p times the number of flux quanta o
magnetic field penetrating the plaquette. We take the m
netic field,B5¹3A, uniform and parallel to theẑ axis, with
a fixed density of flux quantaf 5Ba2/F0 per plaquette of
areaa2. We take the couplingsJm to model an anisotropic
system, withJx5Jy[J' andJz<J' .
©2003 The American Physical Society14-1
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Simulations were carried out varying theu i according to a
usual Monte Carlo scheme; theAim were held fixed. That the
Aim do not fluctuate, and that they give a uniform magne
field, are the consequences of thel→` approximation.
Simulations were carried out onLz3L'

2 cubic grids, using
periodic boundary conditions. Except where otherwise no
our runs were typically for 1/4 to 1/23106 Monte Carlo
passes through the entire lattice.

While we simulate in the phase angle degrees of freed
u i , our interest lies in the behavior of the vorticity in the
phase angles. Lets denote thedual sites of the original grid;
these are the sites at the centers of the unit cells of the g
We denote by (s,m) the plaquette which is the face of th
unit cell centered on dual sites, with normal in them̂ direc-
tion, m5x, y, and z. We define the integer vorticitynsm
piercing plaquette (s,m) by computing the circulation of the
gauge-invariant phase angle differences around the plaqu

(
(s,m)

@u i 1ŝ2u i2Ais#52p~nsm2 f dzm!, ~2!

where the sum is counterclockwise around all bonds form
the boundary of plaquette (s,m), and the gauge-invarian
phase angle differences are restricted to the inte
(2p,p). In a constant magnetic field, the condition that t
total-energy density remains finite can be shown to yield
‘‘neutrality’’ constraint ~see Sec. III A!,

(
s

nsm5 f L'
2 Lzdzm , ~3!

i.e., the total vorticity piercing any plane at constantz is
f L'

2 ; these are the magnetic-field-induced vortex lines. T
total vorticity in the transverse directionsx andy is zero.

Taking the vorticitynsm as the directed bond of the du
grid, emanating from sites in direction m̂, the vorticity so
defined is divergenceless, forming continuous lines that,
to the periodic boundary conditions, must ultimately clo
upon themselves. We will label such a closed vortex path
the indexa, and define the vectorRa as the net displacemen
one travels upon following the patha from a given starting
point until returning back to that point as the line closes ba
on itself. If Ra50, then the vortex line path is a closed loo
of finite extent that exists as a thermal fluctuation. IfRza
5mLz , with m an integer, then such a vortex line path re
resentsm of the f L'

2 field-induced vortex lines; thesem lines
are mutually connected to each other via the periodic bou
ary conditions in thez direction.4 For m.1, we can say tha
the m field-induced lines are geometrically entangled w
each other. IfRxa5mL' or Rya5mL' , then the vortex line
path windsm times around the systemtransverselyto the
applied magnetic field. We will be particularly interested
vortex line paths for whichRza50, butRxa or RyaÞ0. The
set of vortex line paths$a% for which all Rza.0; we will
henceforth refer to as the ‘‘lines;’’ these are the field-induc
vortex lines. All other vortex paths we will refer to as th
‘‘loops.’’

In order to trace vortex line paths, one needs to know
way to treat intersections. An intersection occurs when th
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is more than one vortex line entering and exiting a give u
cell of the grid; it is therefore ambiguous which enterin
segment to connect to which exiting segment. It was pre
ously shown13 by one of us that the method chosen to reso
such intersections can have a dramatic effect on the stati
of closed thermally excited loops in the zero-fieldf 50
model. Here, for thef .0 model, we consider two differen
schemes, which we henceforth refer to as method~i! and
method~ii !:

~i! At each intersection we choose randomly, with equ
probability, which entering segment connects to which ex
ing segment. In thef 50 model this scheme was found t
give results closest to theoretical expectations.13

~ii ! Motivated by Nguyen and co-workers,8–10 we first
search14 through all possible connections to find a patha
with Rza50 andRxa or RyaÞ0. Such a path winds aroun
the system transverse to the field, without ever wind
around the system parallel to the field. If one such path
found, it is selected as a patha8 contributing to the ‘‘loops,’’
and we then repeat the proceedure applied to all remain
vortex paths. When all such transverse paths are found,
remaining vortex line intersections are resolved randomly
in method~i!.

Using either method~i! or method~ii ! we thus decompose
the vorticity of any given configuration into disjoint close
vortex line paths, consisting of a set$a% of ‘‘lines’’ and a set
$a8% of ‘‘loops.’’

III. WINDING OF FIELD-INDUCED VORTEX LINES

We first attempt a direct test of Tesˇanović’s theory of the
TF transition within the liquid phase. A summary of his a
guments for the existence of this transition is as follows.

A. Summary of Tešanović’s theory

First, a duality transformation15–17 from theXY model of
Eq. ~1! gives the interaction between vortices as

H@nsm#5
1

2 (
s,s8,m

@nsm2 f dzm#Vm~r s2r s8!@ns8m2 f dzm#,

~4!

whereVm(r ) is the appropriate anisotropic generalization
the Coulomb interaction, with Fourier transformVq

m;q22. It
is this singularity ofVq

m asq→0 that yields the constraint o
Eq. ~3!.

Next, one imagines decomposing the total vorticity of t
system into lines and loops,

nsm5nsm
lines1nsm

loops. ~5!

If we define

bsm[nsm
lines2 f dzm , ~6!

then (s^bsm&50 and the Hamiltonian of Eq.~4! can be re-
written as

H5
1

2 (
s,s8,m

@nsm
loops2bsm#Vm~r s2r s8!@ns8m

loops
2bs8m#. ~7!
4-2



ex
ef
les

m
lly

ld

ex
p

ua

a

or
on

-
e

-
tra

e

d

es
r
g
ld-
ns-

n-
d-
an
the

o

erse

re
el-

b

eld,

e-
m-
f

un-
va-
tion
ss-

-
r-

ld-
t

f
e
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Tešanović then argued that a coarse graining of vort
fluctuations, in the vortex line liquid phase, leads to an
fective hydrodynamic Hamiltonian on long length sca
which has the same interaction piece as Eq.~7!, but which
has a new additive term proportional to(smbsm

2 . The result-
ing long length scale Hamiltonian then has exactly the sa
form as that of a zero-field superconductor with therma
fluctuating vortex loops,nsm

loops, and a thermally fluctuating
magnetic fieldbsm whose average is zero, i.e., the zero-fie
superconductor with a finite penetration lengthl. In other
words, in thisinfinite l theory atfinite magnetic field, the
long-wavelength fluctuations of the field-induced vort
lines nsm

lines screen the interaction between the vortex loo
nsm

loops in exactly the same manner as magnetic-field fluct
tions screen the interactions between vortex loops in afinite
l model atzeromagnetic field.

The Meissner transition atTc in the zero-field, finitel,
model is an inverted 3D XY transition.15 The high-
temperature phaseT.Tc has vortex loops on all length
scales and breaks a global U~1! symmetry associated with
disorder parameter;18 the low-temperature phaseT,Tc has
no vortex loops on sufficiently long length scales. The c
relation length j and renormalized magnetic penetrati
length lR both diverge19 as ;utu2n, with n.2/3 andt[T
2Tc .

Earlier we have carried out numerical simulations19 of
this zero-field, finitel, Meissner transition. We demon
strated that, in this model, magnetic-field fluctuations ob
the finite-size scaling relation

F~ t,q,L ![^bm~qn̂ !bm~2qn̂ !&/L3;L21F~ tL1/n,qL,1!,
~8!

where in the abovem̂' n̂ andbm(qn̂)5(se
2 iq n̂•rsbsm is the

Fourier transform of the magnetic-flux densitybsm . As L
→`, andq→0,

F~ t,0,̀ !;H 0 t,0,

1/j t.0,
~9!

hence F(t, 0, `) vanishes below the transition, and in
creases continuously from zero as one goes above the
sition.

In the present case of a finite magnetic field, if Tesˇanov-
ić’s mapping is correct, the Meissner transitionTc becomes
the transitionTF within the vortex line liquid phase, and w
expect the exact same scaling as that in Eq.~8! above, when
applied to the quantitybsm defined in Eq.~6!. Taking the
limit of q→0 in Eq. ~8!, and applying to systems with fixe
aspect ratioLz5gL' , we expect the scaling

K S (
s

bsmD 2L Y L'
3 ;L'

21f ~ tL'
1/n!, ~10!

wheret[T2TF and f (x)5F(x, 0, 1).
For the directionsm̂5 x̂ or ŷ,

(
s

bsm5(
s

nsm
lines[WmL' ~11!
14451
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is the net vorticity of the magnetic-field-induced vortex lin
in the transverse directionm̂. The two-dimensional vecto
W5(Wx ,Wy) defined above is the integer-valued ‘‘windin
number’’ that counts the net number of times the fie
induced vortex lines wind around the system in the tra
verse directionsx̂ andŷ. If $a% is the set of vortex line paths
that define the field-induced vortex linesnsm

lines, andRa is the
net displacement along patha as defined earlier, then
(aRa'5WL' , whereR'[(Rx ,Ry). We thus expect from
Eq. ~10! the finite-size scaling

^W2&; f ~ tL'
1/n!. ~12!

Note that the neutrality condition of Eq.~3! implies that
the total transverse vorticity in the system must always va
ish. ForWÞ0, it is therefore necessary that any such win
ing of the field-induced lines is exactly canceled out by
equal and opposite transverse winding of the loops. In
thermodynamic limit,L'→`, Eq. ~9! implies that ^W2&
50 for T,TF , and^W2& increases continuously from zer
as one increasesT.TF . The proposed transition atTF is
thus associated with the appearance of infinite transv
loops ~see following Sec. IV!.

Another interpretation of theTF transition follows from
the ‘‘two-dimensional~2D! boson’’ model20 of interacting
vortex lines, in which the field-induced vortex lines a
viewed as the world lines of two-dimensional bosons trav
ing down the imaginary time axis. ForT,TF where^W2&
50, the field-induced vortex lines behave likechargedtwo-
dimensional bosons,2,17 with a long-range retarded Coulom
interaction. In the vortex line liquid,Tm,T,TF , where
phase coherence is lost parallel to the applied magnetic fi
the analog 2D bosons are in achargedsuperfluid state. For
T.TF , where ^W2&Þ0, screening by the infinitely large
loopsnsm

loops results in an effective short-range interaction b
tween the field-induced lines. In this case the winding nu
ber squared̂W2& is proportional to the superfluid density o
what is now anunchargedsuperfluid. ThusTF corresponds
to a transition between a charged superfluid and an
charged superfluid in the analog 2D boson theory. Equi
lently, if one considers the quanta that mediate the interac
between the analog 2D bosons, the transition is from ma
less quanta forT,TF to massive quanta forT.TF .

To arrive at Eq.~12!, we considered the transverse com
ponents of Eq.~10!. However, we can also consider the pa
allel, m̂5 ẑ component. Now,

(
s

bsz5(
s

nsz
lines2 f L'

2 Lz[WzLz , ~13!

and so we expect the scaling

^Wz
2&; f z~ tL'

1/n!. ~14!

If $a% is the set of vortex line paths that define the fie
induced vortex linesnsm

lines, and Ra is the net displacemen
along path a as defined earlier, then(aRaz5( f L'

2

1Wz)Lz . ThusWz gives the number of ‘‘lines’’ in excess o
the average valuef L'

2 set by the applied magnetic field. Th
4-3
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neutrality condition of Eq.~3! requires that whenWz.0,
there must be an equal and opposite parallel winding of
loops nsm

loops. As L→`, we haveWz50 for T,TF , and
Wz.0 for T.TF . Thus a transition atTF should be char-
acterized by fluctuations in the number of field-induced lin
and by the appearance of infinite parallel loops directed
posite to the direction of the applied magnetic field.

B. Numerical results

To test the above predictions, we have simulated the
uniformly frustratedXY model of Eq. ~1! using a vortex
density f 51/20, anisotropyJz /J'50.02, and aspect ratio
Lz /L'51, for L'510, 20, 30, 40, and 60. For these para
eters, the vortex lattice melting temperature isTm.0.24J' ,
and the zero-field critical temperature isTc0.1.14J' . We
compute the transverse windingW of the field-induced lines,
defined by Eq.~11!, using both method~i! and method~ii ! to
decompose each configuration into ‘‘lines’’ and ‘‘loops.’’ Ac
cording to the scaling Eq.~12!, we expect that plots of̂W2&
vs T for different sizesL' should all intersect at the commo
point t50, or T5TF .

In Fig. 1 we show a semilog plot of^W2& vs T/J' using
method ~i! ~random reconnections at intersections! for L'

510, 20, and 30. We see that there is clearly no comm
intersection point of the curves. AsL' increases,̂ W2& de-
creases uniformly over the entire temperature range. Th
in qualitative agreement with earlier computations of^W2&
by one of us~see Fig. 15 of Ref. 4!. For L'560, we have
found no net transverse winding of the field-induced lines
all, i.e., for the length of our simulation we hadW50, for
the temperature range 1.36<T/J'<1.44.

Next, in Fig. 2, we show the same quantities but n
using method~ii ! ~search first for maximal transverse loops!,
for L'510, 20, 30, 40, and 60. We see that asL' increases,
the curves seem to approach a common intersection p
giving TF.1.4J' . Note that thisTF is abovethe zero-field
critical temperatureTc0.1.14J' .

From Eq.~12!, we expect that the slopes of these curv
at TF should scale with system size asd^W2&/dT;L'

1/n .

FIG. 1. Semilog plot of windinĝW2& vs T/J' for L'510, 20,
and 30, with vortex densityf 51/20, anisotropyJz50.02J' , and
aspect ratioLz5L' . ^W2& is computed using method~i!, i.e., ran-
dom connections at intersections.^W2& steadily decreases asL'

increases, over the entire temperature range.
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Fitting each of the curves of̂W2& to a cubic polynomial in
T, we compute their derivatives at the intersection poinT
51.4J' , and plot the results vsL' in Fig. 3. We see that the
slopes, to an excellent approximation, scale linearly w
L' , thus suggesting a critical exponentn.1. On closer in-
spection, the data in Fig. 3 show a small systematic do
wards curvature about the linear fit; however, this curvat
can be removed by assuming a slightly higher critical te
perature ofT51.403J' . Note that this value ofn.1 is
larger than the predicted value of 2/3.

As an alternative method to compute the critical behav
we can take the scaling Eq.~12!, expand the scaling function
f (x) as a polynomial for smallx, and do a nonlinear fitting to
the data to determine the unknown polynomial coefficien
TF andn. To obtain the best fit we use a fourth-order pol
nomial and fit only the data from the two largest sizes,L'

540 and 60. The results giveTF.1.403J' andn.0.96, in
agreement with the earlier estimates. In Fig. 4 we show
scaling collapse that results from this polynomial fit. The
are systematic deviations from the fitted curve on theT
.TF side, though these appear to decrease asL' increases.

FIG. 2. Winding^W2& vs T/J' for L'510, 20, 30, 40, and 60
with vortex density f 51/20, anisotropyJz50.02J' , and aspect
ratio Lz5L' . ^W2& is computed using method~ii !, i.e., we first find
all percolating transverse loops. Curves of^W2& intersect at a com-
mon point, locatingTF.1.4J' . Solid lines are guides to the ey
only.

FIG. 3. Winding slopesd^W2&/dT vs L' at the estimated cross
ing temperature of Fig. 2,T51.4J' , for L'510, 20, 30, 40, and
60, with vortex densityf 51/20, anisotropyJz50.02J' , and aspect
ratio Lz5L' . The solid line is the best linear fit to the data. Th
good fit suggests the critical exponentn.1.
4-4
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Next we consider the excess parallel winding of the fie
induced linesWz . As discussed earlier, Tesˇanović’s theory
predicts a scaling of̂Wz

2& such as that in Eq.~14!. To deter-
mine Wz we count the winding of vortex line paths$a% that
wind negatively in thez direction, i.e., they have a net dis
placement ofRaz52maLz , with ma a positive integer (R'

may have any value for such paths!. Since such negative
parallel windings must be compensated for by excess fi
‘‘lines,’’ we have Wz5(ama .

However, when we have used either of our tracing me
ods~i! or ~ii !, we have never found any such negative par
lel windings up to the highest temperature we have sim
lated, T51.6J' . This has motivated us to define a thi
tracing scheme:~iii ! we first search through all possible co
nections to find any paths withRaz,0.

In Fig. 5 we show results, using tracing scheme~iii !, for
^Wz

2& vs T/J' for the same system parameters and sizes
used in Fig. 2 for^W2&. Note that the values of̂Wz

2& at
which the curves for differentL' intersect are exceedingl
small. The intersection points appear to decrease inT asL'

increases, however, we are not able to make any firm c
clusions.

FIG. 4. Scaling collapse of data of Fig. 2.^W2& plotted vs@(T
2TF)/J'#L'

1/n , for L'510, 20, 30, 40, and 60, with vortex densi
f 51/20, anisotropyJz50.02J' , and aspect ratioLz5L' . Data is
fit to a polynomial expansion of Eq.~12!, andTF.1.4027J' and
n.0.96 determined from the fit. Only data fromL'540 and 60 are
used in the fit, although data from all sizes are shown in the p
The solid line is the fitted polynomial curve.

FIG. 5. z axis winding^Wz
2& vs T/J' for L'510, 20, 30, 40,

and 60, with vortex densityf 51/20, anisotropyJz50.02J' , and
aspect ratioLz5L' . ^Wz

2& is computed using method~iii !, i.e., we

first find all loops that percolate in the negativeẑ direction. Solid
lines are guides to the eye only.
14451
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In an attempt to improve the analysis of^Wz
2& we have

repeated the calculation, using a new system aspect rat
Lz5L'/5. This has the effect of increasing the value
which the curves of̂Wz

2& intersect, hopefully improving our
accuracy. We have explicitly checked that changing the
pect ratio does not shift the transition temperatureTF ob-
served in^W2& ~see also Sec. IV B!. In Fig. 6 we show
results for^Wz

2& vs T/J' for this new aspect ratio. Again we
find no common intersection point for the sizes consider
As L' increases, the intersection point continues to decre
Whether this is a result of a failure of the scaling hypothe
of Eq. ~14!, or whether we have simply failed to reach th
scaling limit of sufficiently largeLz (Lz524 is the largest
value in Fig. 6!, we cannot be certain. Note that in both Fig
5 and 6,^Wz

2& appears to be vanishing at a temperature
ticeably above TF.1.4J' , where the curves of the trans
verse winding,̂ W2&, intersect.

We have also tried to fit the data of Fig. 6 to the scali
form ^Wz

2&;L2xf z(tL'
1/n), assuming a nontrivial anomalou

scaling dimensionx ~although we have no specific theore
cal reason to propose this form!. When we do so, we obtain
Tc51.44, n50.76, andx51.185, however, our data in th
vicinity of this Tc is too scattered for us to place much si
nificance on this fit.

Having used tracing method~iii ! to first eliminate all pos-
sible lines percolating in the negativeẑ direction, we can
then search for all possible transversely percolating lines
compute the resulting transverse winding^W2&. When we do
this, we find our results for̂W2& virtually unchanged from
tracing method~ii ! in the vicinity of TF.1.4J' . The ex-
tremely low number of negativeẑ percolating lines at this
temperature produces no noticeable effect on the transv
tracing.

IV. PERCOLATING LOOPS

A. Summary of Nguyen and co-workers’ method

As discussed in the preceding Section III.A, a transition
TF would mark the appearance of infinite transverse loo

t.

FIG. 6. z axis winding^Wz
2& vs T/J' for L'520, 30, 40, 60,

100, and 120, with vortex densityf 51/20, anisotropy Jz

50.02J' , and aspect ratioLz5L'/5. ^Wz
2& is computed using

method~iii !, i.e., we first find all loops that percolate in the negati

ẑ direction. Solid lines are guides to the eye only.
4-5
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as T is increased. The idea to explicitly look for transver
paths that percolate across the system was first put fort
Jagla and Balseiro.21 Later, Nguyen and co-workers8–10 re-
fined this idea. They defined a quantity which they deno
OL , that is the probability that a vortex path exists whi
travels completely across the system in a direction transv
to the applied magnetic field, without ever traveling co
pletely across the system in the direction parallel to the fie
If such a path exists in a given configuration, that configu
tion counts as unity in the average forOL ; if not, that con-
figuration counts as zero.

Since havingW2.0 in a given configuration necessari
implies that there is a percolating transverse loop in t
configuration, there is a close connection between the qu
tities ^W2& andOL . They differ in that~i! for a configuration
with W2.1, and hence with more than one percolati
transverse loop, the contribution toOL remains unity, rather
than increasing with the number of percolating transve
loops; and~ii ! in a configuration with two percolating bu
oppositely oriented transverse loops, the contribution toOL
will be unity, but these loops cancel each other in their c
tribution to W2, which might therefore be zero.

SinceOL is a pure number one might expect it to be
scale-invariant quantity, and hence, similarly to^W2&, plots
of OL vs T for different system sizesL' should have a com
mon intersection point atTF . Nguyen and co-workers
method of searching for such percolating transverse path
similar to our method~ii ! except for one crucial difference.22

They do not require that the transverse path close upon it
they only require that the path start at one end of the syst
say, atx50, and continue until reaching the opposite en
x5L' , while keeping the distance traveled alongẑ less than
Lz , that is, the displacement traveled along the patha satis-
fies Rxa5L' andRza,Lz . Since, by the periodic boundar
conditions, all pathsmusteventually close upon themselve
there are two possibilities for the transverse percolating p
that Nguyen and co-workers find. We illustrate these in F
7: ~1! the patha eventually closes upon itself without eve
traveling the lengthLz , in which caseRza50; or ~2! the
path a, when followed until it closes upon itself, winds u
traveling the lengthLz , with a displacementRza5Lz ; in this

FIG. 7. Percolating transverse vortex paths. Path~1! closes upon

itself without ever winding about the system in theẑ direction. Path

~2! only closes upon itself after winding once in theẑ direction.
Both paths contribute to the calculation ofOL8 by method (ii8).
Only path~1! contributes to the calculation ofOL by method~ii !.
The thin dashed lines represent the periodic boundaries of the
tem.
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case, our method~ii ! would consider this path as part of th
field-induced vortex linesnsm

lines, contributing to the winding
W, rather than as a transverse loop that contributes tonsm

loops.
We call Nguyen and co-workers’ path tracing method (ii8) to
distinguish it from our method~ii !. We denote byOL8 the
probability for a percolating path using method (ii8); using
method~ii ! we denote it byOL . Paths of type~2! will con-
tribute toOL8 , but not toOL . We will see that there are ver
dramatic differences between these two methods, and
only OL gives self-consistent results.

B. Numerical results

First, we note that if we use method~i! ~random connec-
tions! to search for percolating transverse paths, the re
will essentially be the same as found for^W2& in Sec. III B.
As L' increases, the probability of finding a percolatin
transverse loop steadily decreases for the entire tempera
range, becoming immeasurably small for our biggest sys
size. Hence we will focus here on methods~ii ! and (ii8).

We now consider the computation ofOL8 using method
(ii 8), the one used by Nguyen and co-workers, which ne
checks the way in which the percolating transverse p
closes upon itself. We first use parametersJz50.02J' and
Lz5L' , the same as those in Sec. III B, but a more dilu
density of vortex linesf 51/90. For these parameters, th
vortex lattice melting temperature isTm.0.49J' , and the
zero-field critical temperature, as before, isTc0.1.14J' .
These parameters are very close to the parameters of on
the cases studied by Nguyen and co-workers in Refs. 9
10 @they usedf 51/90, Jz5(1/49)J' , andLz;L']. Our re-
sults for OL8 vs T/J' , for three system sizes,L'530, 60,
and 90, are shown as the solid symbols on the left-hand
of Fig. 8. These results agree quite closely with those
Nguyen and co-workers~see Fig. 8 of Ref. 9!, and seem to
show what might be a common intersection of the th
curves nearT.0.7J' . However, we now consider the sam
parameters and sizesL' , only using a different system as
pect ratio,Lz5L'/6. The results are shown as the open sy

ys-

FIG. 8. Percolation probabilityOL8 vs T/J' for L'530, 60, and
90, with vortex densityf 51/90 and anisotropyJz50.02J' . Solid
symbols on the left are for aspect ratioLz5L' ; open symbols on
the right are for aspect ratioLz5L'/6. OL8 is computed using
method (ii8), following Nguyen and co-workers. Solid lines ar
guides to the eye only.
4-6
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bols on the right-hand side of Fig. 8. We see that there
longer appears to be a common intersection point, but m
importantly, the curves have all shifted dramatically
higher temperatures. Thus, any value ofTF that one might
try to extract fromOL8 depends sensitively on the syste
aspect ratio. We have also considered other values of
aspect ratioLz /L' , not shown here. The clear trend is th
the sharp rise inOL8 shifts to increasing temperatures
Lz /L' decreases. But ifTF represents a true phase tran
tion, it must beindependentof aspect ratio. We therefor
conclude thatOL8 and method (ii8) do not give any self-
consistent evidence of the proposed vortex loop blow
transition.

The problems withOL8 are even clearer if we consider th
parametersf 51/20 andJz50.02J' , the same ones used fo
our computation of̂W2& in Sec. III B. In Fig. 9 we show our
results forL'510, 20, and 40, for the two aspect ratiosLz
5L' and Lz5L'/2. In both cases, there is no common i
tersection point of the three curves for the three sizes, and
curves for the smaller aspect ratio are shifted to higher t
peratures. Note also that, for both aspect ratios, the temp
tures at whichOL8 rises to unity lie quite significantly below
the value ofTF.1.4J' found from our analysis of̂W2&.

We next consider the computation ofOL using method~ii !
~the percolating transverse path must close upon itself ke
ing Rza50). In Fig. 10 we show results using the sam
parameters as were used to computeOL8 in Fig. 8, i.e., f
51/90, Jz50.02J' , and L'530, 60 and 90, for the sam
two aspect ratiosLz5L' andLz5L'/6. We see now that for
both aspect ratios, curves for the three different sizes ap
to approach a common intersection point,TF.1.17J'

.Tc0.1.14J' , and that this intersection point is indepe
dent of aspect ratio~note that forLz5L'/6, the thinness of
the systemLz55, for L'530, presumably makes it to
small to be in the scaling region, hence it intersects the o
two curves at somewhat lower temperatures!.

In Fig. 11 we show similar results using the same para
eters as were used in our computation of^W2& in Sec. III B,
i.e., f 51/20, Jz50.02J' , and Lz5L' . We see that the

FIG. 9. Percolation probabilityOL8 vs T/J' for L'510, 20, and
40, with vortex densityf 51/20 and anisotropyJz50.02J' . Solid
symbols on the left are for aspect ratioLz5L' ; open symbols on
the right are for aspect ratioLz5L'/2. OL8 is computed using
method (ii8), following Nguyen and co-workers. Solid lines a
guides to the eye only.
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curves of OL vs T/J' for the different system sizesL'

510, 20, 30, and 40 all intersect at a common point,TF

.1.4J' . This is exactly the same value as found in o
analysis of̂ W2& ~see Fig. 2!.

We therefore conclude thatOL gives a self-consistent de
termination ofTF , and that this value is considerably larg
than estimates consideringOL8 . In fact, estimates ofTF from
OL8 all lie below the zero-field critical temperatureTc0 and
decreaseasf increases, while the values determined fromOL
all lie above Tc0, and increaseas f increases.

If OL is indeed a scale-invariant quantity, we can pos
late that it should obey a scaling relation similar to^W2&,
i.e.,

OL~T,L'!5 f̃ ~ tL1/n!. ~15!

Based on our analysis of^W2& in Sec. III B, we may expect
n.1. In Fig. 12 we therefore show a scaling collapse of
data for f 51/90 from Fig. 10, plotting OL vs @(T

FIG. 10. Percolation probabilityOL vs T/J' for L'530, 60,
and 90 with vortex densityf 51/90, and anisotropyJz50.02J' .
Solid symbols are for aspect ratioLz5L' ; open symbols are for
aspect ratioLz5L'/6. OL is computed using method~ii !, where all
loops close upon themselves. All curves approach a common in
section point,TF.1.17J' , independent of the aspect ratio. Sol
lines are guides to the eye only.

FIG. 11. Percolation probabilityOL vs T/J' for L'510, 20, 40,
and 60, with vortex densityf 51/20, anisotropyJz50.02J' , and
aspect ratioLz5L' . OL is computed using method~ii !, where all
loops close upon themselves. All curves approach a common in
section point,TF.1.4J' , in agreement with the analysis of^W2&
in Fig. 2. Solid lines are guides to the eye only.
4-7
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2TF)/J'#L' , whereTF is determined by a best fit of the da
to the scaling form. We find a reasonably good collapse
all sizes, for both aspect ratios, using a single value ofTF

.1.168J' .
In Fig. 13 we show a similar scaling collapse of the da

for f 51/20 from Fig. 11. Fitting the data forOL to a fourth-
order polynomial expansion of the scaling function, we fi
an excellent collapse, for all system sizes, using the par
etersTF.1.399J' and n51.006. These results agree ve
well with the values obtained from the scaling analysis
^W2&, given in Sec. III B. The quality of the collapse is muc
better here than it was for̂W2& in Fig. 4.

Finally, in analogy with the windinĝWz
2&, we have also

considered the probabilityOLz to find a vortex path perco
lating through the system in the negativeẑ direction, oppo-
site to the applied magnetic field. We expectOLz to obey a
scaling relation similar to that of Eq.~15!. To computeOLz
we have used tracing method~iii ! in which we explicitly
search through all possible connections to find any s
paths. We show our results forOLz vs T/J' for vortex den-
sity f 51/20 and anisotropyJz50.02J' in Figs. 14 and 15,

FIG. 12. Scaling collapseOL vs @(T2TF)/J'#L'
1/n of data from

Fig. 10, for f 51/90. A reasonably good collapse is found for a
sizesL' , for both aspect ratiosLz /L' , using a single value of
TF.1.168J' andn51. Solid lines are guides to the eye only.

FIG. 13. Scaling collapseOL vs @(T2TF)/J'#L'
1/n of data from

Fig. 11, for f 51/20. An excellent collapse is found for all sizesL' ,
using values ofTF.1.399J' and n51.006. These values agre
well with those obtained from the scaling collapse of^W2&. The
solid line is the fitted polynomial curve.
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for system aspect ratiosLz5L' andLz5L'/5, respectively.
As with ^Wz

2& shown in Figs. 5 and 6, the intersection poin
of the curves for different sizes appear to decrease in t
perature asL' increases. Again, we cannot say whether t
is a failure of our scaling hypothesis or a failure to rea
sufficiently largeLz . Also, analogous to our findings for th
windings ^W2& and ^Wz

2&, OLz appears to be vanishing at
temperatureabove TF51.4J' where the curves ofOL inter-
sect.

V. SPECIFIC HEAT

If TF , as determined bŷW2& or OL , does indeed repre
sents a true thermodynamic transition, we would expec
see some signature of this transition in more conventio
thermodynamic quantities. In the recent experiments of R
11, a steplike anomaly in the specific heatC was observed in
the vortex line liquid region, reminiscent of an inverte
mean-field transition. In their numerical simulations,9,10

Nguyen and Sudbo” claimed to see an anomalous glitch in th
specific heat at the temperature they identified asTF from
their calculation ofOL8 . However, this glitch corresponded t
only a single data point very slightly displaced above
otherwise smooth background, and in the previous sec

FIG. 14. Percolation probabilityOLz vs T/J' for L'510, 20,
30, 40, and 60, with vortex densityf 51/20, anisotropyJz

50.02J' , and aspect ratioLz5L' . OLz is computed using tracing
method~iii !. Solid lines are guides to the eye only.

FIG. 15. Percolation probabilityOLz vs T/J' for L'520, 30, 40
60, 80, and 100, with vortex densityf 51/20, anisotropyJz

50.02J' , and aspect ratioLz5L'/5. OLz is computed using trac-
ing method~iii !. Solid lines are guides to the eye only.
4-8
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SEARCH FOR A VORTEX LOOP TRANSITION . . . PHYSICAL REVIEW B67, 144514 ~2003!
we have demonstrated thatOL8 significantly underestimate
TF , hence there is no reason to expect any anomaly inC at
that temperature.

In this section we report on high-precision measureme
of the specific heatC, for the same parameters we have stu
ied in the earlier sections. IfTF , as found using the vortex
path tracing method~ii !, is indeed a true thermodynam
phase transition with critical exponentn.1 ~as our scaling
analyses found!, then hyperscaling would suggest a specifi
heat exponent ofa522dn.21. We thus do not expect to
see a divergingC, however, some feature should be prese

In Fig. 16 we plotC vs T/J' , in the vicinity nearTF

.1.4J' , for the same parametersf 51/20, Jz50.02J' , and
Lz5L' as used in Figs. 2, 11, and 13. We show results
L'510, 20, 30, and 40, using 32103107 Monte Carlo
passes through the lattice, depending on the system size
find no noticeable finite-size dependence, and no hint of
feature at all, near the previously determinedTF.1.4J' .

In Fig. 17 we plotC vs T/J' , over a broad temperatur
range, for the same parametersf 51/90 andJz50.02J' as
used in Figs. 10 and 12, but for a single large system
L'530 andLz590. Again we see no hint of any anoma
near the previously determinedTF.1.168J' .

FIG. 16. Specific heatC vs T/J' for vortex densityf 51/20,
anisotropyJz50.02J' , and aspect ratioLz5L' , for system sizes
L'510, 20, 30, and 40. No hint of any anomaly is found near
previously determinedTF.1.4J' . The solid line is a guide to the
eye only.

FIG. 17. Specific heatC vs T/J' for vortex densityf 51/90,
anisotropyJz50.02J' , and aspect ratioLz53L' , for system size
L'530. No hint of any anomaly is found near the previously d
terminedTF.1.168J' . The solid line is a guide to the eye only.
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VI. CONCLUSIONS

We have carried out detailed Monte Carlo investigatio
of the 3D uniformly frustratedXY model in order to search
for a proposed ‘‘vortex loop blowout’’ transition within the
vortex line liquid phase of a pure extreme type-II superco
ductor. Such a transition had been predicted as a resu
general theoretical arguments by Tesˇanović.7 Evidence for
such a transition was claimed in numerical simulations
Nguyen and co-workers,8–10 and in specific-heat measure
ments on high purity YBCO single crystals.11 We have made
explicit measurements of the vortex line windings^W2& and
^Wz

2&, which are the key quantities in Tesˇanović’s theory. We
have reexamined Nguyen and co-workers’ calculation of
percolation probabilityOL .

Our results raise several questions concerning Tesˇanović’s
theory. We have found that the values of^W2& and ^Wz

2&
depend sensitively on the precise scheme one uses to
vortex line paths. For the natural choice of random conn
tivity at vortex line intersections, botĥW2& and ^Wz

2& ap-
pear to vanish at all temperatures asL→`. Only when we
specifically search first for percolating paths, when comp
ing the windings, do we find that the windings converge
nonzero values above a certain temperature. In this case
find that the transverse windinĝW2& obeys the finite-size
scaling form expected from Tesˇanović’s theory, however, the
critical exponent we find isn.1, rather than the predicte
nXY;2/3 of the inverted 3DXY transition. For the longitu-
dinal winding ^Wz

2& we have been unable to find the e
pected scaling form. Whether this is because^Wz

2& does not
scale, or because our systems are all too small to be in
scaling limit, we cannot be certain. It does appear that, u
cooling, ^Wz

2& vanishes at a temperature above that at wh
^W2& vanishes. This would be contrary to Tesˇanović’s theory.
However, since we have not succeeded in finding scaling
^Wz

2&, we cannot be certain of knowing exactly where
vanishes asL→`.

Independent of Tesˇanović’s theory, it is natural to think
that, as temperature and hence vorticity increase, the vo
lines may form percolating paths~note, however, that the
directedness of the vortex line segments and the conditio
divergenceless paths means that this is no ordinary perc
tion problem!. We have therefore, following Nguyen and c
workers, searched explicitly for such percolating paths in
direction transverse to the applied magnetic field, as wel
in the direction parallel but opposite to the applied magne
field. Defining transverse percolation as the existence o
vortex line path that extends entirely across the system in
direction transverse to the applied magnetic fieldwithout si-
multaneously extending entirely across the system in the
allel direction, we have shown that Nguyen and co-worke
procedure, which ignores the transverse periodic bound
conditions and does not require the percolating path to c
upon itself, leads to inconsistent predictions for the transit
temperature as one varies the system aspect ratio. Onl
requiring that the transverse percolating path close upon
self, without ever winding in the parallel direction, do w
find a consistent transition temperature independent of as
ratio. The percolation transition found this way agrees b

e

-
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in critical temperatureTF and exponentn with the results
from our analysis of the transverse winding^W2&. We have
also computed the probability of finding a percolating path
the direction parallel but opposite to the applied magne
field. Here, analogous to our results for^Wz

2&, this negativeẑ
percolation appears to occur at a temperature higher than
of the transverse percolation, however, we have not s
ceeded in finding a clear scaling of this parallel percolat
probability.

Note that the transverse percolation transition tempera
TF( f ) that we findincreasesabove the zero-field transitio
temperatureTc0 as the magnetic-flux densityf increases.
This is in striking contrast to the conclusion of Nguyen a
co-workers who proposedTF( f ) to decreasebelow Tc0 as f
increases.

While our results do seem consistent with a well-defin
transverse percolation transition, one can ask if this i
purely geometrical feature of the vortex line paths,
whether it also corresponds to a true thermodynamic ph
transition, i.e., something one could detect in a suitable th
modynamic derivative of the free energy. To investigate t
question we have carried out high-precision Monte Ca
measurements of the specific heatC. Our results forC show
V.
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no feature whatsoever near the percolation transitionTF , nor
do we find any finite-size effect. In particular we see
evidence for a steplike feature as was observed experim
tally in YBCO.

To conclude, we have found evidence for a well-defin
transverse percolation temperature within the vortex line
uid phase of a model type-II superconductor. The connec
between this transition and Tesˇanović’s theory of a vortex
loop ‘‘blowout’’ transition remains unclear. It also remain
unclear whether or not this percolation transition has a
observable thermodynamic manifestation.
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