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We investigate the effect of random columnar disorder on the superconducting phase transition of a type-II
superconductor in zero applied magnetic field using numerical simulations of three dimensionalXY and vortex
loop models. We consider both an unscreened model, in which the bare magnetic penetration length is ap-
proximated as infinite, and a strongly screened model, in which the magnetic penetration length is of order the
vortex core radius. We consider both equilibrium and dynamic critical exponents. We show that, as in the
disorder free case, the equilibrium transitions of the unscreened and strongly screened models lie in the same
universality class, however scaling is now anisotropic. We find for the correlation length exponentn

=1.2±0.1, and for the anisotropy exponentz=1.3±0.1. We find different dynamic critical exponents for the
unscreened and strongly screened models.
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I. INTRODUCTION

The discovery of high temperature superconductors, in
which thermal fluctuations are important and mean field
theory can no longer be applied, has led to a resurgence of
interest in phase transitions and critical phenomena in type-II
superconductors.1 Of particular interest has been understand-
ing the effects of random quenched disorder on the nature of
the ordered phases and the universality of the phase transi-
tions. For the high temperature superconductors, this
quenched disorder can take many forms: random point de-
fects due to oxygen vacancies, planar twin grain boundaries,
and columnar defects introduced by ion irradiation.

Most of the work in this area has focused on the case of a
finite applied magnetic field, where one seeks to understand
how the randomness distorts or destroys the Abrikosov lat-
tice of magnetic field induced vortex lines that forms in a
pure system. Columnar defects2–4 have received considerable
attention, as they are particularly effective in pinning vortex
lines and reducing flux flow resistance. In contrast, in this
paper we will focus on the effect of columnar defects on the
superconducting phase transition inzero applied magnetic
field. We expect this case to be interesting for the following
reason. A generalized Harris criterion5–7 argues that disorder
will be a relevant perturbation, and change the universality
class of a phase transition, whenever 2−d* n.0, whered*
is the number of dimensions in which the system is disor-
dered, andn is the usual correlation length critical exponent.
For a disorder free superconductor, the transition in zero ap-
plied magnetic field is in the universality class of the three
dimensional(3D) XY model,8 for which n*2/3. For random
point disorder,d* =3, so 2−d* n,0, and the generalized
Harris criterion argues that the universality of the transition

remains unchanged. Forcolumnar disorder, however,d*
=2, and so 2−d* n.0. Columnar defects should therefore
cross the zero field transition over to a new universality
class. Stability6 of this new disordered fixed point with re-
spect to the generalized Harris criterion implies that it should
have a new valuen.1. In our equilibrium simulations we
indeed find behavior consistent with this, and we obtain a
value for the correlation length exponentn=1.2±0.1. More-
over, we find scaling is now anistropic and we find the value
of the anisotropy exponent to bez=1.3±0.1. Experimental
measurement of these exponents would therefore provide a
precision test of the theoretical model.

The model we study also has application to theT=0 su-
perconductor to insulator quantum phase transition in two-
dimensional thin films with random substrate disorder,5,9,10

and to the Mott transition for bosons in 2D optical lattices
with the addition of random scattered laser intensity.11 In
these cases, the imaginary time axis of the quantum problem
can be mapped onto a third spatial axis of a corresponding
three-dimensional classical problem.12 Random, time inde-
pendent, point disorder in the two spatial dimensions of the
quantum problem becomes columnar disorder in the classical
three-dimensional model.2 For disorder that preserves
particle-hole symmetry, the quantum problem can be directly
mapped onto a 3D superconductor model such as we con-
sider here. Our correlation length exponentn maps onto the
correlation length exponent of the quantum case, while our
anisotropy exponentz maps onto the quantum dynamic ex-
ponent “z” (not to be confused with the dynamic exponentz
of our 3D classical model; our classical dynamic exponentz
has no analog in the corresponding quantum case). Experi-
mental measurements of criticality in such quantum prob-
lems can therefore similarly provide a test for our model.
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To study the effect of columnar disorder on the zero field
transition of a type-II superconductor, we will consider two
different limits. The first is the limit of an “unscreened”
superconductor4,13 in which magnetic field fluctuations are
frozen out, corresponding to the approximation of an infinite
bare magnetic penetration length,l0→`. Here, vortex line
segments have long ranged Coulombic-like interactions. For
the extreme type-II high temperature superconductors, for
which k;l0/j0,100, wherej0 is the bare coherence length
that also sets the radius of a vortex line core, the unscreened
model should give a good description except in anextremely
narrow temperature window about the transition.14

The second limit is that of a strongly screened
superconductor,3,15 corresponding to the casel0,j0. In this
case, vortex line segments have short range interactions. This
description should also become valid extremely close to the
transition when the diverging correlation lengthj becomes
comparable to the renormalized magnetic penetration length
l, l&j, and magnetic field fluctuations on such large length
scales must be included in determining the true critical be-
havior. This region nearTc may, however, be too small to
observe in practice.14

As in the disorder free case, a duality transformation8,16,17

establishes that these two limits lie in the same universality
class as regards equilibrium critical behavior. They may be
different, however, for dynamic critical behavior.15 In this
work we carry out detailed Monte Carlo(MC) simulations of
the XY model for the unscreened superconductor to deter-
mine the equilibrium critical exponents, and we demonstrate
the presence of anisotropic scaling; by duality, these expo-
nents also apply to the strongly screened case. Then, using
simple local Monte Carlo dynamics, we compute the dy-
namic critical exponent for both the unscreenedXY model,
and for the strongly screened vortex loop model. We find that
the dynamic exponent is different for these two limits.

The remainder of this paper is organzied as follows. In
Sec. II we describe theXY model and the loop model for the
unscreened and strongly screened limits, respectively. The
duality transformation between the two is given in Appendix
A. In Sec. III we discuss the equilibrium critical behavior of
the XY model, presenting our finite size scaling analysis,
defining the observables we measure, and giving the numeri-
cal results of our simulations. In Sec. IV we discuss the
dynamic critical behavior of theXY and loop models, within
a simple local Monte Carlo dynamics. We define the observ-
ables we measure and give our numerical results; and in Sec.
V we give our discussion and conclusions.

II. MODELS

A. XY model

To model the effects of thermal fluctuations in a type-II
superconductor, we start with the commonly used 3DXY
model.13 This models the phase fluctuations of the supercon-
ducting order parameter in the “unscreened” limit where
magnetic field fluctuations are frozen out, corresponding to
the approximation of an infinite bare magnetic penetration
length,l0→`. For zero applied magnetic field we have,

HXYfuig = − o
i,m

Jim cossui − ui+m̂d, s1d

whereui represents the phase angle of the complex supercon-
ducting order parameter on nodei of a periodic cubic grid of
N=L3L3Lz sites, with periodic boundary conditions in all
directions. The sum is over all nearest neighbor bondssi ,md
of the grid, withm̂= x̂, ŷ, ẑ, and the cosine term represents the
kinetic energy of fluctuating supercurrents. The short length
cutoff of the discrete grid models the bare vortex core size
j0.

In a pure system, the couplingsJim are all equal, except
for a possible variation with bond directionm. Here, we take
theJim randomly distributed in order to model quenched ran-
dom columnar defects. For the work reported on here, with
columnar defects aligned parallel to theẑ axis, we have cho-
sen the following distribution: in theẑ direction, we take all
Jiz=1; in the xy plane, we takeJim, m=x,y, distributed
equally likely with the two values 0.1 and 1.9, keeping the
Jim translationally invariant along theẑ axis so as to model
columnar disorder. Note that the randomJim introduce no
frustration into the system; in the ground state all theui are
equal. The variations in theJim result in spatially random
pinning energies for vortex loop excitations of the phase
anglesui. We have chosen the above bimodal distribution for
Jim to give strong pinning energies(for fixed averageJim), so
as to be able to approach the asymptotic scaling limit with
reasonable size systems.

Although we will simulate the Hamiltonian of Eq.(1)
using periodic boundary conditions on the phase anglesui, it
is useful to consider a more generalfixed twist boundary
condition,

ui+Lmm̂ = ui + Dm, s2d

whereDm is a fixed(nonfluctuating) total twist in the phase
angle applied across the system in directionm̂. Periodic
boundary conditions correspond to the twistDm=0. Trans-
forming to new variables,

ui8 = ui − sDm/Lmdr i · m̂, s3d

the Hamiltonian of Eq.(1) becomes,

HXYfui8;Dmg = − o
i,m

Jim cossui8 − ui+m̂8 − Dm/Lmd, s4d

where theui8 obey periodic boundary conditions,ui+Lmm̂8 =ui8.
Using the fact that the cosine is periodic in 2p, the partition
function integrals overui8 can be taken over the intervalui8
P f0,2pd, as were the integrals over the original phase
anglesui. Considering how the free energy varies with the
twist Dm will be useful later for discussing phase coherence
in the model.

B. Loop model

Although we carry out our equilibrium simulations di-
rectly in terms of theXY model of Eq.(1), we also consider
a different formulation of the model. If instead of the cosine
interaction of Eq. 1, one uses the periodic Gaussian interac-
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tion of Villain,18 then a standard duality transformation8,16,17

(see Appendix A) maps theXY model,HXY/T, onto a model

of sterically interacting loops,Hloop/ T̃, where,

Hloop =
1

2o
i,m

gimnim
2 . s5d

The nim are integer valued variables on the bondssi ,md and
satisfy a divergenceless constraint,

o
i,m

fnim − ni−m̂,mg = 0. s6d

The nim thus form connected paths through the system that
must eventually close upon themselves. The couplingsgim of
Eq. (5) are related to the couplings of theXY model by,

gim/T̃ = T/Jim, s7d

where the temperature scale of the loop model,T̃, is inverted
with respect to the temperature scale of theXY model,T.

While the loop model of Eq.(5) is exactly dual to theXY
model of anunscreenedsuperconductor, taking it on its own

with T̃ as the physical temperature, we can giveHloop the
following different physical interpretation.3,15 We can regard
the divergenceless variablesnim as the vortex loops of a
strongly screenedsuperconductor withl0,j0. The short
ranged vortex line interaction of this case is then modeled by
the simple onsite repulsion ofHloop. Further details of this
analogy may be found in Ref.(15). If we regard each site of
our numerical grid as representing a columnar pin, the ran-
dom gim in the xy plane can be thought of as modeling the
random distances between such pins, and hence giving the
random energies associated with a vortex loop segment hop-
ping from one pin to another. This duality betweenHloop and
HXY thus implies that the unscreened and the screened super-
conductor models fall in the same equilibrium universality
class, just as is the case for the disorder free model.8

III. EQUILIBRIUM CRITICAL BEHAVIOR

In this section we report on our equilibriumXY model
simulations. To extract critical exponents, we use the method
of finite size scaling. We first, therefore, discuss this method.

A. Finite size scaling

Because the columnar disorder singles out the special di-
rection ẑ, we must allow for the possibility that scaling will
be anisotropic. Ifj denotes the correlation length in thexy
plane, then anisotropic scaling assumes that, asT→Tc andj
diverges, the correlation length along theẑ axis diverges as,

jz , jz, s8d

wherez is the anisotropy exponent.
Consider now an observableO whose scaling dimension

is zero. As a function of reduced temperaturet;sT−Tcd /Tc

and system sizeL3L3Lz, we expect the scaling relation-
ship,

OsT,L,Lzd = Õstb1/n, L/b,Lz/b
zd, s9d

whereb is an arbitrary length rescaling factor,Õ is the scal-
ing function, andn is the usual correlation length exponent,

j , t−n. s10d

Taking b=L in Eq. (9) then gives,

OsT,L,Lzd = ÕstL1/n,1,Lz/L
zd. s11d

For the case ofisotropic scaling, withz=1, choosing a con-
stant aspect ratioLz=gL reduces the right-hand side of Eq.
(11) to a function of the single scaling variabletL1/n. Mea-
suringO vs T for systems with varyingL but fixedLz/L is
then sufficient to determine the exponentn. However, when
zÞ1, and its value is unknown, it becomes necessary to
consider systems with varying aspect ratioLz/L, greatly in-
creasing the complexity of the computation.

To deal with this case we take the following approach,
originally used to study the phase transition in the quantum
Ising spin glass.19 Assume that the observableOsT,L ,Lzd
when viewed as a function ofLz, for fixed T and L, has a
maximum at a particular valueLz max. Because of the scaling
law Eq. (11), this valueLz max must occur when

Lz max/L
z = g̃stL1/nd, s12d

whereg̃ is a scaling function of the single variabletL1/n. We
then define,

OmaxsT,Ld ; OsT,L,Lz maxd = Õ„tL1/n,1,g̃stL1/nd…

; ÕmaxstL1/nd. s13d

PlottingOmaxsT,Ld vs T for different values ofL, the curves
will intersect at the common pointT=Tc (i.e., t=0). The
slopes of these curves atTc then determine the exponentn. In
practice, we will determine the values ofTc and the exponent
n by the following approach.20 Close toTc (i.e., for smallt)
we can expand the scaling functionÕmax as a polynomial for
small values of its argumenttL1/n:

FIG. 1. Binder ratio maximum for the 3DXY model, gmax at
T=2.05.Tc, computed withNeq equilibration sweeps followed by
Neq sweeps to compute averages.Neq=100 is sufficient for good
equilibration for all sizesL.
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ÕmaxstL1/nd . a0 + a1fsT − Tcd/TcgL1/n

+ a2hfsT − Tcd/TcgL1/nj2 + . . . . s14d

We then fit the data forOmaxsT,Ld to the above form using
Tc, n, a0, a1, a2, etc. as free fitting parameters. Varying the
system sizesL and temperature windowuT−Tcu of the data
used in the fit, as well as varying the order of the above
polynomial expansion, will give confidence on the signifi-
cance of the fit.

Having obtained the value ofTc, plotting Lz maxsTcd vs L
determines the anisotropy exponentz by Eq. (12),

Lz maxsTcd , Lz. s15d

Knowing Tc, n, and z, plotting OmaxsT,Ld vs tL1/n and
OsTc,L ,Lzd vs Lz/L

z should collapse the respective data to a
single scaling curve.

B. Observables

To carry out the scaling analysis outlined in the previous
section, we now have to determine appropriate observables
to measure.

For the 3DXY model of Eq.(1), we expect belowTc a
nonvanishing order parameter,c=s1/Ndoie

iui. We define the
real part ofc as,

M =
1

N
o

i

cosui , s16d

and construct its Binder ratio21

gsT,L,Lzd ; 1 −F kM4l
3kM2l2G = g̃stL1/n,Lz/L

zd. s17d

Because the scaling dimension ofM cancels in taking the
ratio above, the Binder ratiog has scaling dimension zero,
and so has the scaling form of Eq.(11). In the above,k. . .l
denotes the usual thermal average, whilef. . .g denotes the
average over different realizations of the columnar disorder.
In the denominator of Eq.(17), the square of the expectation
value is evaluated using two replicas with identical disorder,
indexed by a and b, kM2l2;ksMad2lksMbd2l, in order to
avoid bias.22

Another observable we have measured is obtained by con-
sidering the dependence of the total free energy on the total
applied twist across the system.23 Sensitivity to boundary
conditions, in this case specified by the twistDm in Eq. (2), is
one of the signatures of an ordered phase. TheXY model is
therefore phase coherent when the total free energyF varies
with twist Dm. F is computed from a partition function sum
over theui8 using the HamiltonianHXYfDmg of Eq. (4). A
convenient measure of the dependence ofF on Dm is ob-
tained by looking at the curvature ofFsDmd at its minimum.
In Appendix A we show that this minimum always occurs at
Dm=0. We therefore consider,

U ]2F
]Dm

2 U
Dm=0

=K ]2HXY

]Dm
2 L −

1

T
KS ]HXY

]Dm
D2L , s18d

whereHXY is that of Eq.(4), and the averages on the right-
hand side are taken in the ensemble withDm=0.

Since the total free energyF and the total twistDm are
both scale invariant quantities, then]2F /]Dm

2 has scaling di-
mension zero. These derivatives are usually defined in terms
of the helicity modulus13 Ym, which is the derivative of the
free energydensitywith respect to the twistper length. We
have in three dimensions,

U ]2F
]Dz

2U
Dm=0

=
L2

Lz
Yz, s19d

U ]2F
]Dx

2U
Dm=0

= LzYx. s20d

Averaging over the disorder, we find that, for fixedT andL,
sL2/LzdfYzg decreases monotonically asLz increases, while
LzfYxg increases monotonically asLz increases. In order to
have an observable which has a maximum as a function of
Lz, we therefore consider the product,

L2fYxYzg = ũstL1/n,Lz/L
zd, s21d

which has the same scaling form as Eq.(11).

C. Monte Carlo methods and error estimation

In order to achieve accurate results, averaging over many
disorder realizations for many different aspect ratios,Lz/L, it
is essential to have an efficient simulation algorithm. For
equilibrium simulation of the 3DXY model, the lack of frus-
tration allows us to use the Wolff24 cluster algorithm to avoid
critical slowing down. We typically use 100 Wolff sweeps to
approach equilibrium, followed by 200 Wolff sweeps to
compute averages; one Wolff sweep is defined as building
clusters until each phase angleui has been updated once on
average. Between 3000 and 5000 different realizations of the
random disorder are averaged over near the critical point,
with fewer realizations used away from the critical point. A
test of the equilibration of our simulations is shown in Fig. 1,
where we see that the above simulation lengths are sufficient.

To estimate the statistical error in our results we use the
following method. For our raw data, our average is just the
average over the individual values obtained inNd indepen-
dent realizations of the random disorder. Our estimated error
is determined from the standard deviations of theseNd in-
dependent values, error=s /ÎNd. To estimate the statistical
error in the fitting parameters of our finite size scaling analy-
sis, we take the following approach. From our original data
set we construct many(typically 1000) fictitiousdata sets by
adding to each data point a random Gaussian variable with
zero mean, and standard deviation equal to the estimated
statistical error of the data point. We then fit each of the
fictitious data sets. The standard deviation of the values of
the resulting fitting parameters then gives our estimate of the
statistical error in the fitting parameter.
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Harder to estimate are the possible systematic errors in
our results. Here we rely on varying parameters of our analy-
sis, such as the order of a polynomial fit, or the system sizes
L used in the fit, in order to get a feeling for the likely
accuracy of our results.

D. Results

We now present our results from simulations of theXY
model of Eq.(1). In Fig. 2 we plot our results for the Binder
ratio of Eq.(17), gsT,L ,Lzd vs. Lz, for sizesL=8,12,20, at
the fixed temperatureT=2.05. We see that for eachL,
gsT,L ,Lzd has a clear maximum at a particularLz max. Note
that the maximum values of these curves appear to be equal
for the different values ofL. From Eq. (13) we therefore
infer that the temperatureT=2.05 is approximately the criti-
cal temperatureTc. To determine the precise values ofLz max
and the maximum valuesgmaxsT,Ld=gsT,L ,Lz maxd, we fit
the data for eachL to a cubic polynomial in lnLz (these are
the solid curves in Fig. 2). The Lz max obtained this way are
not, in general, integer values. We have also done such fits
using a quadratic polynomial in lnLz; the difference in val-
ues obtained from the cubic versus the quadratic fit provides
our estimate of the systematic error of this procedure. We
find that forgmaxsT,Ld this systematic error is always smaller
than the estimated statistical error of the cubic fits; forLz max
the systematic error is bigger. This reflects the simple fact

that gmaxsT,Ld, being a maximum with zero slope, varies
only quadratically with deviations from the trueLz max, and
hence may be determined more accurately. Henceforth, the
error bars we use forgmax are the above estimated statistical
errors, while the error bars we use forLz max are the above
defined systematic errors.

Proceeding in this way at other temperatures, we plot in
Fig. 3 the values ofgmaxsT,Ld vs T for L=8, 10, 12, 16, and
20. The different curves all intersect at a common point,
determiningTc.2.05. To determine the correlation length
exponentn, and get a more precise estimate ofTc, we now fit
the data of Fig. 3 to a polynomial expansion as in Eq.(14).
In Table I we show the results from both quadratic and cubic
polynomial fits, using different system sizesL; we system-
atically drop the smallest sizes since scaling holds only in the
asymptotic largeL limit. Our results give a consistent value
of Tc.2.05. The values ofn that we obtain are consistent
within the estimated statistical errors, however we see a
small systematic increase in the value ofn when we restrict
the data to larger system sizes. We therefore estimaten
=1.2±0.1. Note that our valuen.1, satisfies the Chayes
lower bound condition,6 as generalized5 for correlated disor-
der, n.2/d*, where d* =2 is the number of dimensions in
which the system is disordered. In Fig. 4 we replot the data
of Fig. 3 in a scaled form,gmaxsT,Ld vs fsT−Tcd /TcgL1/n. We
use the value ofTc and n from Table I for the cubic fit to
sizesL=12–20. The solid line is the fitted cubic polynomial.
As is seen, the data collapse is excellent.

Having found the value ofTc, we next determine the an-
isotropy exponentz. In Fig. 5 we show a log–log plot of our

TABLE I. Fitting parametersTc andn from quadratic and cubic
polynomial scaling fits to the data of Fig. 3. Results for different
ranges of system sizesL are shown.

L Order Tc n

8–20 quadratic 2.052±0.001 1.07±0.03

cubic 2.052±0.001 1.04±0.06

10–20 quadratic 2.052±0.001 1.10±0.04

cubic 2.052±0.001 1.10±0.06

12–20 quadratic 2.051±0.001 1.18±0.04

cubic 2.051±0.001 1.18±0.05

FIG. 2. Binder ratio,gsT,L ,Lzd vs Lz for several valuesL at the
fixed T=2.05. Solid curves are cubic polynomial fits in lnLz.

FIG. 3. Binder ratio maximumgmaxsT,Ld vs T for various sys-
tem sizesL. The common intersection determinesTc.2.05. Solid
lines are linear fits to the data.

FIG. 4. Scaling collapse ofgmaxsT,Ld vs fsT−Tcd /TcgL1/n. The
values ofTc=2.051 andn=1.18 from the last row of Table I are
used. The solid curve is the fitted cubic polynomial.
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data forLz max vs L, at the temperatureT=2.05.Tc. Fitting
to Eq. (15), Lz max,Lz, we get the results summarized in
Table II for different ranges of system sizesL. The results are
consistent within the estimated statistical error and we find
z=1.3±0.1. To check the consistency of our value forz, in
Fig. 6 we plot gsTc,L ,Lzd vs Lz/L

z, using our data atT
=2.05 and the above determined value ofz=1.3. As expected
from Eq. (11), the data for the different values ofL and Lz
show a very good collapse to a single scaling curve.

We have also tried a similar scaling analysis for the he-
licity moduli product,L2fYxYzg, of Eq. (21). However, here
we have found less satisfactory results. We find that for a
given system sizeL, theLz max whereL2fYxYzg has its maxi-
mum occurs at a smaller value ofLz than was the case for the
Binder ratio gmax. Such smaller system sizes presumably
have larger corrections to scaling. We have also found the
statistical error inL2fYxYzg to be larger than we found for
gmax, possibly because the Binder ratiog involves a ratio
between fluctuating quantities and so has smaller sample to
sample fluctuations.25 As a consequence of these two effects,
we could not arrive at a convincing determination ofTc and
n from the L2fYxYzg data alone. However, to illustrate our
results we can make use of the values ofTc.2.05 andz
.1.3 found in our analysis ofgmax. In Fig. 7 we therefore
show a scaling collapse similar to that of Fig. 6, plotting
L2fYxYzg vs Lz/L

z, using our data atT=2.05.Tc and the
above value ofz.

We see clearly in Fig. 7 the above effects: error bars are
considerably larger than in Fig. 6, and the peak is at a smaller
value ofLz/L

z. The scaling collapse is not bad for the bigger
systems sizes, corresponding to larger values ofLz/L

z. How-
ever it is rather scattered near the peak and below it. We
conclude that it would be necessary to average over many
more disorder realizations to reduce the errors, and perhaps
also go to larger system sizes, in order to get a convincing
scaling analysis from the helicity productL2fYxYzg on its
own.

IV. DYNAMIC CRITICAL BEHAVIOR

As one approaches the critical temperatureTc, we expect
relaxation times to diverge ast,j z, defining the dynamic
critical exponentz. To compute equilibrium critical expo-
nents, it is sufficient that the simulation dynamics satisfies
detailed balance; the details of the dynamics are otherwise
irrelevant. Thus the exact duality betweenHXY and Hloop
implies that the unscreened and the strongly screened super-
conductors have the sameequilibrium critical behavior. For
the dynamic critical behavior, however, the value ofz will in
general depend on the details of the dynamics,26 and some
works suggest that it may even vary for different types of
relaxational dynamics or different boundary conditions.27,28

There is thus no reason,a priori, to expect the same dynamic
critical behavior for theXY model, expressed in terms of a
dynamical rule for the phase variablesui, as compared to the
loop model, expressed in terms of a dynamical rule for the
vortex line variablesnim. In this section, therefore, we will
present results from explicit simulations of the loop model as
well as theXY model.

Because the true dynamics of a superconductor is local, it
is not physically meaningful to compute the dynamic critical
exponent within accelerated global algorithms such as the
Wolff algorithm, which we used to compute equilibrium
properties. We therefore will use alocal Monte Carlo dy-
namics for bothHXY andHloop. Even within such local algo-
rithms, it is not obvious how universal the dynamical critical

TABLE II. Anisotropy exponentz from power law fits,Lz max

,Lz to system sizesL=Lmin−20.

Lmin 8 10 12

z 1.29±0.05 1.33±0.08 1.37±0.12

FIG. 5. Log–log plot ofLz max vs L, at T=2.05.Tc. The solid
straight line is the best power law fit using the data forL=10–20
and yields the valuez=1.329±0.08(see Table II).

FIG. 6. Scaling collapse ofgsTc,L ,Lzd vs Lz/L
z, for data atT

=2.05.Tc, usingz=1.3. The solid line is a guide to the eye only.

FIG. 7. Attempted scaling collapse ofL2fYxYzg vs Lz/L
z. Data

are forT=2.05.Tc, usingz=1.3.
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behaviors may be. Thus it is unclear that our results will
correspond to what is seen in experiments. Nevertheless it
will be interesting to see if the two models give similar or
different values ofz.

The relative loss of efficiency that results from using such
local algorithms means that we will be unable to do as ex-
tensive an exploration of the parameter space as we did for
our equilibrium analysis. But this is not necessary. We can
make use of our already obtained equilibrium results, and
simulate only at the value ofT=Tc, using system aspect ra-
tios Lz=gLz. For our simulation ofHloop, we will simulate
the loop model which is exactly dual[see Appendix A, Eq.
(A11)] to the cosineXY model that we have used in our
equilibrium simulations, so as to make use of these known
values ofTc andz.

A. Monte Carlo methods and scaling

For the XY model of an unscreened superconductor we
use a standard single spin heat bath algorithm, with fixed
periodic boundary conditions on theui. In this algorithm, a
phase angleui is selected at random and replaced with a new
randomly chosenui8. This update attempt is then accepted
with probability 1/f1+expsDE/Tdg whereDE is the change
in energy. One sweep, consisting ofN=L2Lz update attempts,
is taken as one time step,Dt=1. We average over 300–700
disorder realizations depending on system sizeL.

For the loop model of a strongly screened superconductor,
we again use a heat bath algorithm in which the attempted
excitation consists of an elementary vortex loop circulating
about a randomly chosen plaquette of the grid. Adding only
such closed loop excitations corresponds to the ensemble in
which the average internal magnetic field is constrained to
B=0 (see Appendix A). One sweep, consisting of 3N such
update attempts, is taken as one time step,Dt=1. We average
over 1000–2000 disorder realizations depending on system
sizeL.

In general, we expect the relaxation timet to obey the
scaling equation:

t sT,L,Lzd = bzt̃ stb1/n,L/b,Lz/b
zd, s22d

whereb is an arbitrary length rescaling factor. Forb=L, T
=Tc, andLz=gLz, this reduces to the simple

t , Lz. s23d

For both theXY model and the loop model, we simulate with
values ofLz=gLz as determined by the fit shown in Fig. 5.
For theXY model, to approximate noninteger values ofLz we
use linear interpolation of simulation data for the two closest
integer values ofLz. For the loop model we simply use re-
sults from the closest integer value ofLz.

B. Observables

1. XY model

For theXY model we have tried two independent methods
of determining z, analogous to the two quantitiesg and
L2fYxYzg used in our equilibrium simulations. The first is to

look at the decay of correlations in the order parameterM of
Eq. (16), defining the relaxation timet by,

t = 1 + 2o
t=1

t0

DtF kMstdMs0dl
kM2l G , Lz, s24d

wheret0 is chosen large enough so thatt is independent of
t0. The ratio in the above ensures that the quantity being
summed over has scaling dimension zero, and hence the sum
scales ast,Lz.

The second method is to look at correlations of the super-
currentIm, defined by,

Im = U ]HXY

]Dm

U
Dm=0

=
1

Lm
o

i

Jim sinsui+m̂ − uid. s25d

In terms of Im one can define the conductance in them̂ di-
rection by the Kubo formula,27

Gm =
1

2T
o

t=−t0

t0

DtfkImstdIms0dlg , Lz, s26d

where againt0 is chosen large enough thatGm is independent
of t0. SinceIm= us]HXY/]DmduDm=0, andHXY andDm are scale
invariant, thenIm, and hence the correlation summed over in
in the definition ofGm, has scaling dimension zero. There-
fore, the sum which definesGm scales ast,Lz.

2. Loop model

For the loop model we consider the total resistance, de-
fined as follows.3,5 Let Qmstd be the total projected loop area
with normal in directionm̂ at simulation timet. Each time an
oriented elementary vortex loop with normal in direction ±m̂
is accepted,Qm changes by ±1. LetDQmstd;Qmstd−Qmst
−1d be the total change in this area after one sweep through
the entire system; each sweep representsDt=1. In one such
sweep, the total average phase angle change across the length
of the system(in the dual screenedXY superconductor
model) in directionm̂ is just 2pDQm /LnLs, wherem, n, and
s are a cyclic permutation ofx, y, andz. By the Josephson
relation, the total voltage drop across the system in direction
m̂ will then be

FIG. 8. Log–log plot of order parameter relaxation timet of Eq.
(24) vs system sizeL, for T=2.05.Tc andLz,Lz. Solid line is the
best power law fit for sizesL=10–20, and determinesz
=2.63±0.07(see Table III).
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Vmstd = S "

2e
DS 2p

LnLs
DSDQm

Dt
D = S h

2e
DS 1

LnLs
DSDQm

Dt
D .

s27d

Henceforth, we define our units of voltage such thath/2e
;1. We then define the total resistance in directionm̂ by the
Kubo formula:29

Rm =
1

2T
o

t=−t0

t0

DtfkVmstdVms0dlg, s28d

where againt0 is chosen large enough so thatRm is indepen-
dent of t0. Since the total voltage dropVm is the time rate of
change of the total phase angle difference across the system,
and since the total phase angle difference is a scale invariant
quantity, we have the scalingVm,1/t. Thus the resistance
above scales as

Rm , 1/t , L−z. s29d

C. Results

1. XY model

In Fig. 8 we show a log–log plot of our results for the
order parameter relaxation timet of Eq. (24) versus system
sizeL, for T=2.05.Tc andLz,Lz. Our results are obtained
using 53105 MC sweeps to equilibrate, followed by 106

sweeps to compute averages. Fitting to the power law,t
,Lz, we get the results summarized in Table III, for different
ranges of systems sizeL. The results are consistent within
the estimated statistical error, with a small systematic ten-
dency to lower values as we restrict the fitted data to larger
system sizes. We findzXY=2.63±0.07.

As another check on our above determination ofzXY, we
consider the following. In principal,t is defined by takingt0
in Eq. (24) sufficiently large so thatt is independent oft0;
our data in Fig. 8 satisfy this condition. How bigt0 must be
for this to happen is set by the time scalet itself. Therefore,
we expect that if we computet for arbitrary t0, then tst0d
should scale as

t st0d , Lzt̃ st0/td , Lzt̃ st0/Lzd. s30d

In Fig. 9 we show a log–log plot oftst0d /Lz vs t0/Lz for
various sizesL (again using T=2.05.Tc and Lz,Lz).
Choosing the valuezXY=2.63 obtained from the fit in Fig. 8
we find an excellent collapse of all the data. For larget0/Lz

we see that the curve does indeed saturate to a finite constant
as expected, however the collapse holds for the entire range
of t0.

Finally, in Fig. 10 we plot the conductances of Eq.(26),
Gx andGz vs L, for T=2.05.Tc andLz,Lz. Our results are
for 23105 MC sweeps to equilibrate, followed by 43105

sweeps to compute averages. Fitting to the power law,Gm

,Lzm, we get the results summarized in Table IV, for differ-
ent ranges of systems sizeL. For Gx the results z
.2.66±0.04 are consistent, within errors, with that obtained
from our analysis of the order parameter relaxation timet.
For Gz, we get values forz that are somewhat larger. How-
ever, if one compares the data points forGx andGz directly,
one sees that the values are all roughly equal within the
estimated error, except for the smallest sizeL=4 (probably
too small to be in the scaling limit) and for the largest size
L=20. Our fit for z from theGz data is skewed by this one
L=20 data point. If we restrict our fit to sizesL=8–16, we
then findzz=2.82±0.03. This is still somewhat larger than

TABLE III. Dynamic exponentzXY from power law fits,t,Lz,
to system sizesL=Lmin−20.

Lmin 6 8 10 12

zXY 2.72±0.04 2.69±0.05 2.63±0.07 2.60±0.03

TABLE IV. Dynamic exponentzXY from power law fits,Gm

,Lzm, to system sizesL=Lmin−20.

Lmin 6 8 10 12

zx 2.71±0.02 2.75±0.03 2.66±0.04 2.69±0.06

zz 2.77±0.02 2.87±0.03 2.91±0.04 3.06±0.07

FIG. 9. Log–log scaling plot of order parameter relaxation time
t st0d /Lz vs t0/Lz for T=2.05.Tc, Lz,Lz, and various values
of L. Using zXY=2.63 gives an excellent collapse for the entire
range oft0.

FIG. 10. Log–log plot of conductancesGx and Gz vs L, for T
=2.05.Tc andLz,Lz. The fitted straight lines determinezx=2.66
andzz=2.91.
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what we get fromGx, but within two standard deviations of
zx for the same range of sizesL=8–16.

2. Loop model

For our loop simulations we use the interaction of Eq.
(A11), exactly dual to ourXY model. This interaction is com-
puted using the same distribution ofJim as we used for the
XY model, and we simulate at the same value ofT=2.05 as
gives the critical point of theXY model. We also use the
same values ofLz=gLz as we used for theXY model, as
determined from Fig. 5. In Fig. 11 we give our results for the
resistance of the loop model, Eq.(28), as a log–log plot ofRx
and Rz versus system sizeL. Our results are from 12
3104 MC sweeps to equilibrate, followed by 243104

sweeps to compute averages. Fitting to the power law of Eq.
(29), Rx,L−z, we get the results summarized in Table V, for
different ranges of systems sizeL. The results are consistent
within the estimated statistical error, and we findzloop
=3.4±0.1.

For the case ofRz, parallel to the columnar defects, our
simulations were not sufficiently long to observe the neces-
sary saturation ofRzst0d with increasingt0, except for the
smallest system sizesLø12. We do not believe that any
estimate ofzloop based on such small system sizes would be
meaningful. We can, however, perform the following consis-
tency check. Similar to our discussion concerningt st0d [see
Eq. (30)], we can computeRm of Eq. (28) for finite timest0,
and we expectRmst0dLz to scale with the variablet0/Lz. In
Fig. 12 we make such a log–log scaling plot using the value
of z=3.4 found forRx in Fig. 11. ForRx we see that the
collapse is excellent for all timest0, and the scaling curve
saturates to a constant at larget0/Lz as expected. ForRz, we
find a good collapse for all but the largest times. We see that
Rzst0d saturates only for the smallest systems, and it is only
here that the collapse appears to be breaking down. We con-

clude that these small system sizes are not large enough to
expect scaling forRz to hold.

We can also try to independently determine the dynamic
exponentz by fitting to a data collapse as in Fig. 12 for all
timest0, rather than just the asymptotic large time limit. The
inset to Fig. 12 shows the resultingx2 of such fits as the
fitting parameterz is varied. ForRx, the x2 shows a sharp
minimum at z=3.45, in good agreement with our earlier
value ofz=3.4 from Fig. 11. ForRz, thex2 has a minimum at
the somewhat higher value ofz=3.7, however the minimum
is very shallow, indicating a relative insensitivity of the data
to variations inz. We conclude that both the data forRx and
Rz are consistent with a dynamic exponentzloop=3.4±0.1.

V. DISCUSSION AND CONCLUSIONS

We have studied the equilibrium and dynamic critical be-
havior of the zero magnetic field superconducting phase tran-
sition for a type-II superconductor with quenched columnar
disorder. We have considered both the “unscreened”XY
model in whichl0→`, and the “strongly screened” loop
model in whichl0,j0. A duality transformation establishes
that these two models are in the sameequilibriumuniversal-
ity class. Using numerical simulations of theXY model, we
find, in agreement with a generalized Harris criterion, that
the universality class of the transition is different from the
pure model, and we find that scaling is anisotropic. We find
the value for the correlation length exponent,n=1.2±0.1,
and for the anisotropy exponent,z=1.3±0.1.

Using the value of the critical temperature and the aniso-
tropic scaling determined from the equilibrium analysis, we
carry out simulations at the critical point to determine the
dynamic critical exponentz of both theXY and loop models
for local Monte Carlo dynamic rules. For the “unscreened”
XY model, with a single spin heat bath dynamics, we find
zXY=2.6±0.1. For the “strongly screened” loop model, with a
heat bath dynamics applied to elementary loop excitations,
we find zloop=3.4±0.1.

TABLE V. Dynamic exponentzloop from power law fits,Rx

,L−z, to system sizesL=Lmin−20.

Lmin 6 8 10 12

zloop 3.23±0.05 3.33±0.07 3.39±0.11 3.38±0.14

FIG. 11. Log–log plot of resistanceRx andRz of the loop model
vs L. The solid line is the best power law fit,Rx,L−z, for sizesL
=10–20, and determines the valuezloop=3.4±0.1(see Table V).

FIG. 12. Log–log scaling plot of time dependent resistance
Rxst0dLz andRzst0dLz of the loop model vst0/Lz. The valuez=3.4
obtained from the fit in Fig. 11 is used. The inset gives thex2 error
of the data collapse, as the exponentz is varied.
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A similar random 3DXY model has been studied by Cha
and Girvin9 in the context of the quantum phase transition in
the two dimensional boson Hubbard model. In their model
disorder was introduced as uniformly distributed random
bonds in theẑ (imaginary time) direction,Jiz, so as to model
bosons with random charging energy. They found equilib-
rium critical exponentsn=1.0±0.3 andz=1.07±0.03(our
anisotropy exponentz for the classical 3D model is equiva-
lent to their “quantum dynamic exponent”z for the 2D quan-
tum problem). However, their analysis for such a system
with anisotropic scaling,z.1, was based on a moread hoc
approach of(i) trying various values ofz and seeing which
appeared to give the best data collapse for systems of differ-
ent sizeL, and (ii ) measuring real space correlations in a
system of a fixed size and fitting to assumed power law de-
cays. Their largest system size, 162315 is also smaller than
ours and they do not use the Wolff algorithm to accelerate
their equilibration. While it is possible that introducing the
randomness differently(along ẑ rather than in thexy plane)
might effect the universality class, we believe it is more
likely that this is not the case, and that our results are more
systematic and hence more accurate than those of Cha and
Girvin.

Prokof’ev and Svistunov10 have simulated the loop model
of Eq. (5) in the context of the same two dimensional disor-
dered boson problem as Cha and Girvin. For their “off-
diagonal” disorder case they put the disorder into the bonds
along theẑ direction, making their model dual to that of Cha
and Girvin. They report an anisotropy exponentz=1.5±0.2,
which agrees with ours within the estimated errors. They
were unable to determine the correlation length exponentn.
We note that while they use an accelerated “worm” algo-
rithm and have good statistics for quite large system sizes,
they determine their exponents by fitting to real space corre-
lation functions for their biggest size system, as did Cha and
Girvin, rather than doing any systematic finite size scaling
that takes into account the anisotropic scaling present in the
model.

Experimental measurements of the quantum phase transi-
tion in such two-dimensional boson systems could provide
important tests of our results. In particular, the frequency
dependence of dynamic quantities, like the ac conductance or
susceptibility, is predicted to depend on a universal scaling
function5 of the argumentvuK−Kcu−zn. Here,K is a param-
eter that controls the strength of quantum fluctuations,Kc is
its value at criticality, and our anisotropy exponentz be-
comes the dynamic exponent of the 2D quantum problem.

Direct experimental investigation of the zero field 3D su-
perconducting transition with colummnar disorder has been
undertaken by Kötzler and co-workers30 for YBaCuO thin
films. Measuring the frequency dependent conductivity
transverse to the columnar disorder, which is expected to
scale as14 s'sv ,Td= tsz−zdns̃svt−znd [where t=sT−Tcd /Tc],
they find31 the combinationsnz=1.7 and z/z=5.53. This
compares with our valuesnz=1.56, andz/z=2 for the un-
screenedXY model, andz/z=2.6 for the strongly screened
loop model. Our value ofnz is conceivably consistent with
the experimental value, within possible errors. However both
of our values ofz/z seem too small. It may be that our
simple local Monte Carlo dynamics does not adequately cap-

ture the true dynamics of a real superconductor. On the other
hand, if we use our value ofz=1.3, then Kötzler’s results
imply a dynamic exponent ofz=7.2, which seems extraordi-
narily large.

We may also compare our dynamic exponents with those
obtained from the disorder free model. For the the strongly
screened limit of the loop model, Lidmaret al.15 find the
valuezloop.2.7; moreover, they find this value to be insen-
sitive to the presence ofuncorrelatedpoint disorder. For re-
laxational dynamics of the phase angle variable in theXY
model, a value ofz<2 is expected,26 and this is what was
found in numerical simulations by Jensenet al.27 using a
method similar to our scaling of conductance, Eq.(26). The
result zloop.zXY thus seems common for both the pure and
columnar disordered cases.

In our work we have considered only simple relaxational
dynamics for the phase angles of the unscreenedXY model.
Two other possible dynamics might be considered. One
would be to do a loop dynamics, similar to what we have
done here for the strongly screened loop model, only now as
applied to the strongly interacting loops of the unscreened
XY model. The other would be to use resistively shunted
junction (RSJ) dynamics for the phase angles of theXY
model. Both such approaches have been previously used for
the disorder free case. For both loop dynamics15,32 and RSJ
dynamics27,33 the dynamic exponentz.1.5 was found,
smaller than the value obtained by simple phase angle relax-
ational dynamics. Investigating these other dynamics for the
case of columnar disorder remains for future work. We only
note here that if the above trend remains true for columnar
disorder, and that these other dynamics reducez from that of
relaxational dynamics, then it becomes even harder to ex-
plain the large value ofzz observed experimentally in Ref.
30.

Finally, we note that similarequilibrium exponents to
those found in this work were also found for the case of an
unscreenedsuperconductor with columnar defects in afinite
applied magnetic field. For that case the values4 n=1.0±0.1
andz=1.25±0.1 were found. Although these are close to the
values we find here forzeroapplied field, there is no appar-
ent reason that the zero and finite field cases should be in the
same universality class. We also note that once a finite field
is applied, the duality between the unscreened and strongly
screened superconductor models, that exists for zero field,
breaks down.
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APPENDIX A

In this section we review the duality transformation8,16,17

from HXY of Eq. (1) to Hloop of Eq. (5). Consider first a
general 2p periodic interaction Vimsfd instead of the
−sJim /Tdcossfd of Eq. (1). For the generalized fixed twist-
boundary condition and the corresponding Hamiltonian of
Eq. (4), we can write the partition function as,

Z = Sp
i
E

0

2p dui8

2p
De−S jmVjmsu j8−u j+m̂8 −Dm/Lmd, sA1d

where theui8 obey periodic boundary conditions. Defining

the Fourier transformṼjm by,

e−Vjmsfd ; o
njm=−`

`

e−Ṽjmsnjmdeinjmf, sA2d

and substituting into Eq.(A1) gives,

Z = o
hnjmj

Sp
i
E

0

2p dui8

2p
De−S jmṼjmsnjmd+iS jmnjmsu j8−u j+m̂8 −Dm/Lmd,

sA3d

= o
hnjmj

e−S jmfṼjmsnjmd+injmDm/LmgSp
i
E

0

2p dui8

2p
D

3eiS jmnjmsu j8−u j+m̂8 d. sA4d

One is now free to do the integrals over theu j8. The result is
a product of Kronecker deltas constraining the variablesnjm
to be divergenceless, as in Eq.(6). Defining the “winding
numbers”Wm by,

Wm ;
1

Lm
o

i

nim, sA5d

we get,

Z = o8
hnjmj

e−S jmṼjmsnjmd−iSmWmDm, sA6d

where the prime on the summation denotes the divergence-
less constraint of Eq.(6).

A common choice forVimsfd is the Villain interaction,18

e−Vjmsfd ; o
m=−`

`

e−sJjm/2Tdsf − 2pmd2. sA7d

In this case one has for its transform,

Ṽimsnd =
T

2Jim
n2. sA8d

The partition function of Eq.(A6), with periodic boundary
conditionsDm=0, then becomes,

Z = o8
hnjmj

e−s1/2T̃dS jmgjmnjm
2

, sA9d

with

gim/T̃ = T/Jim. sA10d

The above is just a model of short ranged interacting loops

with onsite repulsion,n2 and inverted temperature scaleT̃
,1/T.

For our simulatons, withVimsfd=−sJim /Tdcossfd, one
has17

e−Ṽimsnd = InsJim/Td, sA11d

whereInsxd is the modified Bessel function of the first kind.
Since Insxd is an increasing function ofunu for fixed x, the
above similarly gives a short ranged loop model with onsite
repulsion. It is this interaction of Eq.(A11) that we use in
our dynamic simulations of the loop model in Sec. IV.

We can now demonstrate several interesting results con-
cerning phase coherence in theXY model, by considering the
behavior as a function of the twistDm. The XY model is
phase coherent when the total free energyF varies withDm.
Using FsDmd=−T ln ZsDmd, and Eq.(A6) above, we find,

1

T
U ]F

]Dm
U

Dm=0
= ikWml0, sA12d

where k. . .l0 indicates an average in the ensemble withDm

=0. Now since]F /]Dm must be a real quantity[as may be
seen by considering its evaluation in the originalXY model
HXY of Eq. (4)], and sincekWml0 must similarly be real(as
may be seen by consideringHloop), the only way for Eq.
(A12) to hold is if u]F /]DmuDm=0=kWml0=0. This then dem-
onstrates thatDm=0, i.e., periodic boundary conditions on
the ui, is the twist that minimizes the free energy.

Finally, returning to Eq.(A6), we note that in thefluctu-
ating twist ensemble34 for the XY model, in whichDm is
averaged over as a thermally fluctuating degree of freedom,
the corresponding loop model obeys the additional constraint
of zero winding,Wm=0, in each individual configuration.
When viewingHloop as the Hamiltonian of vortex loops in a
strongly screened superconductor, this corresponds to the en-
semble in which the average internal magnetic field is con-
strained to vanish,Bm<0, in each configuration.
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