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We investigate the effect of random columnar disorder on the superconducting phase transition of a type-II
superconductor in zero applied magnetic field using numerical simulations of three dimepsiaarad vortex
loop models. We consider both an unscreened model, in which the bare magnetic penetration length is ap-
proximated as infinite, and a strongly screened model, in which the magnetic penetration length is of order the
vortex core radius. We consider both equilibrium and dynamic critical exponents. We show that, as in the
disorder free case, the equilibrium transitions of the unscreened and strongly screened models lie in the same
universality class, however scaling is now anisotropic. We find for the correlation length exponent
=1.2+0.1, and for the anisotropy exponert1.3+0.1. We find different dynamic critical exponents for the
unscreened and strongly screened models.
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[. INTRODUCTION remains unchanged. Famolumnar disorder, howeverd*
=2, and so 2d* v>0. Columnar defects should therefore

The discovery of high temperature superconductors, ircross the zero field transition over to a new universality
which thermal fluctuations are important and mean fieldclass. Stabilit§ of this new disordered fixed point with re-
theory can no longer be applied, has led to a resurgence spect to the generalized Harris criterion implies that it should
interest in phase transitions and critical phenomena in type-lhave a new value>>1. In our equilibrium simulations we
superconductorsOf particular interest has been understand-indeed find behavior consistent with this, and we obtain a
ing the effects of random quenched disorder on the nature ofalue for the correlation length exponemt1.2+0.1. More-
the ordered phases and the universality of the phase transiver, we find scaling is now anistropic and we find the value
tions. For the high temperature superconductors, thi®f the anisotropy exponent to he=1.3+0.1. Experimental
quenched disorder can take many forms: random point deneasurement of these exponents would therefore provide a
fects due to oxygen vacancies, planar twin grain boundariegrecision test of the theoretical model.
and columnar defects introduced by ion irradiation. The model we study also has application to Tre0 su-

Most of the work in this area has focused on the case of @erconductor to insulator quantum phase transition in two-
finite applied magnetic field, where one seeks to understandimensional thin films with random substrate disortiet?
how the randomness distorts or destroys the Abrikosov latand to the Mott transition for bosons in 2D optical lattices
tice of magnetic field induced vortex lines that forms in awith the addition of random scattered laser intensityn
pure system. Columnar defettshave received considerable these cases, the imaginary time axis of the quantum problem
attention, as they are particularly effective in pinning vortexcan be mapped onto a third spatial axis of a corresponding
lines and reducing flux flow resistance. In contrast, in thisthree-dimensional classical problémRandom, time inde-
paper we will focus on the effect of columnar defects on thependent, point disorder in the two spatial dimensions of the
superconducting phase transition Zero applied magnetic quantum problem becomes columnar disorder in the classical
field. We expect this case to be interesting for the followingthree-dimensional modél. For disorder that preserves
reason. A generalized Harris criterfohargues that disorder particle-hole symmetry, the quantum problem can be directly
will be a relevant perturbation, and change the universalitymapped onto a 3D superconductor model such as we con-
class of a phase transition, wheneverd*+>0, whered* sider here. Our correlation length exponenhaps onto the
is the number of dimensions in which the system is disorcorrelation length exponent of the quantum case, while our
dered, andv is the usual correlation length critical exponent. anisotropy exponent maps onto the quantum dynamic ex-
For a disorder free superconductor, the transition in zero agponent 2’ (not to be confused with the dynamic exponent
plied magnetic field is in the universality class of the threeof our 3D classical model; our classical dynamic exporzent
dimensional3D) XY model® for which »=2/3. For random has no analog in the corresponding quantum caseperi-
point disorder,d*=3, so 2-d* v<0, and the generalized mental measurements of criticality in such quantum prob-
Harris criterion argues that the universality of the transitionlems can therefore similarly provide a test for our model.
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To_ §tudy the effect of columnar disorder on the zero field Haed6]=-> 3, cod6, - 6,5, (1)
transition of a type-Il superconductor, we will consider two i
different limits. The first is the limit of an “unscreened”
superconductdr® in which magnetic field fluctuations are Whered; represents the phase angle of the complex supercon-
frozen out, corresponding to the approximation of an infiniteducting order parameter on notdef a periodic cubic grid of
bare magnetic penetration lengtty,— . Here, vortex line N_:L >< L XL, sites, vv_|th periodic boundary COI’]dItIOI’].S in all
segments have long ranged Coulombic-like interactions. Fdfirections. The sum is over all nearest neighbor bdings)
the extreme type-Il high temperature superconductors, fopf the grid, withu=x,y,z and the cosine term represents the
which k= \o/ &~ 100, wherek, is the bare coherence length kinetic energy_of fluctua_tmg supercurrents. The short Iength
that also sets the radius of a vortex line core, the unscreenéditoff of the discrete grid models the bare vortex core size
model should give a good description except ineatremely &o. .
narrow temperature window about the transitén. In a pure system, the couplings, are all equal, except
The second limit is that of a strongly screened for a possible variation with _bond directign Here, we take
case, vortex line segments have short range interactions. TH®@M columnar defects. For the work reported on here, with
description should also become valid extremely close to th€0lumnar defects aligned parallel to thexis, we have cho-
transition When the diverging Corre'ation |engmecomes sen the f0||0W|ng d|Str|but|0n: n thE d|reCt|On, V\{e take a”
comparable to the renormalized magnetic penetration lengtz=1; in the xy plane, we takeJ,, u=x,y, distributed
X\, A= ¢, and magnetic field fluctuations on such large lengthqually likely with the two values 0.1 and 1.9, keeping the
scales must be included in determining the true critical beJi, translationally invariant along the axis so as to model
havior. This region nea]rc may, however' be too small to columnar disorder. Note that the I‘ando]m introduce no
observe in practic¥ frustration into the system; in the ground state all thare
As in the disorder free case, a duality transform&#§? ~ equal. The variations in thg;, result in spatially random
establishes that these two limits lie in the same universalitpinning energies for vortex loop excitations of the phase
class as regards equilibrium critical behavior. They may bengless;. We have chosen the above bimodal distribution for
different, however, for dynamic critical behaviSrin this  Ji. to give strong pinning energigfor fixed averagd,), so
work we carry out detailed Monte CanC) simulations of ~ as to be able to approach the asymptotic scaling limit with
the XY model for the unscreened superconductor to deterf€@sonable size systems. o
mine the equilibrium critical exponents, and we demonstrate Although we will simulate the Hamiltonian of Eq1)
the presence of anisotropic scaling; by duality, these expddSing periodic boundary conditions on the phase angles
nents also apply to the strongly screened case. Then, usirgy useful to consider a more geneffated twistboundary
simple local Monte Carlo dynamics, we compute the dy-condition,
namic critical exponent for both the unscreen€d model,
and for the strongly screened vortex loop model. We find that

the dynamic exponent is different for these two limits. whereA , is a fixed(nonfluctuating total twist in the phase
The remainder of this paper is organzied as follows. Inangle applied across the system in directjan Periodic

Sec. Il we describe th¥Y model and the loop model for the boundary conditions correspond to the twisf=0. Trans-
unscreened and strongly screened limits, respectively. Th&rming to new variables,

duality transformation between the two is given in Appendix

A. In Sec. Ill we discuss the equilibrium critical behavior of 6 =6-(AJLri - i, 3

the_XY model, presenting our finite size sga]ing analysis,the Hamiltonian of Eq(1) becomes,

defining the observables we measure, and giving the numeri-

cal results of our simulations. In Sec. IV we discuss the . - i ' _ gl

dynamic critical behavior of thXY and loop models, within Hood 634, %J'“ costlr ~ i~ Aullu). (4)

a simple local Monte Carlo dynamics. We define the observ- , o L ,

ables we measure and give our numerical results; and in Se¢here thed; obey periodic boundary conditiong,, ;=6;.

V we give our discussion and conclusions. Using the fact that the cosine is periodic imr,2he partition
function integrals ove®; can be taken over the intervé)
e[0,2mw), as were the integrals over the original phase

Gor = O+ Ay, (2

Il. MODELS anglesé#,.. Considering how the free energy varies with the
A XY model twist A, will be useful later for discussing phase coherence
in the model.

To model the effects of thermal fluctuations in a type-ll
superconductor, we start with the commonly used 3D
model!3 This models the phase fluctuations of the supercon-
ducting order parameter in the “unscreened” limit where Although we carry out our equilibrium simulations di-
magnetic field fluctuations are frozen out, corresponding taectly in terms of theXY model of Eq.(1), we also consider
the approximation of an infinite bare magnetic penetratiora different formulation of the model. If instead of the cosine
length,\q— . For zero applied magnetic field we have, interaction of Eq. 1, one uses the periodic Gaussian interac-

B. Loop model
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tion of Villain,'® then a standard duality transformatidf!’
(see Appendix Amaps theXY model, Hyy/ T, onto a model

of sterically interacting Ioopsﬂbop/?r, where,

1
Hloop = 52 gi,uniz,u- (5)
i

Then;, are integer valued variables on the bortidg) and
satisfy a divergenceless constraint,

L T=2.05
> [y, —nip,]=0. (6) 0.01 .

i 10 1 1000
Equilibration sweeps N,
The n;, thus form connected paths through the system that
must eventually close upon themselves. The couplggsf FIG. 1. Binder ratio maximum for the 3IXY model, gyax at
Eqg. (5) are related to the couplings of theY model by, T=2.05=T,, computed withN, equilibration sweeps followed by
- Neq Sweeps to compute averagéé,=100 is sufficient for good
Gi /T=TIJ,, (7)  equilibration for all sized..

where the temperature scale of the loop models inverted ~

with respect to the temperature scale of ¥¥¢ model, T. O(T,L,L,) = O(tb™, L/b,L,/b9), 9
While the loop model of E¢(5) is exactly dual to theXY _ ) ) ~

model of anunscreeneduperconductor, taking it on its own Whereb is an arbitrary length rescaling factd®, is the scal-

with T as the physical temperature, we can g, the ing function, andv is the usual correlation length exponent,
[ op

following different physical interpretatioh'® We can regard E~t, (10)
the divergenceless variables, as the vortex loops of a

strongly screenedsuperconductor withhg~ &. The short  Takingb=L in Eq. (9) then gives,

ranged vortex line interaction of this case is then modeled by -

the simple onsite repulsion dq,, Further details of this O(T,L,Lp) = O(tLY, 1,L/LY). (11)
analogy may be found in RefLY). If we regard each site of For the case oisotropic scaling, with{=1, choosing a con-

our numerical grid as representing a columnar pin, the ran- S . .
domg;, in the xy plane can be thought of as modeling the stant aspect ratib,=yL reduces the right-hand side of Eq.

. : P 1) to a function of the single scaling variable'’”. Mea-
random distances between such pins, and hence giving tﬁ%ring@ vs T for systems with varyin_ but fixed L,/L is

random energies associated with a vortex loop segment hop- S ;
9 P S€g en sufficient to determine the exponentHowever, when

ping from one pin to another. This duality betweRf,, and #1, and its value is unknown, it becomes necessary to

Hyxy thus implies that the unscreened and the screened supt;géns’ider svstems with varvin as’, ect raigl, greatl in-y

conductor models fall in the same equilibrium universality ) y . ying asp oL, g y
creasing the complexity of the computation.

class, just as is the case for the disorder free mbdel. To deal with this case we take the following approach,
originally used to study the phase transition in the quantum
Ising spin glas3? Assume that the observabt@(T,L,L,)
when viewed as a function df,, for fixed T andL, has a

In this section we report on our equilibriuddY model maximum at a particular value, .,,,. Because of the scaling
simulations. To extract critical exponents, we use the methothw Eq. (11), this valueL, ,,, must occur when
of finite size scaling. We first, therefore, discuss this method.

I1l. EQUILIBRIUM CRITICAL BEHAVIOR

L, maJngﬁi’(tLl/V)a (12
A. Finite size scaling where? is a scaling function of the single variattie!”. We
) ) ~ then define,
Because the columnar disorder singles out the special di-
rectior_l Z, we must allow for the possibil_ity that scqling will Omad TiL) = O(T,L,L, ma) = 6(tLl/v,l,‘:)',(tLl/V))
be anisotropic. If¢ denotes the correlation length in thg
plane, then anisotropic scaling assumes thal,-asl. and ¢ = E)ma)g(tLl"’). (13)

diverges, the correlation length along thexis diverges as,
. Plotting O,.(T,L) vs T for different values oL, the curves
&~ & (®) will intersect at the common point=T, (i.e., t=0). The
where( is the anisotropy exponent. slopes of these curves Bt then determine the exponentin
Consider now an observab{@ whose scaling dimension Practice, we will determine the values Bf and the exponent
is zero. As a function of reduced temperattire(T-To)/T, v by the following approacf Close toT, (i.e., for smallt)
and system sizé& X L X L,, we expect the scaling relation- we can expand the scaling functidh,,, as a polynomial for
ship, small values of its argument./”:
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OmatLY) = ag+ ay[(T = T)/T LY PF [P\ 1] ()
nz| N\ Tz [T\, ) ) 18
s [(T-TOTILY P+ ... (14) ANEIREY \

i ) whereHy is that of Eqg.(4), and the averages on the right-
We then fit the data fo©,,(T,L) to the above form using pand side are taken in the ensemble VA= 0.

Te: v, 8, @y, &, €IC. as free fitting parameters. Varying the  since the total free energff and the total twistA,, are
system sized and temperature windoWr —T| of the data  poth scale invariant quantities, thef/dA2 has scaling di-
used in the fit, as well as varying the order of the abovenension zero. These derivatives are usually defined in terms

polynomial expansion, will give confidence on the signifi- of the helicity modulu&® Y ,, which is the derivative of the

cance of the fit. _ free energydensitywith respect to the twisper length We
Having obtained the value &f;, plotting L, ma{T.) Vs L have in three dimensions,

determines the anisotropy exponénby Eqg.(12),

PF L2 v 19
LzmaxTo) ~ LE. (15) (9A§ A :0_ L, z
o
Knowing T, v, and ¢, plotting OpmadT,L) vs tLY” and PF
O(T,L,L,) vsL,/L¢ should collapse the respective data to a — =L,Y,. (20
single scaling curve. IA A,=0

Averaging over the disorder, we find that, for fixédandL,
B. Observables (L?/L,)[Y,] decreases monotonically &s increases, while

LJY,] increases monotonically ds, increases. In order to

T(_) carry out the scaling analygis outlined _in the previoushave an observable which has a maximum as a function of
section, we now have to determine appropriate observablq_sZ' we therefore consider the product,

to measure.

For the 3DXY model of Eq.(1), we expect belowl a LAY, Y,] =Tl L,/LY), (21)
nonvanishing order parametegr=(1/N)X;e'%. We define the . .
real part ofy as, which has the same scaling form as Etf).

1 C. Monte Carlo methods and error estimation
M==2, cosé, (16) _ _
N7 In order to achieve accurate results, averaging over many
disorder realizations for many different aspect ratiggl, it
and construct its Binder rafid is essential to have an efficient simulation algorithm. For
equilibrium simulation of the 3IXY model, the lack of frus-
tration allows us to use the Wolffcluster algorithm to avoid
} =LY LJLY. (170 critical slowing down. We typically use 100 Wolff sweeps to
approach equilibrium, followed by 200 Wolff sweeps to
_ ) ) i _ compute averages; one Wolff sweep is defined as building
Because the scaling dimension B cancels in taking the ¢, sters until each phase anglehas been updated once on
ratio above, the Binder ratig has scaling dimension zero, ,yerage. Between 3000 and 5000 different realizations of the
and so has the scaling form of EQ1). In the above(...)  random disorder are averaged over near the critical point,
denotes the usual thermal average, wiile] denotes the yjith fewer realizations used away from the critical point. A
average over different realizations of the columnar disorderest of the equilibration of our simulations is shown in Fig. 1,
In the denominator of Eq17), the square of the expectation \here we see that the above simulation lengths are sufficient.
value is evaluated using two replicas with identical disorder, T estimate the statistical error in our results we use the
indexed bya and b, (M32=((M??2)((MP)?), in order to following method. For our raw data, our average is just the
avoid bias? average over the individual values obtained\ip indepen-
Another observable we have measured is obtained by cofitent realizations of the random disorder. Our estimated error
sidering the dependence of the total free energy on the tot@ determined from the standard deviatierof theseNy in-
applied twist across the systéthSensitivity to boundary dependent values, erros#\VNy. To estimate the statistical
conditions, in this case specified by the twistin Eq.(2),is  error in the fitting parameters of our finite size scaling analy-
one of the signatures of an ordered phase. Xienodel is  sis, we take the following approach. From our original data
therefore phase coherent when the total free engtggries  set we construct mangypically 1000 fictitious data sets by
with twist A,. 7 is computed from a partition function sum adding to each data point a random Gaussian variable with
over the ¢ using the Hamiltoniartx,{A,] of Eq. (4). A zero mean, and standard deviation equal to the estimated
convenient measure of the dependencefobn A, is ob-  statistical error of the data point. We then fit each of the
tained by looking at the curvature ¢f(A ) at its minimum. fictitious data sets. The standard deviation of the values of
In Appendix A we show that this minimum always occurs atthe resulting fitting parameters then gives our estimate of the
A,=0. We therefore consider, statistical error in the fitting parameter.

(M%)
3<M2>2

o(T,LLy= l—{
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0.40 ; TABLE I. Fitting parameterd, and v from quadratic and cubic
T =2.05 polynomial scaling fits to the data of Fig. 3. Results for different
035 | ] ranges of system sizésare shown.
:f L Order T v
~ 030 | ]
% 8-20 quadratic 2.052+0.001 1.07+0.03
025 | 1 cubic 2.052+0.001 1.04+0.06
10-20 quadratic 2.052+0.001 1.10+£0.04
——1.=20 cubic 2.052+0.001 1.10+0.06
020 t—— 0 N “i00 12-20 quadratic 2.051+0.001 1.1840.04
z cubic 2.051+£0.001 1.18+0.05
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FIG. 2. Binder ratiog(T,L,L,) vsL, for several value& at the

fixed T=2.05. Solid curves are cubic polynomial fits inUp that gma(T,L), being a maximum with zero slope, varies

only quadratically with deviations from the trug ., and
Harder to estimate are the possible systematic errors ihence may be determined more accurately. Henceforth, the

our results. Here we rely on varying parameters of our analyerror bars we use fag,« are the above estimated statistical
sis, such as the order of a polynomial fit, or the system size€rrors, while the error bars we use foy ., are the above
L used in the fit, in order to get a feeling for the likely defined systematic errors.
accuracy of our results. Proceeding in this way at other temperatures, we plot in
Fig. 3 the values 0§,,,(T,L) vs T for L=8, 10, 12, 16, and
20. The different curves all intersect at a common point,
determiningT.=2.05. To determine the correlation length
exponenty, and get a more precise estimatelrgfwe now fit
the data of Fig. 3 to a polynomial expansion as in Ed).
In Table | we show the results from both quadratic and cubic
polynomial fits, using different system sizes we system-

D. Results

We now present our results from simulations of K¥
model of Eq.(1). In Fig. 2 we plot our results for the Binder
ratio of Eq.(17), g(T,L,L,) vs.L,, for sizesL=8,12,20, at

the fixed temperaturer=2.05. We see that for each,  atically drop the smallest sizes since scaling holds only in the
9(T,L,L,) has a clear maximum at a particulajma, NOte  asymptotic large. limit. Our results give a consistent value
that the maximum values of these curves appear to be equgl T,~2.05. The values of that we obtain are consistent
for the different values ot.. From Eq.(13) we therefore  jthin the estimated statistical errors, however we see a
infer that the temperaturé=2.05 is approximately the criti- small systematic increase in the valuerofvhen we restrict

cal temperaturd. To determine the precise valueslgfyax  the data to larger system sizes. We therefore estinrate
and the maximum valuegm.(T,L)=g(T,L,L;ma), We fit  =1.2+0.1. Note that our value>1, satisfies the Chayes
the data for each to a cubic polynomial in I, (these are  lower bound conditio,as generalizetfor correlated disor-
the solid curves in Fig.)2 The L, nay Obtained this way are der, »>2/d*, whered* =2 is the number of dimensions in
not, in general, integer values. We have also done such fitghich the system is disordered. In Fig. 4 we replot the data
using a quadratic polynomial in In,; the difference in val-  of Fig. 3 in a scaled formg,.,(T,L) vs[(T—-Ty)/TJLY". We

ues obtained from the cubic versus the quadratic fit providegse the value off, and v from Table | for the cubic fit to
our estimate of the systematic error of this procedure. WeizesL.=12—-20. The solid line is the fitted cubic polynomial.
find that forgny,(T,L) this systematic error is always smaller As is seen, the data collapse is excellent.

than the estimated statistical error of the cubic fits;Lfgf,.« Having found the value of;, we next determine the an-
the systematic error is bigger. This reflects the simple faclsotropy exponent. In Fig. 5 we show a log—log plot of our

T T T T T T T 0.42 T T
<& =
0.40 - 1 0.40 e ° 8 ]
a
038 [ ) 0.38 o ]
3 3 o
3 = 0.36 ]
% 036 [ ] %
£ £
(o)) o) 0.34 T ~ 2 05 B
=2
0.34 1 ) 032f v=12%£0.1
0.30

0.32 L ) L L L 1 L
2.01 2.02 2.03 204 205 206 207 2.08 2.09

T

FIG. 3. Binder ratio maximung,,,{T,L) vs T for various sys-
tem sizesL. The common intersection determin€s=2.05. Solid

lines are linear fits to the data.

-02 -0.15 -0.1 -005 O

tL]/\/

005 0.1 015 02

FIG. 4. Scaling collapse @ (T,L) vs [(T-To)/TJLY". The
values of T.=2.051 andv=1.18 from the last row of Table | are

used. The solid curve is the fitted cubic polynomial.
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40.0 T 04 T T
30.0
= 03l 1
N
e 4
5 i)
£ 200 50l 1
= 5
0.1} ]
100 - 1
L 0.0 L 1
7 8 9 10 L 20 0.01 0.1 1 10

L,/L¢
FIG. 5. Log-log plot ofL, may VS L, at T=2.05=T,. The solid

i 4
straight line is the best power law fit using the datalfer10-20 Fl(i‘ 6. Sc_allng_collapse OJ’(TC’I."LZ.) vS LZ./L ; for data atT
and yields the valug=1.329+0.08see Table )i =2.05=T,, using{=1.3. The solid line is a guide to the eye only.

data forL, . VS L, at the temperatur&=2.05=T,. Fitting IV. DYNAMIC CRITICAL BEHAVIOR
to Eq. (15), L, max~L¢, we get the results summarized in N
Table Ii for different ranges of system siZesThe results are ~ AS 0ne approaches the critical temperatligewe expect
consistent within the estimated statistical error and we findelaxation times to diverge as~ ¢*, defining the dynamic
{=1.3+0.1. To check the consistency of our value fpin  critical exponentz. To compute equilibrium critical expo-
Fig. 6 we plotg(Te,L,L,) vs L,/L¢, using our data aff nents, it is sufficient that the simulation dynamics satisfies
=2.05 and the above determined valugefl.3. As expected detailed balance; the details of the dynamics are otherwise
from Eq. (11), the data for the different values €fandL, irrelevant. Thus the exact duality betwegtyy and Hqqp
show a very good collapse to a single scaling curve. implies that the unscreened and the strongly screened super-
We have also tried a similar scaling analysis for the he<conductors have the saneguilibrium critical behavior. For
licity moduli product,L7Y,Y,], of Eq.(21). However, here the dynamic critical behavior, however, the valuezafill in
we have found less satisfactory results. We find that for ajeneral depend on the details of the dynarfcand some
given system sizé, theL, n.,WhereLqY,Y,] has its maxi- works suggest that it may even vary for different types of
mum occurs at a smaller value lof than was the case for the relaxational dynamics or different boundary conditiéh&®
Binder ratio gma. Such smaller system sizes presumablyThere is thus no reasoa,priori, to expect the same dynamic
have larger corrections to scaling. We have also found theritical behavior for theXY model, expressed in terms of a
statistical error inL?Y,Y] to be larger than we found for gynamical rule for the phase variablésas compared to the
Imax POssibly because the Binder ratipinvolves a ratio  |oop model, expressed in terms of a dynamical rule for the
between fluctuating quantities and so has smaller sample tgytex line variablesy . In this section, therefore, we will
sample fluctuation& As a consequence of these two effects, present results from explicit simulations of the loop model as
we could not arrive at a convincing determinationTefand el as theXY model.
v from the L{Y,Y,] data alone. However, to illustrate our  Because the true dynamics of a superconductor is local, it
results we can make use of the valuesTg~2.05 and{ s not physically meaningful to compute the dynamic critical
=1.3 found in our analysis ofna In Fig. 7 we therefore exponent within accelerated global algorithms such as the
show a scaling collapse similar to that of Fig. 6, plotting wolff algorithm, which we used to compute equilibrium
LAY, Y,] vs L,/L¢ using our data af=2.05=T; and the  properties. We therefore will use lacal Monte Carlo dy-
above value of. namics for bothHyy andH 4., Even within such local algo-
We see clearly in Fig. 7 the above effects: error bars argithms, it is not obvious how universal the dynamical critical
considerably larger than in Fig. 6, and the peak is at a smaller
value ofL,/L¢. The scaling collapse is not bad for the bigger 12

systems sizes, corresponding to larger valuds,bf¢. How- o 18
ever it is rather scattered near the peak and below it. We « L=10
conclude that it would be necessary to average over many — 091 . L=12
more disorder realizations to reduce the errors, and perhaps > o L:16
also go to larger system sizes, in order to get a convincing L.i' 06 L:20 ]
scaling analysis from the helicity produtf[Y,Y,] on its — a
own. 0al _ 1
TABLE II. Anisotropy exponent from power law fits,L, nax i
~L¢ to system sizet =L~ 20. 0.0 ;;ﬂ . .
0.01 0.1 e 1 10
Limin 8 10 12 2
Z 1.29+0.05 1.33+0.08 1.37+0.12 FIG. 7. Attempted scaling collapse bf[Y,Y,] vs L,/L¢. Data

are forT=2.05=T, using{=1.3.
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behaviors may be. Thus it is unclear that our results willlook at the decay of correlations in the order parambteof
correspond to what is seen in experiments. Nevertheless Eq. (16), defining the relaxation time by,
will be interesting to see if the two models give similar or o
different values ofz N ' r=1425 At{(“/'(t)'\/'(o))} ~1z (24)

The relative loss of efficiency that results from using such (M?)
local algorithms means that we will be unable to do as ex-
tensive an exploration of the parameter space as we did fo¥herety is chosen large enough so thats independent of
our equilibrium analysis. But this is not necessary. We carfo- The ratio in the above ensures that the quantity being
make use of our already obtained equilibrium results, angummed over has scaling dimension zero, and hence the sum
simulate only at the value of=T,, using system aspect ra- scales ag~L*“

t=1

tios L,=yL¢. For our simulation 0fHj00p We will simulate The second method is to look at correlations of the super-
the loop model which is exactly dugdee Appendix A, Eq. currentl,, defined by,
(Al11)] to the cosineXY model that we have used in our

o : X IHxy 1 .
equilibrium simulations, so as to make use of these known | = == >3 sin(6,.-6). (25)

y73 [y7 I+u 1
values ofT, and . Iy laz0 Ly’
In terms ofl,, one can define the conductance in fieli-
A. Monte Carlo methods and scaling rection by the Kubo formula

For the XY model of an unscreened superconductor we 1 b

use a standard single spin heat bath algorithm, with fixed G,= o7 > A(L,01,0)] ~ L?, (26)
t=—ty

periodic boundary conditions on th#. In this algorithm, a
phase anglé is selected at random and replaced with a newyhere agair, is chosen large enough th@, is independent
rqndomly chpserﬁi’. This update attempt i§ then acceptedof t,, Sincel ,= (FHyy/ IA,)|s -0, andHyy andA , are scale
with probability 11 +exgAE/T)] whereAE is the change jnyariant, thenl,, and hence the correlation summed over in
in energy. One sweep, consistingst L%L; update attempts, i the definition ofG,, has scaling dimension zero. There-
is taken as one time stepit=1. We average over 300-700 fore the sum which defined  scales as~ LZ.
disorder realizations depending on system size ' g

For the loop model of a strongly screened superconductor, 2. Loop model
we again use a heat bath algorithm in which the attempted For the loop model we consider the total resistance, de-
excitation consists of an elementary vortex loop circulatingfined as follows>® Let Q,(t) be the total projected loop area
about a randomly chosen plaquette of the grid. Adding onlyyith normal in directionw at simulation time. Each time an
such closed loop excitations corresponds to the ensemble @yiented elementary vortex loop with normal in directiof +
which the average internal magnetic field is constrained tgg acceptedQ, changes by +1. LefQ,(1)=Q,(1)-Q,(t
B=0 (see Appendix A One sweep, consisting o\3such  —1) pe the total change in this area after one sweep through
update attempts, is taken as one time sip;1. We average  the entire system; each sweep represautsl. In one such
over 1000-2000 disorder realizations depending on systeRyeep, the total average phase angle change across the length

sizel. o of the system(in the dual screeneY superconductor
In general,_ we expect the relaxation timeto obey the mode) in direction i is just 2rAQ,/L,L,,, wheres, v, and
scaling equation: o are a cyclic permutation of, y, andz By the Josephson
#(T,L,L,) = b7 (tb™”, Lib, L /b%), (22) rAeIat.ion, the total voltage drop across the system in direction
o will then be

whereb is an arbitrary length rescaling factor. ForL, T
=T,, andL,=L¢, this reduces to the simple 105 ¢ :

1z F

b 3 | T =205
For both theXY model and the loop model, we simulate with je L 2=263+007 |
values ofL,=yL¢ as determined by the fit shown in Fig. 5. R
For theXY model, to approximate noninteger valued gfve =
use linear interpolation of simulation data for the two closest e
integer values ot,. For the loop model we simply use re- 103 ¢ E
sults from the closest integer value lof ’
B. Observables 1023 4 5 6 789 1'0 L 20

1. XY model L
FIG. 8. Log—log plot of order parameter relaxation timef Eq.

For theXY model we have tried two independg_nt methods(24) vs system sizé, for T=2.05= T, andL,~L%. Solid line is the
of determiningz, analogous to the two quantitigg and  best power law fit for sizesL=10-20, and determineg
L7 Y,Y,] used in our equilibrium simulations. The first is to =2.63+0.07(see Table I).
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TABLE lll. Dynamic exponentzyy from power law fits,7~ L% 104 .
to system size& =L ,i,—20. T=2.05
Linin 6 8 10 12 103 L 4
Zyy 2.72+0.04  2.69+0.05 2.63+0.07 2.60+0.03 ©
(D"x
102 L _
h 27 \[A h 1 A
2e/\L,L,/\ At 2e/\L,L,/\ At
1 L
(27) 5 6738910 L 20 30

Henceforth, we define our units of voltage such thé2e
=1. We then define the total resistance in directioby the
Kubo formula?®

FIG. 10. Log-log plot of conductancés, andG, vs L, for T
=2.05=T, andL,~L¢. The fitted straight lines determirg=2.66

andz,=2.91.
1
Ru= EE{ AUV, (OVLO0D], (28) As another check on our above determinatiorzgf we
-0 consider the following. In principak is defined by takingd,

where agairt, is chosen large enough so thigy is indepen-  in Eq. (24) sufficiently large so that is independent ofy;
dent oft,. Since the total voltage drog,, is the time rate of our data in Fig. 8 satisfy this condition. How bigmust be
change of the total phase angle difference across the systefoy this to happen is set by the time scaléself. Therefore,
and since the total phase angle difference is a scale invariamte expect that if we compute for arbitrary t,, then #(ty)
quantity, we have the scaling,~ 1/7. Thus the resistance should scale as

above scales as

R,~l/r~L" (29) 7(tg) ~ L*7(tg/7) ~ L7 (t/L). (30)

In Fig. 9 we show a log—log plot of(ty)/L? vs ty/L? for

C. Results various sizesL (again usingT=2.05=T, and L,~LY).
1 XY model Chopsing the valueyy=2.63 obtained from the fit in Fig. 8

' we find an excellent collapse of all the data. For lafgé.”

In Fig. 8 we show a log—log plot of our results for the we see that the curve does indeed saturate to a finite constant
order parameter relaxation timeof Eq. (24) versus system as expected, however the collapse holds for the entire range
sizeL, for T=2.05=T, andL,~ L%, Our results are obtained of t,.
using 5xX10° MC sweeps to equilibrate, followed by 40 Finally, in Fig. 10 we plot the conductances of Eg6),
sweeps to compute averages. Fitting to the power law, G, andG, vsL, for T=2.05=T, andL,~ L% Our results are
~ L% we get the results summarized in Table IlI, for differentfor 2 10®> MC sweeps to equilibrate, followed by>410°
ranges of systems side The results are consistent within sweeps to compute averages. Fitting to the power @y,
the estimated statistical error, with a small systematic ten~ L%, we get the results summarized in Table 1V, for differ-
dency to lower values as we restrict the fitted data to largeent ranges of systems size. For G, the resultsz
system sizes. We find,y=2.63+0.07. =2.66+0.04 are consistent, within errors, with that obtained

from our analysis of the order parameter relaxation time

101 [ ' ; ' ' ' _ For G,, we get values for that are somewhat larger. How-
T =205 ST ever, if one compares the data points @randG, directly,
z2=2.63 = one sees that the values are all roughly equal within the
L@ P 3 estimated error, except for the smallest dize4 (probably
= & x L=10 too small to be in the scaling limiand for the largest size
d;f 10 | Pt s L=12 3 L=20. Our fit forz from the G, data is skewed by this one
eﬁ@* 5 116 L=20 _data point. If we rest_ric; our fit to sizés=8-16, we
102 éﬁ o L0 il then findz,=2.82+0.03. This is still somewhat larger than
8
103 i . s . s s TABLE IV. Dynamic exponentzyy from power law fits,G,
10* 102 100 100 10t 102 10 ~ L%, to system size& =L —20.

ty/L?

FIG. 9. Log-log scaling plot of order parameter relaxation time
7(tg)/L? vs to/L? for T=2.05=T,, L,~L¢ and various values Z, 2.71+£0.02 2.75+0.03 2.66+0.04  2.69+0.06
of L. Using z(y=2.63 gives an excellent collapse for the entire 5 2.77+0.02 2.87+0.03 2.91+0.04 3.06+0.07
range oft,.

Lomin 6 8 10 12
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10—3 T 101 T T T T IR T |
T=T S g L=6 v L=14 ]
104 [ i N e o L=8 o L=16 |
z=34 l 100 L Egg::% x L=%g s L=20 3
- [=] ¢ L= ]
MN 105 | . i \_,:,/ T=T -@b(_%é
R N 101 R Han ]
o 106 oR = ] ~ i
. o N 1.0 =
oR = 102l i
107 L z Ll ] > £0.9 RZ
ot F 0.8 x <
w08l - : & 10307 553 ]
4 5 678910 1 2 30 F06 i)
104 L 3 32 34,36 38 4
FIG. 11. Log-log plot of resistand&, andR, of the loop model e e i s
vs L. The solid line is the best power law fRR,~ L™ for sizesL 10=> 10* 10> 10% 10 10 10t 102 10
=10-20, and determines the valgg,,=3.4+0.1(see Table V. t/L*

FIG. 12. Log-log scaling plot of time dependent resistance
R,(tp)L? and R,(tp)L? of the loop model vg,/L% The valuez=3.4
obtained from the fit in Fig. 11 is used. The inset gives therror
2. Loop model of the data collapse, as the exponens varied.

what we get fromG,, but within two standard deviations of
z, for the same range of sizés=8-16.

For our loop simulations we use the interaction of Eq.
(Al11), exactly dual to ouKY model. This interaction is com-
puted using the same distribution &f, as we used for the
XY model, and we simulate at the same valuél'ef2.05 as
gives the critical point of theXY model. We also use the
same values of ,=yL¢ as we used for th&Y model, as
determined from Fig. 5. In Fig. 11 we give our results for the _ > . . 9
resistance of the loop model, E@8), as a log—log plot oR, f|t'qn_g parameterz is vgrled. FOrR,, the ) shpws a sharp
and R, versus system sizé. Our results are from 12 minimum at z=3.45, in good agreement with our earlier

X 10* MC sweeps to equilibrate, followed by 2410% value ofz=3.4 from Fig. 11. FOR,, the x* has a minimum at

sweeps to compute averages. Fitting to the power law of ENE S0mewhat higher value a£3.7, however the minimum

(29), R.~L"Z we get the results summarized in Table V, for s very shallow, indicating a relative insensitivity of the data

different ranges of systems site The results are consistent E\? var|at|ons_ nz. We. r(ion((:jlude that hath the (i‘zti:_ﬁé ?nd
within the estimated statistical error, and we fimgd,, ' are consistentwith a dynamic exponagp,=3.4-0.1.

clude that these small system sizes are not large enough to
expect scaling foR, to hold.

We can also try to independently determine the dynamic
exponentz by fitting to a data collapse as in Fig. 12 for all
timest,, rather than just the asymptotic large time limit. The
inset to Fig. 12 shows the resulting of such fits as the

=3.4+0.1.
For the case oR,, parallel to the columnar defects, our V. DISCUSSION AND CONCLUSIONS
simulations were not sufficiently long to observe the neces- _ o o
sary saturation oR,(t) with increasingt,, except for the We have studied the equilibrium and dynamic critical be-

smallest system sizes<12. We do not believe that any havior of the zero magnetic field superconducting phase tran-
estimate 0z, based on such small system sizes would pesition for a type-Il supercpnductor with quenched columnar
meaningful. We can, however, perform the following consis-disorder. We have considered both the “unscreensd’

tency check. Similar to our discussion concernirigy) [see ~MCdel in whichA,—cc, and the “strongly screened” loop
Eq.(30)], we can comput®, of Eq. (28) for finite timest,, model in which\g~ &,. A duality transformation establishes

and we expecR,(t;)L? to scale with the variabléy/LZ In that these two models are in the saagpiilibrium universal-
Fig. 12 we make such a log—log scaling plot using the valu ty cIa}SS. Using numgrlcal S|mulat|9ns of th@.( que_l, we
of z=3.4 found forRy in Fig. 11. ForR, we see that the ind, in agreement with a generalized Harris criterion, that
collapse is excellentxfor all times, andxthe scaling curve the universality class of the transition is different from the

saturates to a constant at laigél? as expected. FaR,, we pure model, and we find that scaling is anisotropic. We find

find a good collapse for all but the largest times. We see thatpned \;gll{{i(;(;rn;[zgtrgorreelitlgrr:eleng|1tr13+e(>)<plonem:,1.210.1,
R,(ty) saturates only for the smallest systems, and it is onl)?'al py exponet=1.3+0.1.

here that the collanse appears to be breaking down. We con- Using the value of the critical temperature and the aniso-
P PP 9 ' tropic scaling determined from the equilibrium analysis, we

_ ) carry out simulations at the critical point to determine the
TABLE V. Dynamic exponentzq, from power law fits,R,  gynamic critical exponert of both theXY and loop models
~L™ to system size& =Ly~ 20. for local Monte Carlo dynamic rules. For the “unscreened”
XY model, with a single spin heat bath dynamics, we find
Lmin 6 8 10 12 Zxy=2.6+0.1. For the “strongly screened” loop model, with a
Zosy 3234005 333007 3.39%0.11 3.38+0.14 heat_ bath dynamics applied to elementary loop excitations,
we find z,,,=3.4£0.1.
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A similar random 3DXY model has been studied by Cha ture the true dynamics of a real superconductor. On the other
and Girvir? in the context of the quantum phase transition inhand, if we use our value af=1.3, then Kotzler’s results
the two dimensional boson Hubbard model. In their modeimply a dynamic exponent af=7.2, which seems extraordi-
disorder was introduced as uniformly distributed randomnarily large.
bonds in thez (imaginary timg direction,J,, so as to model  We may also compare our dynamic exponents with those
bosons with random charging energy. They found equilib-pbtained from the disorder free model. For the the strongly
rium critical exponents’=1.0+£0.3 and{=1.07+0.03(our  gcreened limit of the loop model, Lidmat all® find the
anisotropy exponery for the classical 3D model is equiva- yajye 7, ~2.7; moreover, they find this value to be insen-
lent to their "quantum dynamic exponerzfor the 2D quan-  gjsive to the presence afncorrelatedpoint disorder. For re-
tum problem. However, their analysis for such a system 5, atignal dynamics of the phase angle variable in Xhe
with anisotropic scaling/>1, was based on a moeal hoc model, a value ot~2 is expected® and this is what was

approach of() trying various values of and seeing which ¢, 4" numerical simulations by Jenseh al?” using a
appeared to give the best data collapse for systems of d'ﬁeF’hethod similar to our scaling of conductance. The
ent sizel, and (ii) measuring real space correlations in a 9 » E26).

system of a fixed size and fitting to assumed power law de[esultaoop>'zxy thus seems common for both the pure and
cays. Their largest system size, 23615 is also smaller than columnar disordered cases. _ _
ours and they do not use the Wolff algorithm to accelerate N Our work we have considered only simple relaxational
their equilibration. While it is possible that introducing the dynamics for the phase angles of the unscreetiédnodel.
randomness differentlyalong  rather than in thecy plang ~ Two other possible dynamics might be considered. One
might effect the universality class, we believe it is moreWould be to do a loop dynamics, similar to what we have
likely that this is not the case, and that our results are moréone here for the strongly screened loop model, only now as
systematic and hence more accurate than those of Cha aA@plied to the strongly interacting loops of the unscreened
Girvin. XY model. The other would be to use resistively shunted
Prokof’ev and Svistund¥ have simulated the loop model junction (RSJ) dynamics for the phase angles of the/
of Eq. (5) in the context of the same two dimensional disor-model. Both such approaches have been previously used for
dered boson problem as Cha and Girvin. For their “off-the disorder free case. For both loop dynarfi¢dand RSJ
diagonal” disorder case they put the disorder into the bondgynamic§”* the dynamic _exponenz=1.5 was found,
along the direction, making their model dual to that of Cha Smaller than the value obtained by simple phase angle relax-
and Girvin. They report an anisotropy exponémtl.5+0.2, ational dynamics. Investlgatmg t.hese other dynamics for the
which agrees with ours within the estimated errors. Theycase of columnar disorder remains for future work. We only
were unable to determine the correlation length expoment n_ote here that if the above trend remains true for columnar
We note that while they use an accelerated “worm” algo-disorder, and that these other dynamics reduitem that of
rithm and have good statistics for quite large system sized€laxational dynamics, then it becomes even harder to ex-
they determine their exponents by fitting to real space correPlain the large value of{ observed experimentally in Ref.
lation functions for their biggest size system, as did Cha and#0- o o
Girvin, rather than doing any systematic finite size scaling Finally, we note that similarequilibrium exponents to
that takes into account the anisotropic scaling present in th#0se found in this work were also found for the case of an
model. unscreeneduperconductor with columnar defects itfirzite
Experimental measurements of the quantum phase trangiPplied magnetic field. For that case the vafues1.0£0.1
tion in such two-dimensional boson systems could providéind¢=1.25+0.1 were found. Although these are close to the
important tests of our results. In particular, the frequencyvalues we find here fazeroapplied field, there is no appar-
dependence of dynamic quantities, like the ac conductance &nt reason that the zero and finite field cases should be in the
Susceptibi”ty, is predicted to depend on a universal Sca”néame L:|n|VersaI|ty C!aSS. We also note that once a finite field
functior? of the argumeniw|K-K|™¢*. Here,K is a param- IS applied, the duality between the unscre_ened and stro_ngly
eter that controls the strength of quantum fluctuatiétisis screened superconductor models, that exists for zero field,
its value at criticality, and our anisotropy exponghbe- Preaks down.
comes the dynamic exponent of the 2D quantum problem.
Direct experimental investigation of the zero field 3D su-
perconducting transition with colummnar disorder has been ACKNOWLEDGMENTS
undertaken by Kotzler and co-workétor YBaCuO thin
films. Measuring the frequency dependent conductivity The authors wish to thank U. C. Tauber for originally
transverse to the columnar disorder, which is expected tguggesting this problem. We thank T. J. Bullard, H. J. Jensen,
scale a¥ o, (w,T)=t&2"5(wt™) [where t=(T-Ty)/T.], U. C. Tauber, and M. Zamora for contributions at early
they find! the combinationsyi=1.7 andz//=5.53. This stages of this work. The work of A. V. and M. W. has been
compares with our values{=1.56, andz/{=2 for the un-  supported by the Swedish Research Council, PDC, NSC, and
screenedXY model, andz/=2.6 for the strongly screened the Goéran Gustafsson foundation. S. T. acknowledges sup-
loop model. Our value of{ is conceivably consistent with port from DOE Grant No. DE-FG02-89ER14017, and travel
the experimental value, within possible errors. However botsupport from NSF INT-9901379. H. W. acknowledges sup-
of our values ofz/{ seem too small. It may be that our port from Swedish Research Council Contract No. 621-
simple local Monte Carlo dynamics does not adequately cap2001-2545.
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APPENDIX A

In this section we review the duality transformafidh'”

from Hyy of Eqg. (1) to Hjep Of EQ. (5). Consider first a
general 2r periodic interactionV;,(¢) instead of the
—(Ji,,/ T)cog¢) of Eq. (1). For the generalized fixed twist-
boundary condition and the corresponding Hamiltonian of

Eq. (4), we can write the partition function as,

2w der
= HJ 2—' 2w Ju(ﬁ ‘9 A#/Lu), (A1)
i T

PHYSICAL REVIEW B 70, 054508(2004)

~ T
Vi (n) = =—n?.
2,
The partition function of Eq(A6), with periodic boundary
conditionsA =0, then becomes,

(A8)

7= W39, (A9)
{nj b
with
9,/T=T13,. (A10)

where thed/ obey periodic boundary conditions. Defining The above is just a model of short ranged interacting loops

the Fourier transform/m by,

©

> e V) gy

="

e Viuld) = (A2)

and substituting into EqA1) gives,

217
(Hf ) SRYRURESRRC ST At

(A3)

~ 2 ’
= E e_zj#[Vjﬂ(njﬂ)+inj#A#/Lﬂ](1__[f d0 )

{nj b

NCRTIURL (A4)

One is now free to do the integrals over tile The result is
a product of Kronecker deltas constraining the variablgs
to be divergenceless, as in E@). Defining the “winding
numbers’W, by,

1
,LEL—E ” (A5)
i
we get,
7= E eEm JM )i WA

{nj .t

(A6)

with onsite repulsion~n? and inverted temperature scdle
~1/T.

For our simulatons, withV;,(¢)=-(J;,/T)cod¢), one
has’

eV =1,(3,/T),

wherel ,(x) is the modified Bessel function of the first kind.
Sincel,(x) is an increasing function df| for fixed x, the
above similarly gives a short ranged loop model with onsite
repulsion. It is this interaction of EqA11) that we use in
our dynamic simulations of the loop model in Sec. IV.

We can now demonstrate several interesting results con-
cerning phase coherence in tk¥ model, by considering the
behavior as a function of the twist,. The XY model is
phase coherent when the total free enefgyaries withA .
Using 7(A,)=-TInZ(A,), and Eq.(A6) above, we find,

1 oF

T Ayl -0

(A11)

=i(W,))o, (A12)

where(...)o indicates an average in the ensemble with
=0. Now sincedF/JA, must be a real quantitias may be
seen by considering its evaluation in the origiXal model
Hxy of Eq. (4)], and sincgW,,), must similarly be realas
may be seen by consideriritf;,o), the only way for Eq.
(A12) to hold is if 9F/aA |A -0=(W,)0=0. This then dem-
onstrates that ,=0, i.e., perlod|c boundary conditions on

the 6, is the tW|st that minimizes the free energy.
Finally, returning to Eq(A6), we note that in thdluctu-

where the prime on the summation denotes the divergenceiting twist ensembl@# for the XY model, in which A, is

less constraint of Eq6).
A common choice foV;,(¢) is the Villain interaction’?

E e (G 2D( - 277m)2.

m=—o

e Viuld) = (A7)

In this case one has for its transform,

averaged over as a thermally fluctuating degree of freedom,
the corresponding loop model obeys the additional constraint
of zero winding,W, =0, in each individual configuration.
When viewingH,o, as the Hamiltonian of vortex loops in a
strongly screened superconductor, this corresponds to the en-
semble in which the average internal magnetic field is con-
strained to vanish3,~0, in each configuration.
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