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Superfluid transition in a correlated defect network
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Motivated by recent experiments on the possible supersolid behavior of 4He solids at low temperature, we
consider a model of superfluidity in a defected solid containing a system spanning network of correlated linear
dislocations, or planar grain boundaries. Using arguments based on the Harris criterion, as well as numerical
simulations, we find that such correlated quenched disorder shifts the familiar superfluid lambda transition to a
new disordered universality class in which the correlation length exponent ν � 1. This results in the temperature
derivatives for the superfluid density dρs/dT and for the heat capacity dc/dT remaining finite at the transition
Tc, and thus a less singular transition, profoundly different from the usual lambda transition.
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Considerable excitement has been generated by the ob-
servation by Kim and Chan1,2 that the period of oscillation
of a torsional oscillator (TO) containing solid 4He decreases
as the system is cooled below roughly 250 mK. Initially, it
was suggested that this effect was due to a transition to a
supersolid state. The reduction of the mass viscously coupled
to the oscillator walls at the supersolid transition would lead
to a nonclassical rotational inertia (NCRI), and hence the TO
period shift. Subsequent experiments showed this effect was
closely tied to the presence of defects in the 4He crystal: the
slower the crystal was annealed, the smaller was the resulting
signal.3 Numerous theoretical calculations and simulations
followed, supporting the idea that a supersolid should not
exist for a pure 4He crystalline state,4–6 however, superfluidity
could exist in the cores of crystalline defects.7,8 A system
spanning network of pinned defects could then lead to an
effective supersolid. However experiments failed to see the
characteristic features expected for the bulk lambda transition
of three-dimensional (d = 3) superfluid 4He (Ref. 9). In
particular, (1) the TO period shift varies rather smoothly
with temperature,1,2,10,11 with no sign of the sharp singularity
expected if some part of this shift was due to a superfluid
density ρs ∼ |T − Tc|ν , with ν ≈ 0.67; and (2) equilibrium
measurements of heat capacity12,13 show a smooth bump
rather than the sharp lambda-shaped cusp characteristic of a
bulk superfluid transition with c ∼ |T − Tc|−α , α = 2 − dν ≈
−0.01 (Ref. 14).

Since this initial excitement, however, there has been
increasing evidence that the apparent NCRI effect discussed
above is most likely not a consequence of supersolidity.15–21

The NCRI onset shows nearly identical temperature depen-
dence as the classical mechanical effect due to a stiffening of
the shear modulus of the 4He upon cooling.15 In this scenario
the mobility of crystalline defects at high temperatures makes
a fraction of the 4He lag the driving oscillation. The pinning of
these defects upon cooling changes the effective stiffness of the
oscillator and gives rise to the apparent period drop.17,18 While
superfluidity in a pinned defect network could in principle
still contribute to an NCRI effect, it seems likely that such
a superfluid transition would only occur at temperatures well
below the onset of the experimentally observed TO period
shift, unless the dislocation density were several orders of
magnitude larger than is usually estimated.7 Experimental

estimates of the dislocation density in helium solids have
reported a wide range of densities, nd ∼ 104 − 109 cm−2

(Refs. 22 and 23). This corresponds to an onset of superfluidity
in a dislocation network of about Tc ∼ Tλa

√
nd ∼ 0.01 − 1

mK, where Tλ ∼ 2 K is the bulk superfluid transition temper-
ature, and a ∼ 4 Å is the solid He lattice constant.7,24

Nevertheless, it is still interesting theoretically to consider
superfluidity in such a disordered, pinned, defect network, and
to ask what would be the signal at the onset of the superfluid
transition. Would it be the same as the bulk lambda transition,
as has generally been assumed in the literature,25–27 or is
a different, less singular, behavior also possible? Here we
address this question by large-scale Monte Carlo simulations
of an effective model of superfluidity in a correlated random
network.

The effect of disorder on a continuous phase transition
is usually discussed in terms of the Harris criterion.28 The
Harris criterion28 argues that uncorrelated point-like disorder
is irrelevant whenever 2 < dν, with d the spatial dimension of
the system, and ν the correlation length critical exponent. For
bulk superfluidity in d = 3, the pure system has νpure ≈ 0.67
and the Harris criterion is satisfied. It has therefore been
argued25–27 that the superfluid onset in a random dislocation
network should show the same lambda singularity as in
bulk superfluid helium. However, since the dislocation cores
are continuous one-dimensional objects, the assumption of
uncorrelated point-like disorder might not be appropriate. In
this work we consider the case when disorder is correlated
along a network of intersecting lines or planes. In all cases we
argue that the effects of such correlated disorder is to lessen
the sharpness of the critical singularity, removing the divergent
temperature derivatives at Tc that are characteristic of the usual
bulk lambda transition.

To model superfluidity in the pinned dislocation cores of a
defected 4He crystal, we start with a three-dimensional (3D)
lattice XY model. Neglecting amplitude fluctuations of the
condensate order parameter �(r) = |�|eiθ(r), the fluctuations
in the phase angle θ that drive the superfluid transition can be
modeled by the Hamiltonian

H = −
∑
i,μ

Jμ(ri) cos [θ (ri + μ̂) − θ (ri)] , (1)
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where i labels the discrete sites ri of a simple cubic lattice of
length L with periodic boundary conditions in all directions,
and Jμ(ri) is the quenched coupling on the bond connecting
site ri to ri + μ̂, with μ = x,y,z the lattice axis directions. We
will choose spatially inhomogeneous random couplings Jμ(ri)
according to several different schemes.

According to Harris,28 the effect of disorder is controlled by
the mean square fluctuation of the local coupling �J , disorder
averaged over a subvolume V = Rd of the system

[
(�J )2

R

] ≡

⎡
⎢⎣

⎧⎨
⎩R−d

∑
μ

∑
ri∈V

(Jμ(ri) − [Jμ])

⎫⎬
⎭

2
⎤
⎥⎦ , (2)

where [. . .] denotes the average over different realizations of
quenched disorder. For a continuous transition with diverging
correlation length ξ ∼ |T − Tc|−ν , the Harris criterion argues
that disorder is irrelevant at Tc when the coupling fluctuation
averaged over a correlation volume ξd satisfies

√
[(�J )2

ξ ] <

|T − Tc| as T → Tc. For future use, we note that [(�J )2
R] can

be rewritten in terms of the coupling correlation averaged over
the subvolume V[

(�J )2
R

] = C(R) ≡ R−d
∑
μ,μ′

∑
ri∈V

[δJμ(ri)δJμ′(0)], (3)

where δJμ(ri) ≡ Jμ(ri) − [Jμ]. For uncorrelated point disor-
der, with [δJμ(ri)δJμ′(0)] ∝ δμ,μ′δri ,0, Eq. (3) yields C(ξ ) ∼
ξ−d ∼ |T − Tc|dν . The Harris criterion for the irrelevance of
such point disorder then becomes |T − Tc|dν/2 < |T − Tc| or
the familiar 2 < dν.

We now wish to consider models of correlated disorder.
One such case was considered many years ago in a seminal
work by Weinrib and Halperin.29 They noted that when spatial
disorder is introduced as a set of straight randomly oriented
lines, the resulting disorder-averaged coupling correlation
decays algebraically as [δJ (r)δJ (0)] ∼ r−a , with a = d − 1.
In this case, Eq. (3) gives C(ξ ) ∼ ξ−a and the Harris criterion
argues that disorder is irrelevant when 2 < aν. Using a
renormalization group expansion for weak Gaussian disorder,
Weinrib and Halperin showed that this is indeed the case:
when a < d, disorder is irrelevant whenever 2 < aνpure. They
further found that when this criterion fails, the correlation
length exponent at the new disordered critical point satisfies
νdisor = 2/a. Applying this conclusion to a 3D superfluid, we
see that such linear disorder with a = 2 is relevant, resulting in
a superfluid density that vanishes linearly as ρs ∼ |T − Tc|νdisor ,
with νdisor = 1, and a heat capacity c ∼ |T − Tc|−α with
exponent α = 2 − dνdisor = −1. In particular, dc/dT scales
as |T − Tc|−α−1, with −α − 1 = 0, and thus remains finite at
Tc in contrast to its divergence in the pure model. Thus for
such linearly correlated disorder, we expect that the superfluid
density vanishes less sharply than for the pure model, while the
heat capacity has a far less singular cusp. For planar disorder,
as might be the case if superfluidity is carried on randomly
oriented twin grain boundaries, a = d − 2 = 1 in 3D, and the
superfluid singularities are even less sharp.

We next consider a slightly different model of linearly
correlated disorder. Motivated by the notion that dislocation
lines in solid 4He may preferentially align parallel to crystalline
axes, we consider a 3D XY model in which correlated disorder

enters along straight lines oriented only along the three lattice
directions. We choose quenched couplings as follows. Within
the plane at rμ = 0, we randomly choose equal numbers
of bonds Jμ from the bivalued distribution J = 1 ± δ. We
then continue these couplings in correlated straight lines
by requiring Jμ(ri + μ̂) = Jμ(ri). We follow this procedure
for all three directions μ = x,y,z. For the results presented
below we use δ = 1; superfluidity is strictly confined to the
dislocation cores and the three dimensionality of the superflow
results solely from the intersections of these cores to form
an interconnected network. This choice corresponds to an
average defect density of nd = 1/2 defects per lattice bond.
We also performed simulations at other values of nd . For
nd = 1/2 we have also considered the case δ = 0.95, as a
model in which superfluid particles may tunnel through the
bulk between dislocation cores. We find the critical behavior
to be the same in both cases. The coupling correlation
for this disorder is [δJμ(r)δJμ′(0)] ∝ [δ(x)δ(y) + δ(y)δ(z) +
δ(z)δ(x)]δμ,μ′ . However, the volume-averaged correlation is
C(R) ∼ R−a with a = d − 1, just as for randomly oriented
lines. We thus expect this disorder to be relevant; applying
the Harris criterion at the new disordered critical point then
requires νdisor � 2/a = 1.

To confirm this behavior, we carry out extensive numerical
simulations. The superfluid density is proportional to the
XY helicity modulus, which (in units where m/h̄ = 1) is
given by30

ρs = L−3

[〈 ∑
i

Jz(ri) cos[θ (ri + ẑ) − θ (ri)]

〉

− T −1

〈(∑
i

Jz(ri) sin[θ (ri + ẑ) − θ (ri)]

)2〉]
. (4)

The XY magnetization is M = |∑i e
iθ(ri )|, and its Binder

cumulant U is given by

U ≡ 2 −
[ 〈M4〉
〈M2〉2

]
. (5)

We also consider the heat capacity c,

c = L−3T −2[〈H2〉 − 〈H〉2], (6)

and the XY spin susceptibility χ ,

χ = L−3T −1[〈M2〉 − 〈M〉2]. (7)

To analyze the critical properties of the transition at Tc we
apply finite-size-scaling (FSS) methods.31 We expect ρs, U ,
and χ as a function of T and system length L to obey the usual
FSS relations

ρs(T ,L) = L−1R(tL1/ν), U (T ,L) = U(tL1/ν),

χ (T ,L) = Lγ/νX (tL1/ν), (8)

where R(·), U(·), and X (·) are scaling functions, and t ≡
(T − Tc)/Tc.

To carry out our Monte Carlo (MC) simulations to high
accuracy we used an effective Wolff collective update algo-
rithm, which minimizes the effects of critical slowing down
at the transition.32 As the Wolff algorithm is not so efficient
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FIG. 1. (Color online) Superfluid density ρs (solid symbols) and
heat capacity c (open symbols), vs T/Tc, for several model systems
on a lattice of length L = 40. Black circles: pure 3D XY model; red
squares: straight line disorder; green diamonds: directed random line
disorder; blue triangles: random planar disorder. For the disordered
models, results are averaged over several hundred to more than a
thousand random coupling configurations.

at lower temperatures, we add one ordinary Metropolis sweep
through the system for each 100 Wolff updates. Data for the
averages were accumulated during 4–16 × 103 Monte Carlo
steps (MCS), after equally many initial MCS were discarded to
reach equilibrium. One MCS is defined as L3 single site update
attempts. We tested for equilibration by increasing the number
of discarded initial MCS until stable results were obtained. For
our FSS analysis, quenched disorder averages were computed
over 103–104 independent realizations of the random couplings
Jμ(ri).

The main qualitative results of this work are shown in Fig. 1,
where we plot the superfluid density ρs and heat capacity c

versus T/Tc of a system of fixed length L = 40, for both the
pure 3D XY model (Tc = 2.203 in units of J/kB) and for our
model of Eq. (1) with linearly correlated disorder (Tc = 2.501
in units of [J ]/kB , as determined below). The results for the
disordered case are averaged over several hundred realizations
of the quenched random couplings. We see that the presence
of the disorder dramatically softens the singularities of the
pure system, removing the sharp singularities of the lambda
transition. Derivatives with respect to temperature that diverge
as T → Tc in the pure model appear to become finite in the
disordered model.

To verify this conclusion, and to demonstrate that the model
with linearly correlated defects belongs to a new disordered
universality class, we perform a FSS analysis to determine
critical exponents.31 In Figs. 2(a) and 2(c) we plot, respectively,
Lρs and U versus T for different system sizes L = 10–80.
Equations (8) predict that the curves for different L should
all intersect at the common point t = 0, i.e., when T = Tc.
We see that as L increases, the curves do indeed seem to be
approaching a common intersection point, yielding Tc ≈ 2.5.
The temperature for the models with disorder is given in units
of [J ]/kB . The deviations from a perfect common intersection
are due to corrections to scaling, which can be noticeable when
L is insufficiently large.14

For a more accurate determination of the critical Tc, as well
as the correlation length exponent ν, we expand the scaling
functions of Eqs. (8) as third-order polynomials, and fit our
data to these scaling forms with Tc, ν, and the polynomial
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FIG. 2. (Color online) (a) Scaled superfluid density Lρs,
(c) Binder cumulant U , and (e) susceptibility χ vs T for system sizes
L = 10–80. Scaling collapse of (b) Lρs, (d) U , and (f) χL−γ /ν vs
tL1/ν , for system sizes L = 30–80, using values Tc = 2.501, ν = 1,
and γ = 1.84.

coefficients as free fitting parameters. We restrict our fits to data
satisfying |tL1/ν | < 0.5. Using system sizes Lmin to Lmax =
80, we plot the resulting fitted values for Tc and ν versus
1/Lmin in Figs. 3(a) and 3(b), respectively. We see that as Lmin

increases, the values of Tc and ν from Lρs and U approach
each other. A procedure including corrections to scaling yields
consistent values of Tc = 2.501 ± 0.001 and ν = 1.00 ± 0.05
from fits to both Lρs and U . The errors represent one standard
deviation statistical error as estimated using the method of
synthetic data sets.33 Using these common values of Tc and
ν, the resulting scaling collapses, plotting Lρs and U versus
tL1/ν , are shown in Figs. 2(b) and 2(d), for sizes L = 30–80.
We note that our result ν ≈ 1 is identical to the prediction
of Weinrib and Halperin for algebraically correlated couplings
with a = d − 1 = 2, and implies that the new disordered fixed
point just marginally satisfies the Harris criterion for stability.

Next we consider the susceptibility χ of Eq. (7). In Fig. 2(e)
we plot χ versus T for system sizes L = 10–80. The exponent
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FIG. 3. (Color online) Values of (a) Tc and (b) ν obtained by
fitting data with |tL1/ν | < 0.5 to third-order polynomial expansions
of the scaling functions of Eqs. (8), using data from system sizes Lmin

to Lmax = 80.
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FIG. 4. (Color online) Integrated coupling correlation C(R) of
Eq. (3), vs R, for a system of length L = 200. Results are normalized
by C(1), and shown for the case of straight randomly positioned lines,
directed random lines, and random flat planes.

γ in Eq. (8) is obtained from a power-law fit to the maximum
value of χ (T ) versus L. We find γ = 1.84 ± 0.1. Using this
value of γ , and Tc = 2.501,ν = 1.0 as determined above,
we show in Fig. 2(f) the resulting scaling collapse, plotting
χL−γ /ν versus tL1/ν for system sizes L = 30–80. The collapse
is excellent. From the two independent exponents ν ≈ 1.0,γ ≈
1.84 all the other thermodynamic critical exponents can be
obtained from standard scaling laws.34 Hyperscaling gives the
heat capacity exponent α = 2 − dν ≈ −1.0; the Rushbrook
equality α + 2β + γ = 2 gives for the order parameter ex-
ponent β ≈ 0.58; and the correlation function exponent η is
obtained from γ = (2 − η)ν giving η ≈ 0.16.

So far, our linear disorder has taken the form of perfectly
straight lines. In a solid, however, dislocation cores may
wander as they traverse the system. To consider the effect of
such wandering, we generalize our model by letting each defect
line be a directed random walk. For a walk directed along ẑ,
for example, each step in the ẑ direction is allowed to include
a random transverse fluctuation �r⊥, sampled equally from
�r⊥ = {0, ± x̂, ± ŷ}. For each walk the �r⊥ are constrained
to sum to zero, so that the line at z = L returns to its starting
position at z = 0 under the periodic boundary conditions. For
each such walk j , a variable nj = 1 is placed on each bond of
the walk. The couplings of the corresponding XY model are
then set to J = ∑

j nj on each bond. Finally, all couplings J

are rescaled by a constant factor so that the disorder average
[Jμ] = 1. We thus construct such configurations on a lattice of
size L = 200 and numerically compute the integrated coupling
correlation C(R) of Eq. (3), averaging over more than 1000
different realizations of the disorder. Our results are shown in
Fig. 4, along with C(R) as computed for our original straight
line model. We find a clear algebraic decay in both cases, with
C(R) ∼ R−a , a = 2. Thus the directed random line model is
expected to be in the same universality class as our straight line
model. In Fig. 1 we show results for ρs and heat capacity c for
this directed random line model, as obtained from simulations
on a lattice of size L = 40, averaging over several hundreds
of disorder configurations. The effect of superfluidity seems
slightly suppressed, as compared to the straight line case, but
the shapes of the singularities appear to be the same.

We have also considered a random plane model. We select
a sequence of flat planes as follows. For planes oriented with
normal along ẑ, each xy plane at height z is randomly selected
or not with probability 1/2. Such random plane sequences
are selected in all three directions x̂, ŷ, ẑ simultaneously. For
each such plane j we set nj = 1 for all bonds in the plane;
the XY bond couplings are J = ∑

j nj , and then rescaled
so that [J ] = 1. In Fig. 4 we plot the resulting numerically
computed correlation C(R). We find an algebraic decay with
C(R) ∼ R−a , a = 1. In Fig. 1 we show results for ρs and
heat capacity c for this random plane model, as obtained from
simulations on a lattice of size L = 40, averaging over more
than 1000 disorder configurations. As expected, the singularity
at Tc is now even smoother than for the random line models.

To conclude, we have considered a variety of models for a
superfluid with long-range-correlated quenched disorder. In all
cases we have argued that the disorder changes the universality
class of the superfluid transition to one with ν � 1. Our results
show that superfluidity in such correlated disorder networks
would not display the familiar sharp features of the lambda
transition of an ordinary bulk superfluid.

We are grateful to Egor Babaev, Alexander Balatsky, and
John Reppy for discussions. This work was supported by the
Swedish Research Council, the Göran Gustafsson foundation,
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